
An Experimental Analysis of a Compact Graph Representation ∗

Daniel K. Blandford Guy E. Blelloch Ian A. Kash
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

{blandford,blelloch,iak}@cs.cmu.edu

Abstract

In previous work we described a method for compactly
representing graphs with small separators, which makes
use of small separators, and presented preliminary ex-
perimental results. In this paper we extend the experi-
mental results in several ways, including extensions for
dynamic insertion and deletion of edges, a comparison
of a variety of coding schemes, and an implementation
of two applications using the representation.

The results show that the representation is quite ef-
fective for a wide variety of real-world graphs, including
graphs from finite-element meshes, circuits, street maps,
router connectivity, and web links. In addition to signif-
icantly reducing the memory requirements, our imple-
mentation of the representation is faster than standard
representations for queries. The byte codes we intro-
duce lead to DFT times that are a factor of 2.5 faster
than our previous results with gamma codes and a fac-
tor of between 1 and 9 faster than adjacency lists, while
using a factor of between 3 and 6 less space.

1 Introduction

We are interested in representing graphs compactly
while supporting queries and updates efficiently. The
goals is to store large graphs in physical memory for
use with standard algorithms requiring random access.
In addition to having applications to computing on large
graphs (e.g. the link graph of the web, telephone call
graphs, or graphs representing large meshes), the rep-
resentations can be used for medium-size graphs on de-
vices with limited memory (e.g. map graphs on a hand-
held device). Furthermore even if the application is not
limited by physical memory, the compact representa-
tions can be faster than standard representations be-
cause they have better cache characteristics. Our ex-
periments confirm this.

∗This work was supported in part by the National Science

Foundation as part of the Aladdin Center (www.aladdin.cmu.edu)
under grants CCR-0086093, CCR-0085982, and CCR-0122581.

Many methods have been proposed for compressing
various specific classes of graphs. There have been
many results on planar graphs and graphs with constant
genus [32, 15, 13, 18, 14, 21, 8, 6]. These representations
can all store an n-vertex unlabeled planar graph in
O(n) bits, and some allow for O(1)-time neighbor
queries [21, 8, 6]. By unlabeled we mean that the
representation is free to choose an ordering on the
vertices (integer labels from 0 to n− 1). To represent a
labeled graph one needs to additionally store the vertex
labels. Other representations have been developed for
various other classes of graphs [15, 12, 24, 30]. A
problem with all these representations is that they can
only be used for a limited class of graphs.

In previous work we described a compact represen-
tation for graphs based on graph separators [5]. For
unlabeled graphs satisfying an O(nc), c < 1 separa-
tor theorem, the approach uses O(n) bits and supports
neighbor or adjacency queries in O(1)-time per edge.
A property of the representation, however, is that it
can be applied to any graph, and the effectiveness of
compression will smoothly degrade with the quality of
the separators. For random graphs, which don’t have
small separators (in expectation), the space require-
ment asymptotically matches the informational theoret-
ical lower bound. This smooth transition is important in
practice since many real-world graphs might not strictly
satisfy a separator theorem, but still have good separa-
tor properties. In fact, since many graphs only come in a
fixed size, it does not even make sense to talk about sep-
arators theorems, which rely on asymptotic character-
istics of separators. As it turns out, most “real world”
graphs do have small separators (significantly smaller
than expected from a random graph). This is discussed
in Section 1.1.

This paper is concerned with the effectiveness of the
separator-based representation in practice. We extend
the previous approach to handle dynamic graphs (edge
insertions and deletions) and present a more complete
set of experiments, including a comparison of different



prefix codes, comparison on two machines with different
cache characteristics, a comparison with several variants
of the adjacency-list representation, and experimental
results of two algorithms using the representation. Our
experiments show that our representations mostly dom-
inate standard representations in terms of both space
and query times. Our dynamic representation is slower
than adjacency lists for updates.

In Section 2 we review our previous representation
as applied to edge-separators. The representation uses a
separator tree for labeling the vertices of the graph and
uses difference codes to store the adjacency lists. In
Section 3 we describe our implementation, including a
description of the prefix codes used in this paper. In Sec-
tion 4 we describe an extension of the separator-based
representation that supports dynamic graphs, i.e., the
insertion and deletion of edges. Our original represen-
tation only supported static graphs. The extension in-
volves storing the bits for each representation in fixed-
length blocks and linking blocks together when they
overflow. A key property is that the link pointers can
be kept short (one byte for our experiments). The rep-
resentation also uses a cache to store recently accessed
vertices as uncompressed lists.

In Sections 5 and 6 we report on experiments ana-
lyzing time and space for both the static and dynamic
graphs. Our comparisons are made over a wide vari-
ety of graphs including graphs taken from finite-element
meshes, VLSI circuits, map graphs, graphs of router
connectivity, and link graphs of the web. All the graphs
are sparse. To analyze query times we measure the time
for a depth-first search (DFS) over the graph. We picked
this measure since it requires visiting every edge exactly
once (in each direction) and since it is a common sub-
routine in many algorithms.

For static graphs we compare our static representa-
tion to adjacency arrays. An adjacency array stores for
each vertex an array of pointers to its neighbors. These
arrays are concatenated into one large array with each
vertex pointing to the beginning of its block. This repre-
sentation takes about a factor of two less space than ad-
jacency lists (requiring only one word for each directed
edge and each vertex). For our static representation we
use four codes for encoding differences: gamma codes,
snip codes, nibble codes, and byte codes (only gamma
codes were reported in our previous paper). The differ-
ent codes present a tradeoff between time and space.

Averaged over our test graphs, the static represen-
tation with byte codes uses 12.5 bits per edge, and the
snip code uses 9 bits per edge. This compares with 38
bits per edge for adjacency arrays. Due to caching ef-
fects the time performance of adjacency arrays depends
significantly on the ordering of the vertices. If the ver-

tices are ordered randomly, then our static representa-
tion with byte codes is between 2.2 and 3.5 times faster
than adjacency arrays for a DFS (depending on the ma-
chine). If the vertices are ordered using the separator
order we use for compression then the byte code is be-
tween .95 and 1.3 times faster than adjacency arrays.

For dynamic graphs we compare our dynamic rep-
resentation to optimized implementation of adjacency
lists. The performance of the dynamic separator-based
representation depends on the size of blocks used for
storing the data. We present results for two settings,
one optimized for space and the other for time. The
representation optimized for space uses 11.6 bits per
edge and the one optimized for time uses 18.8 bits per
edge (averaged over all graphs). This compares with 76
bits per edge for adjacency lists.

As with adjacency arrays, the time performance of
adjacency lists depends significantly on the ordering
of the vertices. Furthermore for adjacency lists the
performance also depends significantly on the order in
which edges are inserted (i.e., whether adjacent edges
end up on the same cache line). The runtime of
the separator-based representation does not depend on
insertion order. It is hard to summarize the time results
other than to say that the performance of our time
optimized representation ranges from .9 to 8 times faster
than adjacency lists for a DFS. The .9 is for separator
ordering, linear insertion, and on the machine with a
large cache-line size. The 8 is for random ordering
and random insertion. The time for insertion on the
separator-based representation is up to 4 times slower
than adjacency lists.

