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Abstract

Stochastic programming refers to the general class of optimization
problems when the inputs have uncertainty, modeled by probability
distributions of the input variables. Two-stage stochastic optimization
with recourse is a widely used framework for stochastic optimization
(See, e.g., the recent text by Birge and Louveaux [1]). In this model, a
set of input parameters (e.g. future demand) are uncertain, but their
distribution is given as a set of discrete scenarios (sets of values), each
with a fixed probability. The decision variables can be set in two stages
- once before the revelation of the scenario, and then again in recourse
after the revelation. The second stage decisions are typically costlier to
make compared to their first stage counterparts, since they typically
involve rapid reaction to the revealed scenario. The objective is to
minimize the sum of first stage decision costs and the expected cost of
the recourse decisions (taken over the distribution of the scenarios).

We formulate two-stage stochastic models of widely studied prob-
lems in discrete optimization, such as the uncapacitated facility loca-
tion problem. Here, we need to build some facilities in the first stage,
after which the demand is revealed. At this point, we are allowed
to extend our existing solution with second stage (recourse) facilities.
These could be much more expensive, thus providing a motivation for
hedging for the uncertainty of the demand by purchasing some first
stage facilities. The goal is to minimize the sum of first-stage and ex-
pected second-stage facility opening costs and the expected connection
cost of the revealed demands to (first or second stage) facilties which
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serve them. We provide a constant-factor approximation algorithm for
stochastic facility location with metric distances.

We also show how the stochastic extension of classical problems,
such as shortest paths, bin packing, vertex cover and set cover, can be
well-approximated in polynomial time, sometimes by surprising con-
nections to problems which are known to have approximation algo-
rithms (E.g., stochastic versions of the classical shortest-path prob-
lem are closely related to the Connected Facility Location and group
Steiner Tree problems). We believe that the two-stage stochastic opti-
mization model deserves more study motivated by the inherent uncer-
tainty of data in many applications of these problems.



1 Introduction

Consider a facility location problem faced by a company which is entering
a new country, and needs to install manufacturing facilities to serve the
demand of its products. Traditionally, this has been modeled as the un-
capacitated facility location (UFL) problem, which aims to minimize the
sum of facility opening costs and the sum of distances from clients to their
nearest open facility. Now suppose the company doesn’t know the demand
pattern for certain; instead, it has forecasts of three different scenarios (eg,
good, average and bad economy) which might occur, with each scenario
inducing a different demand for the product at each city. The two-stage
stochastic variant of UFL attempts to capture this uncertainty by allowing
the company to open some facilities before the demand has been observed,
and augment the solution by opening some more facilities in a second stage
after the demand has been observed. However, if the company decides to de-
fer opening facilities until after the demand has been observed, the facilities
might become much costlier (or even unavailable).

The company wants to purchase some facilities today, because deferring
all facility installations to the future might increase its facility costs signif-
icantly. However, it could be overkill to purchase facilities only in the first
stage, because many of them may be underutilized. A reasonable model
to capture this trade-off is to attempt to minimize the sum of the cost of
the facilities opened in the first stage, and the expected cost of the second-
stage facilities plus the service costs of the revealed demand clients. In
this example, the expectation is taken over the discrete uniform probabil-
ity distribution of the demand scenarios that is specified in advance. The
resulting optimal solution would then be a set of first stage facilities of low
cost which hedges against the future uncertainty, and can be augmented in
the second stage after the demands have materialized to minimize expected
costs overall. This is the standard approach in the stochastic programming
community [1, 11]. We present a constant-factor approximation algorithm
for the stochastic facility location problem, and stochastic variants of other
familiar optimization problems.

1.1 Owur contributions

e We initiate the study of approximation algorithms for stochastic opti-
mization, by studying some classical combinatorial optimization prob-
lems with stochastic inputs under the simple two-stage model. We
present this model to the community as a realistic and novel way to



deal with the inherent uncertainties involved in several real-world op-
timization problems.

e We provide a constant-factor approximation algorithm for stochastic
facility location.

e We show that the shortest paths problem, which is extremely simple
with deterministic inputs, is NP-hard in the stochastic model. We
provide an O(1) approximation for it by reducing it to a network-
design problem (equivalent to connected facility location). We then
consider the case when the metric is also allowed to change arbitrarily
across scenarios (and not just scale proportionately) and show that
a special case of this problem models the group Steiner problem; we
extend existing techniques to derive a polylogarithmic approximation
for this case.

e We provide a 2-approximation algorithm for stochastic vertex cover,
showing that the approximability of the stochastic version of the prob-
lem matches the deterministic version.

e We also show how the model can be applied to some other classical
problems, such as bin packing and set cover.

We have chosen these specific problems to illustrate the rich variety of
outcomes in the application of approximation algorithm methods to two-
stage stochastic models of classical problems.

