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Abstract

We study a random graph G,, that combines certain aspects of geometric random
graphs and preferential attachment graphs. The vertices of G, are n sequentially
generated points x1,T2,...,T, chosen uniformly at random from the unit sphere in
R®. After generating z;, we randomly connect it to m points from those points in
Zr1,T2,...,2; 1 which are within distance r. Neighbours are chosen with probability
proportional to their current degree. We show that if m is sufficiently large and if
r > log n/n1/2_'3 for some constant 8 then whp at time n the number of vertices
of degree k follows a power law with exponent 3. Unlike the preferential attachment
graph, this geometric preferential attachment graph has small separators, similar to
experimental observations of [7]. We further show that if m > Klogn, K sufficiently
large, then G, is connected and has diameter O(m/r) whp.

1 Introduction

Recently there has been much interest in understanding the properties of real-world large-
scale networks such as the structure of the Internet and the World Wide Web. For a
general introduction to this topic, see Bollobas and Riordan [8], Hayes [21], Watts [32], or
Aiello, Chung and Lu [2]. One approach is to model these networks by random graphs.
Experimental studies by Albert, Barabési, and Jeong [3], Broder et al [12], and Faloutsos,
Faloutsos, and Faloutsos [20] have demonstrated that in the World Wide Web /Internet the
proportion of vertices of a given degree follows an approximate inverse power law i.e. the
proportion of vertices of degree k is approximately Ck™® for some constants C,a. The
classical models of random graphs introduced by Erdés and Renyi [18] do not have power
law degree sequences, so they are not suitable for modeling these networks. This has driven
the development of various alternative models for random graphs.

One approach is to generate graphs with a prescribed degree sequence (or prescribed
expected degree sequence). This is proposed as a model for the web graph by Aiello, Chung,
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and Lu in [1]. Mihail and Papadimitriou also use this model [27] in their study of large
eigenvalues, as do Chung, Lu, and Vu in [14].

An alternative approach, which we will follow in this paper, is to sample graphs via
some generative procedure which yields a power law distribution. There is a long history of
such models, outlined in the survey by Mitzenmacher [29]. We will use an extension of the
preferential attachment model to generate our random graph. The preferential attachment
model has been the subject of recently revived interest. It dates back to Yule [33] and
Simon [31]. It was proposed as a random graph model for the web by Barabdasi and Albert
[4], and their description was elaborated by Bollobds and Riordan [9] who showed that
at time n, whp the diameter of a graph constructed in this way is asymptotic to lolgol%.
Subsequently, Bollobds, Riordan, Spencer and Tusnddy [11] proved that the degree sequence
of such graphs does follow a power law distribution.

The random graph defined in the previous paragraph has good expansion properties.
For example, Mihail, Papadimitriou and Saberi [28] showed that whp the preferential
attachment model has conductance bounded below by a constant. This is in contrast to
what has sometimes been found experimentally, for example by Blandford, Blelloch and
Kash [7]. Their results seem to suggest the existence of smaller separators than implied
by random graphs with the same average degree. The aim of this paper is to describe a
random graph model which has both a power-law degree distribution and which has small
separators.

We study here the following process which generates a sequence of graphs Gi,t =
1,2,...,n. The graph G; = (V;, E;) has t vertices and e; edges. Here V; is a subset of S,

the surface of the sphere in R? of radius # (so that area(S) =1).

For u € S and r > 0 we let B,(u) denote the spherical cap of radius r around u in S.
More precisely, B,(u) ={z € S : ||z —u|| < r}.

1.1 The random process

e Time step 1: To initialize the process, we start with G; containing a single vertex
x1 chosen at random in S. The edge (multi)set consists of m loops at z.

e Time step t+ 1:  We choose vertex z;11 uniformly at random in S and add it to
Gy. If Vi N By (x¢41) is nonempty, we add m random edges (z¢11,¥;), 1 = 1,2,...,m
incident with z;41. Here, each y; is chosen from VN B, (x¢+1) and for z € V;NB,(z441),

deg;(z)
Pr(yi=az)= — b
=)= DBy @)
where deg,(z) denotes the degree of vertex = in Gy and V;(U) =V, NU and D;(U) =

S eevi(w degi(@).
If Vi N By(z¢41) is empty then we add m loops at x;y;.