In Section 7 we describe experimental results ana-
lyzing the performance of two algorithms. The first is
a maximum-bipartite-matching algorithm and the sec-
ond is an implementation of the Google page-rank algo-
rithm. In both algorithms the graph is used many times
over so it pays to use a static representation. We com-
pare our static representation (using nibble codes) with
both adjacency arrays and adjacency lists. For both al-
gorithms our representation runs about as fast or faster,
and saves a factor of between 3 and 4 in space.

All experiments run within physical memory so our
speedup has nothing to do with disk access.

1.1 Real-world graphs have good separators An
edge-separator is a set of edges that, when removed,
partitions a graph into two almost equal sized parts
(see [23] for various definitions of “almost equal”).
Similarly a vertex separator is a set of vertices that
when removed (along with its incident edges) partitions
a graph into two almost equal parts. The minimum
edge (vertex) separator for a graph is the separator



that minimizes the number of edges (vertices) removed.
Informally we say that a graph has good separators if
it and its subgraphs have minimum separators that are
significantly better than expected for a random graph
of its size. Having good separators indicates that the
graph has some form of locality—edges are more likely
to attach “near” vertices than far vertices.

Along with sparsity, having good separators is prob-
ably the most universal property of real-world graphs.
The separator property of graphs has been used for
many purposes, including VLSI layout [2], nested dissec-
tion for solving linear systems [16], partitioning graphs
on to parallel processors [27], clustering [29], and com-
puter vision [26]. Although finding a minimum separa-
tor for a graph in NP-hard, there are many algorithms
and codes that find good approximations [23]. Here we
briefly review why graphs have good separators.

Many graphs have good separators because they are
based on communities and hence have a local structure
to them. Link graphs for the web have good separators
since most links are either within a local domain or
within some other form of community (e.g. computer
science researchers, information on gardening, ...). This
is not just true at one level (i.e., either local or not),
but is true hierarchically. Most graphs based on social
networks have similar properties. Such graphs include
citation graphs, phone-call graphs, and graphs based
on friendship-relations. In fact Watts and Strogatz [36]
conjecture that locality is one of the main properties of
graphs based on social networks.

Many graphs have good separators because they are
embedded in a low dimensional space. Most meshes that
are used for various forms of simulation (e.g. finite ele-
ment meshes) are embedded in two or three dimensional
space. Two dimensional meshes are often planar (al-
though not always) and hence satisfy an O(n1/2) vertex-
separator theorem [17]. Well shaped three dimensional
meshes are known to satisfy an O(n2/3) vertex-separator
theorem [20]. Graphs representing maps (roads, power-
lines, pipes, the Internet) are embedded in a little more
than two dimensions. Road maps are very close to pla-
nar, except in Pittsburgh. Power-line graphs and Inter-
net graphs can have many crossings, but still have very
good separators. Graphs representing the connectivity
of VLSI circuits also have a lot of locality since ulti-
mately they have to be laid out in two dimensions with
only a small constant number of layers of connections.
It is well understood that the size of the layout depends
critically on the separator sizes [33].

Clearly certain graphs do not have good separators.
Expander graphs by their very definition cannot have
small separators.

2 Encoding with Separators

In previous work [5] we described an O(n)-bit encoding
with O(1) access time for graphs satisfying either an
nc, c < 1 edge or vertex separator theorem. In this
paper we only consider the simpler version based on
edge separators. Here we review the algorithm for edge-
separators.

Edge Separators. Let S be a class of graphs that
is closed under the subgraph relation. We say that
S satisfies a f(n)-edge separator theorem if there are
constants α < 1 and β > 0 such that every graph in S
with n vertices has a set of at most βf(n) edges whose
removal separates the graph into components with at
most αn vertices each [17].

Given a graph G it is possible to build a separator
tree. Each node of the tree contains a subgraph of G
and a separator for that subgraph. The children of a
node contain the two components of the graph induced
by the separator. The leaves of the tree are single nodes.

Without loss of generality we will consider only
graphs in which all vertices have nonzero degree. We
will also assume the existence of a graph separator
algorithm that returns a separator within the O(nc)
bound.

Adjacency Tables. Our data structures make use
of an encoding in which we store the neighbors for
each vertex in a difference-encoded adjacency list. We
assume the vertices have integer labels. If a vertex v has
neighbors v1, v2, v3, . . . , vd in sorted order, then the
data structure encodes the differences v1 − v, v2 − v1,
v3 − v2, . . . , vd − vd−1 contiguously in memory as a
sequence of bits. The differences are encoded using
any logarithmic code, that is, a prefix code which uses
O(log d) bits to encode a difference of size d. The value
v1− v might be negative, so we store a sign bit for that
value. At the start of each encoded list we also store a
code for the number of entries in the list.

We form an adjacency table by concatenating the
adjacency lists together in the order of the vertex
labels. To access the adjacency list for a particular
vertex we need to know its starting location. Finding
these locations efficiently (in time and space) requires a
separate indexing structure [5]. For the experiments in
this paper we use an indexing structure (see Section 3)
that is not theoretically optimal, but works well in
practice and is motivated by the theoretically optimal
solutions.

Graph Reordering. Our compression algorithm
works as follows:

1. Generate an edge separator tree for the graph.

2. Label the vertices in-order across the leaves.



3. Use an adjacency table to represent the relabeled
graph.

Lemma 2.1. [5] For a class of graphs satisfying an
nc-edge separator theorem, and labelings based on the
separator tree satisfying the bounds of the separator
theorem, the adjacency table for any n-vertex member
requires O(n) bits.

3 Implementation

Separator trees. There are several ways to com-
pute a separator tree from a graph, depending on
the separator algorithm used. In our previous paper
we tested three separator algorithms and described a
“child-flipping” postprocessing heuristic which could be
used to improve their performance. Here we use the
“bottom-up” separator algorithm with child-flipping.
This algorithm gave the best performance on many of
our test graphs while being significantly faster than the
runner-up for performance. Generating the separator
tree and labeling with this algorithm seems to take lin-
ear time and takes about 15 times as long as a depth-
first search on the same graph.

The bottom-up algorithm begins with the complete
graph and repeatedly collapses edges until a single
vertex remains. There are many heuristics that can be
used to decide in what order to collapse the edges. After
some experimentation, we settled on the priority metric
w(EAB)
s(A)s(B) , where w(EAB) is the number of edges between
the multivertices A and B, and s(A) is the number
of original vertices contained in multivertex A. The
resulting process of collapsing edges creates a separator
tree, in which every two merged vertices become the
children of the resulting multivertex. We do not know
of any theoretical bounds on this or similar separator
algorithms.