1.2 Previous Work

Existing work on approximation algorithms for stochastic opti-
mization Stochastic inputs have been studied to a limited extent in ap-
proximation algorithms. Skutella and Uetz [26] and Mohring, Schulz and
Uetz [19] studied various scheduling problems when the job sizes are stochas-
tic. Karger and Minkoff [13] studied the problem of constructing a single
Steiner tree when each node has an associated probability of requiring to be
connected to the root. The cost is the expected cost of the subtree that is
used to connect the randomly materializing terminals via this tree. None of
these models incorporates two stages or recourse, and hence they do not fit
in our framework.

Some models work under the assumption that each client reveals its
demand with a fixed probability independent of other clients. This is not



always realistic - for example, in the facility location problem, there are
several macro-economic factors influencing demand, such as the state of the
economy, competition, and technology. This is why in practice the scenario
model followed in this paper is often used, since a scenario can take into
account the correlations between these macro-level factors in establishing
the demand pattern. Furthermore, in many problems, the stochastic version
with independent probabilities of clients revealing demands can be easily
solved (E.g., facility location). We mention some of these cases in this
paper at various points when we examine our specific stochastic optimization
problems.

Relation to approximation algorithms We have chosen some classi-
cal problems to illustrate the applicability of stochastic optimization. Un-
capacitated facility location under metric costs has fueled much work in
approximation algorithms, due to the applicability of almost all approxima-
tion techniques to it. Our work is also very naturally motivated by the in-
herent uncertainty in demand predictions in such facility location planning
problems. Shmoys, Tardos and Aardal [25] gave the first constant-factor
approximation algorithm for it, and our work builds on their algorithm. A
string of papers on this problem culminated in the current best 1.52 approxi-
mation due to Mahdian, Ye and Zhang [18]. We present an 8-approximation
algorithm for Stochastic Facility Location®.

The shortest paths problem was one of the first for which fast, efficient
exact algorithms were developed, such as Dijkstra’s algorithm [4]. Yet, our
result shows that adding uncertainty makes it a non-trivial NP-hard prob-
lem, showing an interesting behavior of the model we adopted.

The set cover problem was among the first problems shown to be NP-
hard, and an O(logn) approximation was first provided by Johnson [10],
which is essentially the best possible. Bin-packing is another well-studied
NP-complete problem, with several O(1) approximations known (see [3] for
a survey), and so is vertex cover [20]. We show how existing approximation
techniques can be adapted naturally to derive results typically with no or
very little worsening of performance ratios for the stochastic versions of these
problems.

Dealing with incomplete global knowledge Classical algorithms are
designed to operate with complete knowledge of all input parameters. How-
ever, the algorithms community has been well aware of the deficiencies of
such a model when applied to the real world. Online algorithms (which

!We made no attempts to optimize this factor and believe it can be improved.



do competitive analysis when the input is revealed over time) [2], non-
clairvoyant algorithms (where the data is revealed only after the decisions
have been made) [12], and game-theoretic algorithms (which offer incentives
to induce participants to truthfully reveal their private information) [21] are
some ways of dealing with incomplete information which have been recently
studied. The model we study offers another approach, often used in practice.

2 Stochastic facility location

2.1 Definition

As in the classical uncapacitated facility location problem, we are given a set
of facilities F" and a set of clients D, with a metric ¢;; specifying the distances
between every client and every facility. However, the demand of each client
is not known at the first stage. In scenario k, client j has demand df, which
may be zero. Facility ¢ has a first-stage opening cost of fz-o, and recourse
costs of fz-’C in scenario k. These may be infinity, reflecting the unavailability
of the facilities in various scenarios. We abbreviate this problem as SFL.

min Z fiy?
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The problem is best explained by the integer program formulation I Pspr,
above. While our algorithms extend to arbitrary demands at every client,
for simplicity we only study the case when all dé?’s are either 0 or 1. Variable
:cfj is 1 if and only if client j is served by facility ¢ in scenario k. If xfj =1,
then facility ¢ must either be opened at the first stage (37 = 1) or in recourse
in scenario k (y¥ = 1) (or both).



2.2 Non-triviality of the problem

First notice that if the second stage facility costs were identical to those in
the first stage for all scenarios, then we can “de-couple” the stochastic com-
ponents of the problem and solve for each scenario independently. On the
other hand, if there was no second stage and all facilities had to be opened
in the first stage, then SFL reduces to an instance of the usual UFL, where
the probability multipliers in the expected service costs can be incorporated
into the demand terms (thinking of the demands as being scaled based on
the probability of occurrence). This also extends to allowing arbitrary de-
mand distributions at the vertices, if they are independent. In this case,
existing approximations for UFL apply directly. The added difficulty, and
indeed the interesting aspect of the model, arises from varying (and typically
increased) second-stage facility costs under different scenarios.

In the other direction, SFL can be viewed as a special case of the multi-
commodity facility location problem (MCFL), where we treat each scenario
as a distinct commodity and the cost of a facility depends on the commodi-
ties it serves. However, the best-known approximation ratio for MCFL is
O(logm) [23] (where m is the number of scenarios), so we need different
techniques for better approximations of SFL.