Let dg(t) denote the number of vertices of degree k at time ¢.



We will prove the following:
Theorem 1
(a) If0 < B < 1/2 is constant and r > nP~1/2logn and m is a sufficiently large constant
then there exists a constant ¢ > 0 such that whp

cn

W) = L r DT 2)

+0(n'),!

for some 0 < v < 1.

(b) If r = o(1) then whp V;, can be partitioned into T, T such that |T|,|T| ~ n/2, and
there are at most 4\/Trnm edges between T and T.

(c) If r > n~Y2logn and m > Klogn and K is sufficiently large then whp G, is con-
nected.

(d) If r > n~Y2logn and m > Klogn and K is sufficiently large then whp G, has
diameter O(logn/r).

We note that geometric models of trees with power laws have been considered in [19], [5]
and [6].

1.2 Some definitions

There exists some constant ¢y such that for any u € S, we have
A, = Area(B,(u)) = con®*~(logn)>.

Given u € S, we define
Vi(u) = Vi(Br(u))

and
Dy(u) = Dy(By(u)).

Given v € V4, we have
deg,(v) = m + deg; (v), (1)

where deg, (v) is the number of edges of G; that are incident to v and were added by
vertices that chose v as a neighbor.

Given U C S, let D, (U) =3 ,cy, vy deg, (v). We also define D, (u) = D, (B (u)).
Notice that D;(U) = m|Vi(U)| + D, (U).

We write dy(t) to denote the expectation of di(t). We also localize these notions: given
U C S and u € S we define di(t,U) to be the number of vertices of degree k at time ¢ in
U and di(t,u) = di(t, Br(u)).

! Asymptotics are taken as n — oo



2 Small separators

Theorem 1 part (b) is the easiest part to prove. We use the geometry of the instance to
obtain a sparse cut. Consider partitioning the vertices using a great circle of S. This will
divide V into sets T' and T which each contain about n/2 vertices. More precisely, we have

Pr(|T| < (1-€e)n/2] = Pr [|T| < (1 —e)n/2] <e <"/

Since edges only appear between vertices within distance r, only vertices appearing in the
strip within distance r of the great circle can appear in the cut. Since r = o(1), this strip
has area less than 3ry/m, so, letting U denote the vertices appearing in this strip, we have

Pr[|U| > 4y/7rn] < e~ VTn/9,

vertices. Even if every one of the vertices chooses its m neighbors on the opposite side

of the cut, this will yield at most 4 /mrnm edges whp. So the graph has a cut with

e(T,’Z:“) < 17 /7rm —Q(rn)
7T — '

with probability at least 1 — e

3 Proving a power law

3.1 Establishing a recurrence for dj(t)

Our approach to proving Theorem 1 part (a) is to find a recurrence for dy(t).

We define d,, 1(t) = 0 for all integers t with ¢ > 0. Let 71(t) denote the probability
that V; N By(z¢41) = 0 so m1(t) = (1 — A,)". Let n2(t) denote the probability that a parallel
edge is created. Thus

k
n2(t) =0 (Z di(t, $t+1)i2/Dt($t+1)2> = O(k/D¢(wt+1))-
Then for £ > m,
k—1
E[di(t +1) | Gt me41] = di(t) + mdg1(t, T141) 57—
Di(z441)
— — 4+ 13— (2
mdk(t,xt+1)Dt($t+1) + Le=m + O(m(t) + m2(2)).  (2)
Let
.
“T0 ™ 7T o1 - )

and let A; be the event
{|Dt(xt+l) — 2mA7-t| < A,ﬂmtk”}.



Then, because E[dy(t,z:11)] < kT E[m|Vi(Bar(z111))]] < k™ 'm(4A,t) and di(t, z411) <
k~1Dy(z411), we have

E [dk(ta $t+1)}

Di(z141)
zrgiii)AJPﬁ&HlﬂﬁﬁZ:?v@PﬂmM
= [d’“(;;:jzlt) A p, [A] + 0 <%> +0 <w>
=2 o (%)

(off) e
_ Bldi(t, 2] [dggﬁﬂﬂ 10 <%) 0 <% + Ai> Pr[-A.