There is a certain degree of freedom in the way we
construct a separator tree: when we partition a graph,
we can arbitrarily decide which side of the partition
will become the left or right child in the tree. To
take advantage of this degree of freedom we use an
optimization called “child-flipping”. A child-flipping
algorithm traverses the separator tree, keeping track of
the nodes containing vertices which appear before and
after the current node in the numbering. (These nodes
correspond to the left child of the current node’s left
ancestor and the right child of the current node’s right
ancestor.) If those nodes are NL and NR, the current
node’s children are N1 and N2, and EAB denotes the
number of edges between the vertices in two nodes, then
our child-flipping heuristic rotates N1 and N2 to ensure
that ENLN1 +EN2NR ≥ ENLN2 +EN1NR . This heuristic
can be applied to any separator tree as a postprocessing

phase.
Indexing structure. Our static algorithms use an

indexing structure to map the number of a vertex to the
bit position of the start of the appropriate adjacency
list. In our previous paper we tested several types of
indexing structure and demonstrated a tradeoff between
space used and lookup speed. Here we use a new
structure called semi-direct-16 which stores the start
locations for sixteen vertices in five 32-bit words. The
first word contains the offset to vertex 0—that is, the
first of the sixteen vertices being represented. The
second word contains three ten-bit offsets from the first
vertex to starts of vertices 4, 8, and 12. The next three
words contain twelve eight-bit offsets to the remaining
twelve vertices. Each of the twelve vertices is stored
by an offset relative to one of the four vertices already
encoded. For example, the start of vertex 14 is encoded
by its offset from the start of vertex 12.

If at any point the offsets do not fit in the space
provided, they are stored elsewhere, and the table
contains a pointer to them.

This indexing method saves about six bits per
vertex over our previous semidirect index while causing
almost no slowdown.

Codes and Decoding. We considered several log-
arithmic codes for use in our representations. In ad-
dition to the gamma code [9], which we used in our
previous experiments, we implemented byte codes, nib-
ble codes, and snip codes—three closely related codes of
our own devising.

Gamma codes store an integer d using a unary code
for dlog de followed by a binary code for d−2dlog de. This
uses a total of 1 + 2blog dc bits. Assuming the machine
word size is at least log d bits, gamma codes can be
decoded in constant time using table lookup.

Decoding the gamma codes is the bottleneck in
making queries. To reduce the overhead we devised
three codes, snip, nibble, and byte codes, that better
take advantage of the fact that machines are optimized
to manipulate bytes and words rather than extract
arbitrary bit sequences. These codes are special 2-
, 4-, and 8-bit versions of a more general k-bit code
which encodes integers as a sequence of k-bit blocks.
We describe the k-bit version. Each block starts with
a continue bit which specifies whether there is another
block in the code. An integer i is encoded by checking
if is less or equal to 2k−1. If so a single block is
created with a 0 in the continue bit and the binary
representation for i − 1 in the other k − 1 bits. If not,
the first block is created with a 1 in the continue-bit
and the binary representation for (i − 1) mod 2k−1 in
the remaining bits (the mod is implemented with a
bitwise and). This block is then followed by the code



for
⌊
(i− 1)/2k−1

⌋
(the / is implemented with a bitwise

shift). The 8-bit version (byte code) is particularly fast
to encode and decode since all memory accesses are to
bytes. The 4-bit version (nibble code) and 2-bit version
(snip code) are somewhat slower since they require more
accesses and require extracting pieces of a byte.

We also considered using Huffman and Arithmetic
codes which are based on the particular distribution at
hand. However, we had used these codes in previous
work [3] and found that although they save a little
space over gamma codes (about 1 bit per edge for
arithmetic codes), they are more expensive to encode
and decode. Since our primary goal was to improve
time performance, we did not implement these codes.

4 Dynamic Representation

Here we present a data structure that permits dynamic
insertion (and deletion) of edges in the graph. In
the static data structure, the data for each vertex is
concatenated and stored in one chunk of memory, with
a separate index to allow finding the start of each
vertex. In the dynamic data structure, the size of a
vertex can change with each update, so it is necessary
to dynamically assign memory to vertices.

Our dynamic structure manages memory in blocks
of fixed size. The data structure initially contains an
array with one memory block for each vertex. If addi-
tional memory is needed to store the data for a vertex,
the vertex is assigned additional blocks, allocated from a
pool of spare memory blocks. The blocks are connected
into a linked list.

When we allocate an additional block for a vertex,
we use part of the previous block to store a pointer to
the new one. We use a hashing technique to reduce the
size of these pointers to only 8 bits. To work efficiently
the technique requires that a constant fraction of the
blocks remain empty. This requires a hash function
that maps (address, i) pairs to addresses in the spare
memory pool. Our representation tests values of i in the
range 0 to 127 until the result of the hash is an unused
block. It then uses that value of i as the pointer to
the block. Under certain assumptions about the hash
function, if the memory pool is at most 80% full, then
the probability that this technique will fail is at most
.80128 ' 4 ∗ 10−13.

To help ensure memory locality, a separate pool of
contiguous memory blocks is allocated for each 1024
vertices of the graph. If a given pool runs out of memory,
it is resized. Since the pools of memory blocks are fairly
small this resizing is relatively efficient.

Caching. For graph operations that have high
locality, such as repeated insertions to the same vertex,
it may be inefficient to repeatedly encode and decode

Max
Graph Vtxs Edges Degree Source
auto 448695 6629222 37 3D mesh [35]
feocean 143437 819186 6 3D mesh [35]
m14b 214765 3358036 40 3D mesh [35]
ibm17 185495 4471432 150 circuit [1]
ibm18 210613 4443720 173 circuit [1]
CA 1971281 5533214 12 street map [34]
PA 1090920 3083796 9 street map [34]
googleI 916428 5105039 6326 web links [10]
googleO 916428 5105039 456 web links [10]
lucent 112969 363278 423 routers [25]
scan 228298 640336 1937 routers [25]

Table 1: Properties of the graphs used in our experi-
ments.

the neighbors of a vertex. We implemented a variant of
our structure that uses caching to improve access times.
When a vertex is queried, its neighbors are decoded and
stored in a temporary adjacency list structure. Memory
for this structure is drawn from a separate pool of list
nodes of limited size. The pool is managed in first in
first out mode. A modified vertex that is flushed from
the pool is written back to the main data structure
in compressed form. We maintain the uncompressed
adjacency lists in sorted order (by neighbor label) to
facilitate writing them back.

5 Experimental Setup

Graphs. We drew test graphs for our experiments
from several sources: 3D Mesh graphs from the on-
line Graph Partitioning Archive [35], street connectiv-
ity graphs from the Census Bureau Tiger/Line data
[34, 28], graphs of router connectivity from the SCAN
project [25], graphs of webpage connectivity from the
Google [10] programming contest data, and circuit
graphs from the ISPD98 Circuit Benchmark Suite [1].
The circuit graphs were initially hypergraphs; we con-
verted them to standard graphs by converting each net
into a clique. Properties of these graphs are shown
in Table 1. For edges we list the number of directed
edges in the graph. For the directed graphs (googleI
and googleO) we take the degree of a vertex to be the
number of elements in its adjacency list.