In Lemmas 1 and 3 below we prove that E [di(t, 24, 1)] = A.di(t) and that if t > n!=
then Pr[-A¢] = O (n™2). Therefore if t > n'~* then

(i =i o (%) g
In a similar way
[5] - e (3) 0

Now note that
7’]2(t) S PI‘(ﬂAt) + O(k/tA,«)

Taking expectations on both sides of Eq. (2) and using Eq. (3) and Eq. (4), we see that if
k <n'=® <t then

k —

di(t+ 1) = dy(t) + 5

N1 () — 5 (1) + i + O (7) (5)

We consider the recurrence given by f,,—1 = 0 and for &k > m,

k-1
2

k
e = Lg=m + fre—1— §fk

which has solution

ki1
fk:me.

ot



Let tg = n'~®. We finish the proof of Theorem 1(a) by showing that there exists a constant
M > 0 such that 3
|di(t) — fut] < M(to +t'77) (6)

forall k withm < k < n!'=%and all t > 0. For k > n'~® we use the fact that d(t) < 2mt/k.
Let O (t) = di(t) — frt. Then for m < k < n® and ¢ > ¢y,

Ot +1) = =204 1(1) ~ S-O4(1) + O(™) (7

Let L denote the hidden constant in O(¢~7) of (7). Our inductive hypothesis #; is that
|0k ()] < M(tg + t177) for every m < k < n'=2. It is trivially true for ¢t < ¢y. So assume
that ¢t > to. Then, from (7),

|Ok(t +1)] M(tg+t177) + Lt

<
< M(to+ (t+ 1)),

This verifies H¢+1 and completes the proof by induction.

3.2 Expected Value of di(t,u)
Lemma 1 Let u € S and let k and t be positive integers. Then E[dy(t,u)] = Aqdi(t)

Proof By symmetry for any w € S, di(t,u)) ~ dg(¢t,w). Then

Eldi(t,)] = [

S

—5| [ du(tu)do|

E [dy(t, u)] dw = / E [dy(t, w)] dw

s
/ Z Laegv=klveB, (w)dw

veVy
=E Z ldegv_k/ lweBr(v)dw =E Z ldegv:kAr
veV; s veV;
= A, E [di(t)]
|
Lemma 2 Letu € S and t > 0 then E [D;(u)] = 24, mt
Proof
E[Dy(u)] => Eldy(t,u)] = 4, Y Edi(t)] = AE | dy(t)| =24,mt
k>0 k>0 k>0
O



3.3 Concentration of D,(u)

In this section we prove

Lemma 3 Let « =1/400 and v = 2(1220‘2) and ng =n'"2%. Ift >n'=* and u € S then

Pr[|Dy(u) — E[Dy(uw)]| > Armt' 7] =0 (n7?).

Proof We think of every edge added as two directed edges. Then choosing a vertex
by preferential attachment is equivalent to choosing one of these directed edges uniformly,
and taking the vertex pointed to by this edge as the chosen vertex. So the ith step of the
process is defined by a tuple of random variables T = (X, Y1,...,Yy,) € § x E™ where X
is the location of the new vertex, a randomly chosen point in S, and Y} is an edge chosen
u.a.r. among the edges directed into B,(X) in G;—1. The process G; is then defined by a
sequence (11, ...,T;), where each T; € S x E™.

Let s be a sequence s = (s1, ..., 8;) where s; = (i, Y(i—1)m+1, - - - » Yim) With z; € § and
yj € Epy/51. We say s is acceptable if for every j, y; is an edge entering Br(w[t/ﬂ). Notice
that non-acceptable sequences have probability 0 of being observed.