Machines and compiler. The experiments were
run on two machines, each with 32-bit processors but
with quite different memory systems. The first uses a
.7GHz Pentium III processor with .1GHz frontside bus
and 1GB of RAM. The second uses a 2.4GHz Pentium
4 processor with .8GHz frontside bus and 1GB of RAM.
The Pentium III has a cache-line size of 32 bytes, while
the Pentium 4 has an effective cache-line size of 128



bytes. The Pentium 4 also supports quadruple loads
and hardware prefetching, which are very effective for
loading consecutive blocks from memory, but not very
useful for random access. The Pentium 4 therefore
performs much better on the experiments with strong
spacial locality (even more than the factor of 3.4 in
processor speed would indicate), but not particularly
well on the experiments without spacial locality. All
code is written in C and C++ and compiled using g++
(3.2.3) using Linux 7.1.

Benchmarks. We present times for depth-first-
search as well as times for reading and inserting all
edges. We select a DFS since it visits every edge once,
and visits them in a non-trivial order exposing caching
issues better than simply reading the edges for each
vertex in linear order. Our implementation of DFS
uses a character array of length n to mark the visited
vertices, and a stack to store the vertices to return to.
It does nothing other than traverse the graph. For
reading the edges we present times both for accessing
the vertices in linear order and for accessing them in
random order. In both cases the edges within a vertex
are read in linear order. For inserting we insert in three
different orders: linear, transpose, and random. Linear
insertion inserts all the out-edges for the first vertex,
then the second, etc.. Transpose insertion inserts all the
in-edges for the first vertex, then the second, etc.. Note
that an in-edge (i, j) for vertex j goes into the adjacency
list of vertex i not j. Random insertion inserts the edges
in random order.

We compare the performance of our data structure
to that of standard linked-list and array-based data
structures, and to the LEDA [19] package. Since small
differences in the implementation can make significant
differences in performance, here we describe important
details of these implementations.

Adjacency lists. We use a singly linked-list data
structure. The data structure uses a vertex-array of
length n to access the lists. Each array element i
contains the degree of vertex i and a pointer to a linked
list of the out-neighbors of vertex i. Each link in the list
contains two words: an integer index for the neighbor
and a pointer for the next link. We use our own memory
management for the links using free lists—no space is
wasted for header or tail words. The space required is
therefore 2n + 2m + O(1) words (32 bits each for the
machines we used). Assuming no deletions, sequential
allocation returns consecutive locations in memory—
this is important for understanding spacial locality.

In our experiments we measured DFS runtimes after
inserting the edges in three orders: linear, transpose,
and random. These insertion orders are describe above.
The insertion orders have a major affect on the runtime

for accessing the linked lists—the times for DFS vary
by up to a factor of 11 due to the insertion order. For
linear insertion all the links for a given vertex will be in
adjacent physical memory locations giving a high degree
of spacial locality. This means when an adjacency list is
traversed most of the links will be found in the cache—
they are likely to reside on the same cache line as the
previous link. This is especially true for our experiments
on the Pentium 4 which has 128-byte cache lines (each
cache line can fit 16 links). For random insertion, and
assuming the graph does not fit in cache, accessing every
link is likely to be a cache miss since memory is being
accessed in completely random order.

We also measured runtimes with the vertices labeled
in two orders: randomized and separator. In the
randomized labeling the integer labels are assigned
randomly. In the separator labeling we use the labeling
generated by our graph separator—the same as used
by our compression technique. The separator labeling
gives better spacial locality in accessing both the vertex-
array and the visited-array during a DFS. This is
because loading the data for a vertex will load the data
for nearby vertices which are on the same cache-line.
Following an edge to a neighbor is then likely to access a
vertex nearby in the ordering and still in cache. If linear
insertion is used the separator labeling also improves
locality on accessing the links during a DFS. This is
because the links for neighboring vertices will often fall
on the same cache lines. We were actually surprised at
what a strong effect labeling based on separators had on
performance. The performance varied by up to a factor
of 7 for the graphs with low degree and the machine
with 128-byte cache lines.

Adjacency Array. The adjacency array data
structure is a static representation. It stores the out-
edges of each vertex in an edge-array, with one integer
per edge (the index of the out neighbor). The edge-
arrays for the vertices are stored one after the other in
the order of the vertices. A separate vertex-array points
to the start of the edge-array for each vertex. The num-
ber of out-edges of vertex i can be determined by taking
the difference of the pointer to the edge array for ver-
tex i and the edge array for vertex i + 1. The total
space required for an adjacency array is n + m + O(1)
words. For static representations it makes no sense to
talk about different insertion orders of the edges. The
ordering of the vertex labeling, however, can make a sig-
nificant difference in performance. As with the linked-
list data-structure we measured runtimes with the ver-
tices labeled in randomized and separator order. Also as
with linked lists, using the separator ordering improved
performance significantly, again by up to a factor of 7.



Array Our Structure
Rand Sep Byte Nibble Snip Gamma DiffByte

Graph T1 T/T1 Space T/T1 Space T/T1 Space T/T1 Space T/T1 Space T/T1 Space

auto 0.268s 0.313 34.17 0.294 10.25 0.585 7.42 0.776 6.99 1.063 7.18 0.399 12.33
feocean 0.048s 0.312 37.60 0.312 12.79 0.604 10.86 0.791 11.12 1.0 11.97 0.374 13.28
m14b 0.103s 0.388 34.05 0.349 10.01 0.728 7.10 0.970 6.55 1.320 6.68 0.504 11.97
ibm17 0.095s 0.536 33.33 0.536 10.19 1.115 7.72 1.400 7.58 1.968 7.70 0.747 12.85
ibm18 0.113s 0.398 33.52 0.442 10.24 0.867 7.53 1.070 7.18 1.469 7.17 0.548 12.16
CA 0.920s 0.126 43.40 0.146 14.77 0.243 10.65 0.293 10.55 0.333 11.25 0.167 14.81
PA 0.487s 0.137 43.32 0.156 14.76 0.258 10.65 0.310 10.60 0.355 11.28 0.178 14.80
lucent 0.030s 0.266 41.95 0.3 14.53 0.5 11.05 0.566 10.79 0.700 11.48 0.333 14.96
scan 0.067s 0.208 43.41 0.253 15.46 0.402 11.84 0.477 11.61 0.552 12.14 0.298 16.46
googleI 0.367s 0.226 37.74 0.258 11.93 0.405 8.39 0.452 7.37 0.539 7.19 0.302 13.39
googleO 0.363s 0.250 37.74 0.278 12.59 0.460 9.72 0.556 9.43 0.702 9.63 0.327 13.28

Avg 0.287 38.202 0.302 12.501 0.561 9.357 0.696 9.07 0.909 9.424 0.380 13.662

Table 2: Performance of our static algorithms compared to performance of an adjacency array representation.
Space is in bits per edge; time is for a DFS, normalized to the first column, which is given in seconds.

LEDA. We also ran all our experiments using
LEDA [19] version 4.4.1. Our experiments use the
LEDA graph object and use the forall outedges
and forall vertices for the loops over edges and
vertices. All code was compiled with the flag
LEDA CHECKING OFF. For analyzing the space for the
LEDA data structure we use the formula from the
LEDA book [19, page 281]: 52n + 44m + O(1) bytes.
We note that comparing space and time to LEDA is not
really fair since LEDA has many more features than our
data structures. For example the directed graph data
structure in LEDA stores a linked list of both the in-
edges and out-edges for each vertex. Our data struc-
tures only store the out-edges. LEDA also stores the
edges in a doubly-linked list allowing traversal in either
direction and a simpler deletion of edges.

6 Experimental Results

Our experiments measure the tradeoffs of various pa-
rameters in our data structures. This includes the type
of prefix code used in both the static and dynamic cases,
and the block size used and the use of caching in the
dynamic case. We also study a version that difference
encodes out-edges relative to the source vertex rather
than the previous out-edge. This can be used where the
user needs control of the ordering of the out-edges. We
make use of this in a compact representation of simpli-
cial meshes [4].

6.1 Static representations Table 2 presents results
comparing space and DFS times for the static represen-
tations for all the graphs on the Pentium 4. Tables 5
and 6 present summary results for a wider set of oper-
ations on both the Pentium III and Pentium 4. In Ta-

ble 2 all times are normalized to the first column, which
is given in seconds. The average times in the bottom
row are averages of the normalized times, so the large
graphs are not weighted more heavily. All times are for
a DFS.

For the adjacency-array representation times are
given for the vertices ordered both randomly (Rand)
and using our separator ordering (Sep). As can be seen
the ordering can affect performance by up to a factor of
8 for the graphs with low average degree (i.e., PA and
CA), and a factor of 3.5 averaged over all the graphs.
This indicates that the ordering generated by graph
separation is not only useful for compression, but is also
critical for performance on standard representations (we
will see an even more pronounced effect with adjacency
lists). The advantage of using separator orders to
enhance spacial locality has been previously studied for
use in sparse-matrix vector multiply [31, 11], but not
well studied for other graph algorithms. For adjacency
arrays the ordering does not affect space.

For our static representation times and space are
given for four different prefix codes: Byte, Nibble, Snip
and Gamma. The results show that byte codes are
significantly faster than the other codes (almost twice
as fast as the next fastest code). This is not surprising
given that the byte codes take advantage of the byte
instructions of the machine. The difference is not as
large on the Pentium III (a factor of 1.45). It should be
noted that the Gamma codes are almost never better
than Snip codes in terms of time or space.

We also include results for the DiffByte code, a
version of our byte code that encodes each edge as the
difference between the target and source, rather than
the difference between the target and previous target.



3 4 8 12 16 20
Graph T1 Space T/T1 Space T/T1 Space T/T1 Space T/T1 Space T/T1 Space

auto 0.318s 11.60 0.874 10.51 0.723 9.86 0.613 10.36 0.540 9.35 0.534 11.07
feocean 0.044s 14.66 0.863 13.79 0.704 12.97 0.681 17.25 0.727 22.94 0.750 28.63
m14b 0.146s 11.11 0.876 10.07 0.684 9.41 0.630 10.00 0.554 8.92 0.554 10.46
ibm17 0.285s 12.95 0.849 11.59 0.614 10.44 0.529 10.53 0.491 10.95 0.459 11.39
ibm18 0.236s 12.41 0.847 11.14 0.635 10.12 0.563 10.36 0.521 10.97 0.5 11.64
CA 0.212s 10.62 0.943 12.42 0.952 23.52 1.0 35.10 1.018 46.68 1.066 58.26
PA 0.119s 10.69 0.941 12.41 0.949 23.35 1.0 34.85 1.025 46.35 1.058 57.85
lucent 0.018s 13.67 0.888 14.79 0.833 22.55 0.833 31.64 0.833 41.22 0.888 51.09
scan 0.034s 15.23 0.941 16.86 0.852 26.39 0.852 37.06 0.852 48.08 0.882 59.34
googleI 0.230s 11.91 0.895 12.04 0.752 15.71 0.730 20.53 0.730 25.78 0.726 31.21
googleO 0.278s 13.62 0.863 13.28 0.694 15.65 0.658 19.52 0.640 24.24 0.676 29.66

Avg 12.58 0.889 12.62 0.763 16.36 0.735 21.56 0.721 26.86 0.736 32.78

Table 3: Performance of our dynamic algorithm using nibble codes with various block sizes. For each size we give
the space needed in bits per edge (assuming enough blocks to leave the secondary hash table 80% full) and the
time needed to perform a DFS. Times are normalized to the first column, which is given in seconds. .

This increases the space since the differences are larger
and require more bits to encode. Furthermore each
difference requires a sign bit. It increases time both
since there are more bits to decode, and because the
sign bits need to be extracted. Overall these effects
worsens the space bound by an average of 10% and the
time bound by an average of 25%.

Comparing adjacency arrays with the separator
structures we see that the separator-based representa-
tion with byte codes is a factor of 3.3 faster than adja-
cency arrays with random ordering but about 5% slower
for the separator ordering. On the Pentium III the byte
codes are always faster, by factors of 2.2 (.729/.330) and
1.3 (.429/.330) respectively (see Table 6). The com-
pressed format of the byte codes means that they re-
quire less memory throughput than for adjacency ar-
rays. This is what gives the byte codes an advantage
on the Pentium III since more neighbors get loaded on
each cache line requiring fewer main-memory accesses.
On the Pentium 4 the effective cache-line size and mem-
ory throughput is large enough that the advantage is
reduced.

Table 5, later in the section, describes the time cost
of simply reading all the edges in a graph (without the
effect of cache locality).

6.2 Dynamic representations A key parameter for
the dynamic representation is selecting the block size.
Large blocks are inefficient since they contain unused
space; small blocks can be inefficient since they require
proportionally more space for pointers to other blocks.
In addition, there is a time cost for traversing from one
block to the next. This cost includes both the time for
computing the hash pointer and the potential time for

a cache miss. Because of this larger blocks are almost
always faster.

Table 3 presents the time and space for a range
of block sizes. The results are based on nibble-codes
on the Pentium 4 processor. The results for the other
codes and the Pentium III are qualitatively the same,
although the time on the Pentium III is less sensitive
to the block size. For all space reported in this section
we size the backup memory so that it is 80% full, and
include the 20% unused memory in the reported space.
As should be expected, for the graphs with high degree
the larger block sizes are more efficient while for the
graphs with smaller degree the smaller block sizes are
more efficient. It would not be hard to dynamically
decide on a block size based on the average degree of
the graph (the size of the backup memory needs to grow
dynamically anyway). Also note that there is a time-
space tradeoff and depending on whether time or space
is more important a user might want to use larger blocks
(for time) or smaller blocks (for space).

Table 4 presents results comparing space and DFS
times for the dynamic representations for all the graphs
on the Pentium 4. Tables 5 and 6 give summary results
for a wider set of operations on both the Pentium III
and Pentium 4.