In what follows we condition on the event

& = {for all s with ng < s <n we have Ds(u) > (1 + a)A,ms},

where a > 0 is an appropriate constant that will be chosen later.
Fix t > 0. Fix an acceptable sequence s = (s1,...,s;), and let Ax(s) = {2z € S x E*:
(S1,...,8K_1,2) is acceptable}. For any k with 1 < k <t and any z € Ag(s) let

9k(2) = E[Dy(u) | Ty = s1,..., Tp—1 = -1, Tk = 2, €],

let 74(s) = sup{|gr(z1) — gr(22)| : 21,22 € Ax(s)} and let R?(s) = 2221 re(s)%. Finally
define #? = sup, R?(s), where the supremum is taken over all acceptable sequences.
By Thm 3.7 of [26] we know that for all A > 0,

Pr[|D;(u) — E[Dy(u)]| > A] < 272/ 4+ Pr[-€]. (8)

Now, fix k, with 1 < k <t¢. Our goal now is to bound r(s) for any acceptable sequence s.
Fix z, 2’ € Ai(s). We define Q(Gy, G}), the following coupling between
Gt = Gi(s1,...,8k 1,2) and G}, = Gi(s1,...,8K1,7)

e Step k: Start with the graph Gi(s1,. .., sk—1,2) and G (s1, ..., Sp—1, 2) respectively.

e Step 7 (7 > k): Choose the same point 2, € S in both processes. Let E; (resp. E.) be
the edges pointing to the vertices in By(z,) in G, (resp. G._;). Let C; = E;NE.,
R, =E,\E and L, = E'\ E,

Let D, = |E;| and D} = |E.|. Without loss of generality assume that D, < D..
Note that D, = 0 iff V1 N B.(z;) = 0, in which case D. = 0 as well. Assume for
now that D, > 0. Let p=1/D, and let p’ = 1/D.. Construct G, choosing m edges
u.a.r. e],...,el in E;, and joining x, to the end point of them. For each of the m
edges e; = e], we define é; = €] by



— If e; € C; then, with probability p'/p, é; = e;. With probability 1 — p//p, é; is
chosen from L, u.a.r.

— Ife; € R, é; € L, is chosen u.a.r.

Notice that for every i = 1,...,m and every e € E., Pr[é; = e] = p/. To finish, in
G’ join x, to the m vertices pointed to by the edges é;.

Lemma 4 Let A; = Ar(k,s,2,2',u) = |Eq,(Br(u))AEg (B(u))|, the discrepancy be-
tween the edge-sets incident to V;(u) in the two coupled graphs. Then |gi(z) — gr(2')] <
E[A;lg] /Pr[€].

Proof

gk (2) — gr(2")| = |Eq, [Di(u) | €] — Eqr[Dy(u) | €]]
< Eq@,,a)[Di(u) — Di(u) | €]
< Eqa,a)lAt | €]
= Eqq,,a))[Atle]/Pr€].
O

Recall that A, = Area(B,(u)) = cgn?*~!(logn)? and ny = n'! 2% and we have fixed k
to be an integer with 1 < k <t

Lemma 5 Let kg = max{k,no} and €1 be a small positive constant, then

E[A1g] < 16mA,nee (K0 N AR
ti€] > r L kO .

Proof Notice that for 7 > k, A; = A;_1+Y;, where Y is the edge discrepancy created
at time 7. Y, <2 2111 131_7;5@; where leir;ééz_r is the indicator variable of the *" edge chosen

at time 7 not being the same for both processes. For every i = 1,...,m
1Cr | p' |Cr| | Lz | | L |
el G = 1 — —_— = — = = .
Priel # &1 Grs Gy =1 = {510 =1~ 151 = 5] ~ max( Dy, D7)

Therefore
| Ls|

max{D,, D'}’

For each e € E(G)) \ E(G;), e € L, implies z,,; is in the ball of radius r centered at
the end point of e. Thus Pr [e €L, |Grq, G’Tq] < A, and therefore

E [AT | Gr_1, G;fl,IT] =A;_1+2m

E [|LT| | Gr1, fr—l] < AAr . (9)
E HLTH < E [AT‘AT*]./Z] ) (10)

where the factor of 1/2 in the unconditional expectation comes from symmetry.
Let k1 = e1n?$~1/logn.



Case 1 7> k.
If € holds then D, > (1 + a)mA,7 and so, by using (10), we have

E[|L-|1¢]

E[A 11| <E[A] 2m———
[ +1 5]_ [ 5]+ m(l—i—a)mArT

<E[A 1] (1+ ﬁ) .