Table 3 gives six timings for linked lists correspond-
ing to the two labeling orders and for each labeling, the
three insertion orders. The space for all these orders is
the same. The table also gives space and time for two
settings of our dynamic data structure: Time Opt and
Space Opt. Time Opt uses byte codes and is based on
a block size that optimizes time.1 Space Opt uses the

1We actually pick a setting that optimizes T 3S where T is time



Linked List Our Structure
Random Vtx Order Sep Vtx Order Space Opt Time Opt

Rand Trans Lin Rand Trans Lin Block Time Block Time
Graph T1 T/T1 T/T1 T/T1 T/T1 T/T1 Space Size T/T1 Space Size T/T1 Space

auto 1.160s 0.512 0.260 0.862 0.196 0.093 68.33 16 0.148 9.35 20 0.087 13.31
feocean 0.136s 0.617 0.389 0.801 0.176 0.147 75.21 8 0.227 12.97 10 0.117 14.71
m14b 0.565s 0.442 0.215 0.884 0.184 0.090 68.09 16 0.143 8.92 20 0.086 13.53
ibm17 0.735s 0.571 0.152 0.904 0.357 0.091 66.66 12 0.205 10.53 20 0.118 14.52
ibm18 0.730s 0.524 0.179 0.890 0.276 0.080 67.03 10 0.190 10.13 20 0.108 14.97
CA 1.240s 0.770 0.705 0.616 0.107 0.101 86.80 3 0.170 10.62 5 0.108 15.65
PA 0.660s 0.780 0.701 0.625 0.112 0.109 86.64 3 0.180 10.69 5 0.115 15.64
lucent 0.063s 0.634 0.492 0.730 0.190 0.142 83.90 3 0.285 13.67 6 0.174 20.49
scan 0.117s 0.735 0.555 0.700 0.188 0.128 86.82 3 0.290 15.23 8 0.170 28.19
googleI 0.975s 0.615 0.376 0.774 0.164 0.096 75.49 4 0.211 12.04 16 0.125 28.78
googleO 0.960s 0.651 0.398 0.786 0.162 0.108 75.49 5 0.231 13.54 16 0.123 26.61

Avg 0.623 0.402 0.779 0.192 0.108 76.405 0.207 11.608 0.121 18.763

Table 4: The performance of our dynamic algorithms compared to linked lists. For each graph we give the space-
and time-optimal block size. Space is in bits per edge; time is for a DFS, normalized to the first column, which
is given in seconds.

more space efficient nibble codes and is based on a block
size that optimizes space.

As with the adjacency-array representation, the ver-
tex label ordering can have a large effect on performance
for adjacency-lists, up to a factor of 7. In addition to the
label ordering, the insertion ordering can also make a
large difference in performance for adjacency-lists. The
insertion order can cause up to a factor of 11 differ-
ence in performance for the graphs with high average
degree (e.g. auto, ibm17 and ibm18) and a factor of 7.5
averaged over all the graphs (assuming the vertices are
labeled with the separator ordering). The effect of inser-
tion order has been previously reported (e.g. [19, page
268] and [7]) but the magnitude of the difference was
surprising to us—the largest factor we have previously
seen reported is about 4. We note that the magnitude
is significantly less on the Pentium III with its smaller
cache-line size (an average factor of 2.5 instead of 7.5).
The actual insertion order will of course depend on the
application, but it indicates that selecting a good inser-
tion order is critical. We note, however, that if a user
can insert in linear order, then they are better off using
one of the static representations, which allow insertion
in linear order.

For our data structure the insertion order does not
have any significant effect on performance. This is
because the layout in memory is mostly independent of
the insertion order. The only order dependence is due to
hash collisions for the secondary blocks. Since each hash

and S is space. This is because the time gains for larger blocks

become vanishingly small and can be at a large cost in regards to

space. For space optimal we optimize TS3.

try is pseudo-random within the group, the location of
the backup blocks has little effect on performance. In
fact our experiments (not shown) showed no noticeable
effect on DFS times for different insertion orders.

Overall the space optimal dynamic implementation
is about a factor of 6.6 more compact than adjacency
lists, while still being significantly faster than linked lists
in most cases (up to a factor of 7 faster for randomly
inserted edges). On the Pentium 4 linked lists with
linear insertion and separator ordering take about 50%
less time than our space optimal dynamic representation
and 10% less time than our time optimal dynamic
representation. On the Pentium III linked lists with
linear insertion and separator ordering take about a
factor of 1.2 more time than our space optimal dynamic
representation and 1.7 more time than our time optimal
dynamic representation.

Times for insertion are reported below.
Summary. Tables 5 and 6 summarize the time

complexity of various operations using the data struc-
tures we have discussed. For each structure we list the
time required for a DFS, the time required to read all
the neighbors of each vertex (examining vertices in lin-
ear or random order), the time required to search each
vertex v for a neighbor v + 1, and the time required to
construct the graph by linear, random, or transpose in-
sertion. All times are normalized to the time required
for a DFS on an adjacency list with random labeling,
and the normalized times are averaged over all graphs
in our dataset.

List refers to adjacency lists. LEDA refers to the
LEDA implementation. For List, LEDA and Array,



Read Find Insert
Graph DFS Linear Random Next Linear Random Transpose Space
ListRand 1.000 0.099 0.744 0.121 0.571 28.274 3.589 76.405
ListOrdr 0.322 0.096 0.740 0.119 0.711 28.318 0.864 76.405
LEDARand 2.453 1.855 2.876 2.062 16.802 21.808 16.877 432.636
LEDAOrdr 1.119 0.478 2.268 0.519 7.570 20.780 7.657 432.636
DynSpace 0.633 0.440 0.933 0.324 14.666 23.901 15.538 11.608
DynTime 0.367 0.233 0.650 0.222 9.725 15.607 10.183 18.763
CachedSpace 0.622 0.431 0.935 0.324 2.433 28.660 8.975 13.34
CachedTime 0.368 0.240 0.690 0.246 2.234 19.849 6.600 19.073
ArrayRand 0.945 0.095 0.638 0.092 — — — 38.202
ArrayOrdr 0.263 0.092 0.641 0.092 — — — 38.202
Byte 0.279 0.197 0.693 0.205 — — — 12.501
Nibble 0.513 0.399 0.873 0.340 — — — 9.357
Snip 0.635 0.562 1.044 0.447 — — — 9.07
Gamma 0.825 0.710 1.188 0.521 — — — 9.424

Table 5: Summary of space and normalized times for various operations on the Pentium 4.

Read Find Insert
Graph DFS Linear Random Next Linear Random Transpose Space
ListRand 1.000 0.631 0.995 0.508 1.609 17.719 3.391 76.405
ListOrdr 0.710 0.626 0.977 0.516 1.551 17.837 1.632 76.405
LEDARand 3.163 2.649 3.038 2.518 17.543 19.342 17.880 432.636
LEDAOrdr 2.751 2.168 2.878 1.726 11.846 19.365 11.783 432.636
DynSpace 0.626 0.503 0.715 0.433 17.791 22.520 18.423 11.608
DynTime 0.422 0.342 0.531 0.335 13.415 16.926 13.866 17.900
CachedSpace 0.614 0.498 0.723 0.429 2.616 25.380 7.788 13.36
CachedTime 0.430 0.355 0.558 0.360 2.597 20.601 6.569 17.150
ArrayRand 0.729 0.319 0.643 0.298 — — — 38.202
ArrayOrdr 0.429 0.319 0.639 0.302 — — — 38.202
Byte 0.330 0.262 0.501 0.280 — — — 12.501
Nibble 0.488 0.411 0.646 0.387 — — — 9.357
Snip 0.684 0.625 0.856 0.538 — — — 9.07
Gamma 0.854 0.764 1.016 0.640 — — — 9.424

Table 6: Summary of space and normalized times for various operations on the Pentium III.