Case 2 k<71<k.
If |L;| > 0 then max{D,, D.} > 1. So we have

E[A, 1] < E[A, 11g] (1 +mA,).

Case 3 max{k,ki1} <7 < ko.

We write
|Lr|1e
max{D,, D!} | —
ey )] 2 (1 - ) Aer| PV 2 (- @) A
m(l —e1)A,7 - -
+E [|LT|15 \Vr(zry1)| < (1= el)ArT] Pr(|V (z;41)| < (1 —€1)A,7]
ATE [An,-,llg] /2 79( 2 )
. — 1 €ETE
m(l—el)ArT +AE[A 1g]n 1
(After using (9) and the Chernoff bounds)
E [A’rfl]-g]
~ 2m(1 — 2e1)T

Putting all 3 cases together, we have

E[A] < E[Ap]emAM ﬁ <1+(1_2€1 > lj[ ( Ta)T)

T=k+1

1
ko \ /(=20 /4N
CO€1
E[Ag]n ( k ) (ko .

Now, A = Ag(k,s,z,2") = |Eg,(Br(u ))AEG,( »(u))] < 2m, because the graphs Gy
and G, differ at most in the last m edges.
Also if [Eg, (Br(u))AEg (By(u))| > 0 then u € By (zx) U Bay (). So

IN

E [Agle] < 2mPr [u € Bay(m) U Boy(2),)] < 16mA,..



By applying Lemma 5, we have that for any acceptable sequence we have

R (s) =) mi(s)® <

ng 2 2
e [t 1te

(16A,m)?n2%0 (@)1 21 <_) +

ok o k=

_2 2 ©© o0
< (256A3m2t1+%n20061> <n5261 T g/ m2a) Zk%> Pr[&] 2
k=1 k=1

2 2
2 T—2¢; 1
=0 <A3m2t Trap2eofip ~2 e )

where the final equality relies on the fact that Pr[£] = 1 — o(1), which is proved below.
Therefore, by using Eq. (8), we have

11
Pr [|Dt(u) — E[D(u)]| > ATmtl%ancOel/zné_zél " log n]

< ¢~ Uogn?) | pp €], (12)

Now we concentrate in bounding Pr[-£].
Lemma 6 Let o = 1/400. There is ¢ > 0 such that Pr[~€] = O (e~em04r).

Proof Let W be a set of points in S such that every point in S is at distance smaller
than r/2 from W. We can construct W such that |[W| = O(1/r?).

Let w € W. We are going to prove that new vertices that fall in B, (w) are likely to
choose vertices in B, jo(w) with positive probability and therefore D (B, jo(w)) is likely to
be a positive proportion of mrr.

Suppose we are in step 7 4 1 of the process. Let ;41 be the chosen point in S, and let
Yl,-- s Ym = Y], ..., Yy, be the m vertices chosen by ;1. Then

D, (B, a(w) 1 By(wr41))
Dz (Br(2r+1))

The key of the proof is the following bound on D,(Bg(w)), for any R > 0. It follows from
(1) and the fact that any neighbor of a vertex in Br(w) lies in By, (w).

Pr [yl € Br/2(w) | GT—laxT-l-l] = (13)

m|V;(Br(w))| < Dy(Br(w))
— m|V;(Br(w))| + D; (Br(w)) < 2m|Vy(Bpr(w))]. (14)

Notice that if x,11 € B, j3(w) then B, 5(w) C By(w) N By(z7+1) and By(zr41) € Bs,j2(w).
So using Eq. (13) and Eq. (14) we have

Pr[y; € B,js(w) | Gr-1, T7r41 € By pp(w)] > ;(BBST—%

V(B j2(w))|
= 2|V (Bsyja(w))]

(15)

10



Let n; = mnp/100 and let & be the event “for all s with n; < s < n we have
|Vs(Byj2(w))| = Ars/6 and |Vs(Bs,/2(w))| < 8A;s”. Then

Pr[y; € B,(w) | &, zrq1 € B,,/2(w)] > %’

and therefore,

> Ar

— 384’

Writing D7 (B, j2(w)) = > 51 > iy LykeB, 5(w) We get that, conditioned on &,

D7 (B, 2(w)) stochastically dominates X ~ Bi (m(T—nl),%). So, if 7 > ng = 100n

T

then

Prly; € B (w) | &]

mTA,

400

mTA,

400

Pr | D, (B, 3(w)) <

- ] <Pr [X< ] + Pr[-&]
< e M Ar L Pr[-&]. (16)

for some ¢ > 0.