Rand uses a randomized ordering of the vertices and
Ordr uses the separator ordering. The times for DFS,
Read, and Find Next reported for List and LEDA are
based on linear insertion of the edges (i.e., this is the
best case for them). Dyn refers to a version of our
dynamic data structure that does not cache the edges
for vertices in adjacency lists. Cached refers to a version
that does. For the “DynSpace” and “CachedSpace”
structures we used a space-efficient block size; for
“DynTime” and “CachedTime” we used a time-efficient
one. Array refers to adjacency arrays. Byte, Nibble,
Snip and Gamma refer to the corresponding static
representations.

Note that the cached version of our dynamic al-
gorithm is generally slightly slower, but for the linear
and transpose insertions it is much faster than the non-
cached version. Those insertions are the operations that
can make use of cache locality. For linear insertion our
cached dynamic representations is a factor of 3-4 times
slower than adjacency lists on the Pentium 4 and a fac-
tor of about 1.5 slower on the Pentium III.

LEDA is significantly slower and less space efficient
than the other representations, but as previously men-
tioned LEDA has many features these other representa-
tions do not have.

7 Algorithms

Here we describe results for two algorithms that might
have the need for potentially very large graphs: Google’s
PageRank algorithm and a maximum bipartite match-
ing algorithm. They are meant to represent a somewhat
more realistic application of graphs than a simple DFS.

PageRank. We use the simplified version of the
PageRank algorithm [22]. The algorithm involves find-
ing the eigenvector of a sparse matrix (1 − ε)A + εU ,
where A is the matrix representing the link structure
among pages on the web (normalized), U is the uniform
matrix (normalized) and ε is a parameter of the algo-
rithm. This eigenvector can be computed iteratively
by maintaining a vector R and computing on each step
Ri = ((1 − ε)A + εU)Ri−1. Each step can be imple-
mented by multiplication of a vector by a sparse 0-1
matrix representing the links in A, followed by adding
a uniform vector and normalizing across the resulting
vector to account for the out degrees (since A needs to
be normalized). The standard representation of a sparse
matrix is the adjacency array as previously described.
We compare an adjacency-array implementation with
several other implementations.

We ran this algorithm on the Google out-link graph
for 50 iterations with ε = .15. For each representation
we computed the time and space required. Figure 7 lists
the results. On the Pentium III, our static representa-

Time (sec) Space
Representation PIII P4 (b/e)
Dyn-B4 30.40 11.05 17.54
Dyn-N4 32.96 12.48 13.28
Dyn-B8 26.55 9.23 19.04
Dyn-N8 30.29 11.25 15.65
Gamma 38.56 15.60 9.63
Snip 34.19 13.38 9.43
Nibble 26.38 10.94 9.72
Byte 21.09 8.04 12.59
ArrayOrdr 21.12 6.38 37.74
ArrayRand 33.83 27.59 37.74
ListOrdr 30.96 6.12 75.49
ListRand 44.56 28.33 75.49

Table 7: Performance of our PageRank algorithm on
different representations.

tion with the byte code is the best. On the Pentium 4,
the array with ordered labeling gives the fastest results,
while the byte code gives good compression without sac-
rificing too much speed.

Bipartite Matching. The maximum bipartite
matching algorithm is based on representing the graph
as a network flow and using depth first search to find
augmenting paths. It takes a bipartite graph from ver-
tices on the left to vertices on the right and assigns a
capacity of 1 to each edge. For each edge the implemen-
tation maintains a 0 or 1 to indicate the current flow on
the edge. It loops through the vertices in the left set
using DFS to find an augmenting path for each vertex.
If it finds one it pushes one unit of flow through and
updates the edge weights appropriately. Even though
conceptually the graph is directed, the implementation
needs to maintain edges in both directions to implement
the depth-first search. To avoid an Ω(n2) best-case run-
time, a stack was used to store the vertices visited by
each DFS so that the entire bit array of visited vertices
did not need to be cleared each time. This optimiza-
tion is suggested in the LEDA book [19, page 372]. We
also implemented an optimization that does one level
of BFS before the DFS. This improved performance by
40%. Finally we used a strided loop through the left
vertices, using a prime number (11) as the stride. This
reduces locality, but greatly improved performance since
the average since of the DFS to find an unmatched pair
was reduced signficantly.

Since the graph is static the static representations
are sufficient. We ran this algorithm using our byte
code, nibble code, and adjacency array implementa-
tions. The bit array for the 0/1 flow flags is accessed
using the same indexing structure (semi-direct-16) as



Time (sec) Space
Representation PIII P4 (b/e)
Nibble 75.8 27.6 13.477
Byte 59.9 19.9 16.363
ArrayOrdr 57.1 18.6 41.678
ArrayRand 83.2 28.0 41.678

Table 8: Performance of our bipartite maximum match-
ing algorithm on different static representations.

used for accessing the adjacency lists. A dynamically
sized stack is used for the DFS and for storing the vis-
ited vertices during a DFS. We store 1 bit for every edge
(in each direction) to indicate the the current flow, 1 bit
for every vertex to mark visited flags, and 1 bit for every
vertex on the right to mark whether it is matched.

The maximum bipartite matching algorithm was
run on a modified version of the Google-out graph.
Two copies were created for each vertex, one on the
left and one on the right. The out links in the Google
graph point from the left vertices to the right ones. The
results are given in Figure 8. The memory listed is the
total memory including the representation of the graph,
the index for 0/1 flow flags, the flow flags themselves,
the visited and matched flags and the stacks. For all
three representations we assume the same layout for
this auxiliary data, so the only difference in space is
due to the graph representation. The space needed for
the two stacks is small since the largest DFS involves
under 10000 vertices.

8 Discussion

Here we summarize what we feel are the most important
or surprising results of the experiments.

First we note that the simple and fast separator
heuristic we used seems to work very well for our
purposes. This is likely because the compression is much
less sensitive to the quality of the separator than other
applications of separators, such as nested dissection [16].
For nested dissection more sophisticated separators are
typically used. It would be interesting to study the
theoretical properties of the simple heuristic. For our
bounds rather sloppy approximations on the separators
are sufficient since any separator of size knc, c < 1
will give the required bounds, even if actual separators
might be much smaller.

We note that all the “real-world” graphs we were
able to find had small separators—much smaller than
would be expected for random graphs. Small separators
is a property of real world graphs that is sometimes not
properly noted.

Our experiments indicate that the additional cost
needed to decode the compressed representation is small
or insignificant compared to other cost for even a rather
simple graph algorithm, DFS. As noted, under most sit-
uations the compressed representations are faster than
standard representations even though many more oper-
ations are needed for the decoding. This seems to be be-
cause the performance bottleneck is accessing memory
and not the bit operations used for decoding. The one
place where the standard representations are slightly
faster for DFS is when using separator orderings, and
linear insertion on the Pentium 4.

We were somewhat surprised at the large effect
that different orderings had on the performance on
the Pentium 4 for both adjacency lists and adjacency
arrays. The performance differed by up to a factor
of 11, apparently purely based on caching effects (the
number of edges traversed is identical for any DFS on a
fixed graph). The differences indicate that performance
numbers reported for graph algorithms should specify
the layout of memory and ordering used for the vertices.
The differences also indicate that significant attention
needs to be paid to vertex ordering in implementing
fast graph algorithms. We note that the same separator
ordering as used for graph compression seems to work
very well for improving performance on adjacency lists
and adjacency arrays. This is not surprising since both
compression and memory layout can take advantage of
locality in the graphs so that most accesses are close in
the ordering.

In our analysis we do not consider applications that
have a significant quantity of information that needs
to be stored with the graphs, such as large weights
on the edges or labels on vertices. Clearly such data
might diminish the advantages of compressing the graph
structure. We note, however, that such data might also
be compressed. In fact the locality of the labeling that
the separators give could be useful for such compression.
For example on the web graphs, vertices nearby in the
vertex ordering are likely to share a large prefix of their
URL. Similarly on the finite-element meshes, vertices
nearby in the vertex ordering are likely to be nearby in
space, and hence might be difference encoded.

The ideas used in this paper can clearly be gen-
eralized to other structures beyond simple graphs. A
separate paper [4] describes how similar ideas can be
used for representing simplicial meshes in two and three
dimensions.

References

[1] C. J. Alpert. The ISPD circuit benchmark suite. In
ACM International Symposium on Physical Design,
pages 80–85, Apr. 1998.



[2] C. J. Alpert and A. Kahng. Recent directions in netlist
partitioning: A survey. VLSI Journal, 19(1–2):1–81,
1995.

[3] D. Blandford and G. Blelloch. Index compression
through document reordering. In Data Compression
Conference (DCC), pages 342–351, 2002.

[4] D. Blandford, G. Blelloch, D. Cardoze, and C. Kadow.
Compact representations of simplicial meshes in two
and three dimensions. In International Meshing
Roundtable (IMR), pages 135–146, Sept. 2003.

[5] D. Blandford, G. Blelloch, and I. Kash. Compact
representations of separable graphs. In Proceedings
of the Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 342–351, 2003.

[6] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly
spanning trees with applications to graph encoding and
graph drawing. In SODA, pages 506–515, 2001.

[7] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-
conscious structure layout. In Proceedings of the ACM
SIGPLAN 1999 conference on Programming language
design and implementation, pages 1–12, 1999.

[8] R. C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I.
Lu. Compact encodings of planar graphs via canonical
orderings and multiple parentheses. Lecture Notes in
Computer Science, 1443:118–129, 1998.

[9] P. Elias. Universal codeword sets and representations
of the integers. IEEE Transactions on Information
Theory, IT-21(2):194–203, March 1975.

[10] Google. Google programming contest web data.
http://www.google.com/programming-contest/,
2002.

[11] H. Han and C.-W. Tseng. A comparison of local-
ity transformations for irregular codes. In Proc. Lan-
guages, Compilers, and Run-Time Systems for Scalable
Computers, pages 70–84, 2000.

[12] X. He, M.-Y. Kao, and H.-I. Lu. Linear-time suc-
cinct encodings of planar graphs via canonical order-
ings. SIAM J. on Discrete Mathematics, 12(3):317–
325, 1999.

[13] X. He, M.-Y. Kao, and H.-I. Lu. A fast general
methodology for information-theoretically optimal en-
codings of graphs. SIAM J. Computing, 30(3):838–846,
2000.

[14] G. Jacobson. Space-efficient static trees and graphs.
In 30th FOCS, pages 549–554, 1989.

[15] K. Keeler and J. Westbrook. Short encodings of planar
graphs and maps. Discrete Applied Mathematics,
58:239–252, 1995.

[16] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Gener-
alized nested dissection. SIAM Journal on Numerical
Analysis, 16:346–358, 1979.

[17] R. J. Lipton and R. E. Tarjan. A separator theorem for
planar graphs. SIAM J. Applied Mathematics, 36:177–
189, 1979.

[18] H.-I. Lu. Linear-time compression of bounded-genus
graphs into information-theoretically optimal number
of bits. In SODA, pages 223–224, 2002.

[19] K. Mehlhorn and S. Naber. LEDA: A platfor for

combinatorial and geometric computing. Cambridge
University Press, 1999.

[20] G. L. Miller, S.-H. Teng, W. P. Thurston, and S. A.
Vavasis. Separators for sphere-packings and nearest
neighbor graphs. Journal of the ACM, 44:1–29, 1997.

[21] J. I. Munro and V. Raman. Succinct representation of
balanced parentheses, static trees and planar graphs.
In 38th FOCS, pages 118–126, 1997.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd.
The pagerank citation ranking: Bringing order to
the web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[23] A. L. Rosenberg and L. S. Heath. Graph Separators,
with Applications. Kluwer Academic/Plenum Publish-
ers, 2001.

[24] J. Rossignac. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 5(1):47–61, /1999.

[25] SCAN project. Internet maps. http://www.isi.edu/

scan/mercator/maps.html, 2000.
[26] J. Shi and J. Malik. Normalized cuts and image

segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, 2000.

[27] H. D. Simon. Partitioning of unstructured problems
for parallel processing. Computing Systems in Engi-
neering, 2:135–148, 1991.

[28] J. Sperling. Development and maintenance of the
tiger database: Experiences in spatial data sharing at
the u.s. bureau of the census. In Sharing Geographic
Information, pages 377–396, 1995.

[29] A. Strehl and J. Ghosh. A scalable approach to bal-
anced, high-dimensional clustering of market-baskets.
In Proc. of the Seventh International Conference on
High Performance Computing (HiPC 2000), volume
1970 of Lecture Notes in Computer Science, pages 525–
536. Springer, Dec. 2000.

[30] A. Szymczaka and J. Rossignac. Grow & Fold:
compressing the connectivity of tetrahedral meshes.
Computer-Aided Design, 32:527–537, 2000.

[31] S. Toledo. Improving the memory-system performance
of sparse-matrix vector multiplication. IBM Journal of
Research and Development, 41(6):711–726, 1997.

[32] G. Turán. Succinct representations of graphs. Discrete
Applied Mathematics, 8:289–294, 1984.

[33] J. D. Ullman. Computational Aspects of VLSI. Com-
puter Science Press, Rockville, MD, 1984.

[34] U.S. Census Bureau. UA Census 2000 TIGER/Line
file download page. http://www.census.gov/

geo/www/tiger/tigerua/ua_tgr2k.html, 2000.
[35] C. Walshaw. Graph partitioning archive.

http://www.gre.ac.uk/~c.walshaw/partition/,
2002.

[36] D. Watts and S. Strogatz. Collective dynamics of
small-world networks. Nature, 363:202–204, 1998.