Now we are going to bound Pr[-&;]. Let s be such that n1 < s < n. Let 7 <
s. Prz; € B, s(w)] = A./4 and Pr [z, € By, )5(w)] = 254,/4. Then Vi(B,/s(w)) ~
Bi(s, A,/4) and V(Bs,/2(w)) ~ Bi(s, 254, /4). By Chernoft’s bound
Pr [Vy(B, a(w)) < Ays/6] < e/
Pr [V,(Bs, j2(w)) > 84,s] < e=Ar/6 (17)
So,
Pr|-&] < Z (e—Ars/72 + e—Ars/6> < ne—Armi/T2 — o (e—ATn1/100>
T=n1
Now, by using (16) we see that if 7 > ng then
mTA
Pr |D; (B L < emamody 1
£ D7 (Buya(u)) < | < e em (18)

for some c¢; > 0
To extend this to all points in S, note that for any u € S, there is a w € W such that
|u —wl|| < r/2. Therefore B, 5(w) C B, (u) and for any 7, D (u) > D (B, /2(w)). So
Pr[-&]=Pr[3r,ng <7 <t,Ju€e S, D, (u) < mrr/400]
<Pr[3r,ng <7 <t,IweW, D (B,2(w)) < mrr/400]

<Y Y Pr[D;(B,(w)) < mrr/400]

T=no weW
-0 (nrf2efclnoAr) -0 (echnoAT) ,

for some cy > 0. O
Returning to (12) and taking €; sufficiently small, we see that there is ¢ > 0 such that
Pr [|Di(u) — E [Dy(u)]| > Aymit' ] <n™2 4 0 (ememor), (19)

which completes the proof of Lemma 3.

11



4 Connectivity

Here we are going to prove that for » > n~2logn, m > Klogn, and K sufficiently large,
whp G, is connected and has diameter O(logn/r). Notice that G,, is a subgraph of the
graph G(n,r), the intersection graph of the caps B,.(z;), t = 1,2,...,n and therefore it is
disconnected for r = o(n~'/?logn) [30]. We denote the diameter of G by diam(G), and
follow the convention of defining diam(G) = oo, when G is disconnected. In particular,
when we say that a graph has finite diameter this implies it is connected.

Let T'= Ky logn/A, = O(n/logn) where K, is sufficiently large, and K; < K.

Lemma 7 Let u € S and let B = B, j3(u). Then
Pr [diam (G, (B)) > 2(K; + 1)logn] = O(n %)
where Gy (B) is the induced subgraph of Gy, in B.

Proof

Given ko and N, we consider the following process which generates a sequence of graphs
Hy, = (W4, Fs), s=1,2,...,N. (The meanings of N, ky will become apparant soon).

Time step 1
To initialize the process, we start with H; consisting of kg isolated vertices y1, ..., Yxk,-

Time step s > 1: We add vertex ysix,. We then add m /4000 random edges incident
with ysx, of the form (ys4x,,w;) fori =1,2,...,m/4000. Here each w; is chosen uniformly
from Wi.

The idea is to couple the construction of G, with the construction of Hy for N ~
Bi(n — T, A, /4) and ko = Bi(T, A, /4) such that whp Hy is a subgraph of G,, with vertex
set V,(B). We are going to show that whp diam(Hy) < 2(K; + 1)logn, and therefore
diam(Gp(B)) < 2(K; + 1) logn.

To do the coupling we use two counters, t for the steps in G,, and s for the steps in Hy:

e Given G, set s = 0. Let Wy = Vp(B). Notice kg = |Wy| ~ Bi(T, A,/4) and that
ko < Kjlogn whp.

e Foreveryt>T.

— If z; ¢ B, do nothing in Hy.

—If 2y € B, set s :== s+ 1. Set ys1k, = ;. As we want Hy to be a subgraph
of G, we must choose the neighbors of ys,, among the neighbors of G,. Let
A be the set of vertices chosen by z; in V;(B). Notice that |A| stochastically

) Dt(xt)>' If Dt(xt) Z 100°
D;(B)

by ~ Bi(m, 155) and so whp is at least m/200. If DRED)
but as we see below this is unlikely to happen — see (20). We can assume
that Dy(B) < 3mA,t and k; = |Vi(B)| > A,t/5 and so each vertex of B has
probability at least #Art > %’Ct of being chosen under preferential attachment.
Thus, as insightfully observed by Bollobas and Riordan [10] we can legitimately
start the addition of z; in G; by choosing Bi(m,1/3000) random neighbours
uniformly in B. Observe that Bi(m, 1/3000) > m /4000 whp.

dominates a; ~ Bi <m then a; stochastically dominates

1 .
< 1o We declare failure,
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Notice that N, the number of times s is increased, is the number of steps for which
z; € B, and so N ~ Bi(n — T, A, /4).
Notice also that, by (14), we have

Dy(B) _ _ Vu(B)
Dy(z:) = 2Vy(Bay (1))’

and therefore, for t > T,

Pr [ggf; < ﬁ] < Pr[Vi(B) < Art/6 or Vi(Bay(2)) 2 84,1]

< on~Ki/8 (20)

where the final inequality follows from Chernoff’s bound (see (17)).
Now we are ready to show that Hpy is connected whp.
Notice that by Chernoff’s bound we get that

Pr

K
ko — Tllogn

> %logn] < on~K1/48

and )
Pr [N < g(log n)2] < ¢ cllogn)?

for some ¢ > 0. Therefore, we can assume logn < kg < Kjlogn and N > %(log n)2.
Let X be the number of connected components of H;. Then

Xer1=Xs-Ys, Xo=ko

where Y; is the number of components (minus one) collapsed into one by ysix,. Then

i o m /4000
Pr[Y; =0] < ( ! )
P s+ ko

where the ¢; are the component sizes of H;. Therefore, if s < 2K;logn then, since m >
Klogn, we have

1 m,/4000
Pr[Y,=0|X;>2]<2 (1 — ) < ¢/ (4000(s+ko)) < 1 /10,
s+ ko

So X is stochastically dominated by the random variable max (1, ky — Zs) where Z; ~
Bi(s,9/10). We get then

Pr [X2K1 logn > ]-] <Pr [Z2K1 logn < kO] <Pr [Z2K1 logn < K, IOgn] < 7’1,_3.

And therefore
Pr [Hsk, 10gn is not connected] < n~3.

Now, to obtain an upper bound on the diameter, we run the process of construction
of Hy by rounds. The first round consists of 2K logn steps and in each new round we

13



double the size of the graph, i.e. it consists of as many steps as the total number of steps
of all the previous rounds. Notice that we have less than logn rounds in total. Let A be
the event for all i > 0 every vertex created in the (i + 1)** round is adjacent to a vertex in
Hok\ 1ognt(i—1)logn»> the graph at the end of the ith round.

Conditioning in pA, every vertex in Hy is at distance at most logn of Hyg, 105 Whose
diameter is not greater than 2K logn. Thus, the diameter of Hy is smaller than 2(K; +
1) logn.

Now, we have that if v is created in the (i + 1)** round,

. . ™
Pr [U is not adjacent to Hyg, 1ogn+(i_1)1ogn] < <§) .

Therefore
logn

m
Pr[-A] < (%) n(logn) < Rloga 1

O
To finish the proof of connectivity and the diameter, let u,v be two vertices of G,,. Let
C1,Cy,...,Cpn, M = O(1/r) be a sequence of spherical caps of radius r/4 such that w is
the center of C1, v is the center of v and such that the centers of C;, C;11 are distance < r/2
apart. The intersections of C;, Cj;+1 have area at least A,./40 and so whp each intersection
contains a vertex. Using Lemma 7 we deduce that whp there is a path from u to v in G,

of size at most O(logn/r).
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