The main difficulty stems from the fact that we cannot treat each sce-
nario by itself, since the different scenarios interact in utilizing first-stage
facilities. A simple heuristic is to compare the solution obtained if all the
demand is satisfied in the first stage with the solution when no first stage
facilities are opened. While this heuristic works well in certain instances
(particularly, maximization problems such as maximum weight matchings
[14]), it can easily be shown to perform badly in our case, due to the inter-
action across scenarios.

2.3 Algorithm

Our approximation algorithm proceeds along the lines of the LP-rounding
algorithm due to Shmoys, Tardos and Aardal [25], with some crucial differ-
ences. We begin by solving the linear relaxation of I Pspy. Let (z,y) denote
an optimal LP solution. The first step in rounding this fractional solution
is using the filtering technique of Lin and Vitter [16]. We fix a constant
0 < a < 1. For every client-scenario pair (4, k), we define its optimal frac-
tional service cost to be ¢j, = >, cijwfj. Order the facilities which serve
the pair (4,k) according to non-decreasing distance from j. The « point
9jk() for the client-scenario pair (j, k) is the smallest distance cfj; such



that )., <. 78 > a.

Treating each client-scenario pair as a distinct client, we appeal to the
following theorem due to Shmoys, Tardos and Aardal. It can be proved
along the lines of the original proof in [25], using the observation that we
can treat each scenario independently.

Theorem 1 Given a feasible fractional solution (x,y), we can find a frac-

tional solution (Z,Y) in polynomial time such that (i) ié“j > 0= ¢y <y

foralli € F, jeD, k=12..,m; (i) < 25¢, (i) gF <
: yf : _

min{l,°t} foralli € F, k=0,1,...,m.

The algorithm in [25] proceeds to iteratively round xfj variables for which
c;?‘k is smallest. However, this does not work in our case, because the round-
ing algorithm might close facilities which are needed for other scenarios
k" # k. Hence we need a rounding algorithm which carefully treats the dis-

tinction between stage 1 facility variables 4°, and recourse facility variables

yk.

We proceed as in earlier algorithms by obtaining an optimal LP solution;
In the next step, we progressively choose clients across all scenarios with
minimum fractional service cost, and neglect to serve other clients conflicting
(overlapping in facility utilization) with it by assigning them to be served by
this client’s serving facility. However, this will not work if the serving facility
is not open in this neglected client’s scenario. Hence, the main difference is
that if a stage 1 facility is opened to serve a client, all clients that conflict
with it can be served, while if a stage 2 facility variable is rounded up to
serve this client, only those clients in the same scenario that conflict with
this client are neglected and assigned to this client. This strategy suffices to
pay for all opened facilities by the “disjointness” of the different scenarios’
contributions in the objective function, while the rule of considering clients
in increasing order of fractional service cost allows us to bound the service
cost. Our rounding algorithm is described in detail below. Let 0 < 8 < 1
be another fixed constant.

1. Initialize F* = @ to be the set of facilities opened in scenario k for
k=0,1,...,m. Mark all client-scenario pairs as “unserved”.

2. Let (j,k) be an unserved client-scenario pair with smallest c§y,- Con-
sider the following cases, in each case marking (j, k) as “served” and
proceeding to the next client-scenario pair. Let S be the set of facil-
ities ¢ such that Efj >0A7) >0, and Sk be the set of facilities i such

that ¥, > 0 A7} > 0.



(a) If 3 ,cq092 > B, let i be the facility such that f? is smallest
among all facilities in S°. Move facility 1 to the set B, and set
§9 = 1. For all other facilities i’ € S° U S*, set 99 = yz, = 0.
For client-scenario pairs (j', k') such that there exists a facility
"¢ §%u SF with cirjr < c;?‘,k,, set if]', = 1 and mark them as
“served”.

(b) If 30 ; < B, then we must have 37, . .« 2 7r>1-8 In

this case, let 7 be the facility in S* with smallest lec Move facility
i to the set F'* and set §¥ = 1. For all other facilities i’ € S,
set g% = 0. For clients j/ such that there exists a facility ¢ € S*
with ¢y y < c;?‘, i Set :/%fj, =1 and mark them as “served”.

3. Facilities in 0 are the facilities to be opened in stage 1, and facilities in
F* are the facilities to be opened in recourse if scenario k materializes.

Clients are served according to the zero-one variables 2 :10Z '

Lemma 1 The rounding algorithm above produces an integer solution (I, )
which is feasible for IPspyr, such that
(i) For every client-scenario pair (j, k), we have iL‘ =1= cj < 3cf;

(i1) D icF fo <3 B E'LEF fo_z
(9i) Y icr fkyZ <= ﬂ EleFf yZ for allk =1,2,.

Proof Sketch: The proof is along the lines of a similar theorem proved in
[25]. Hence it is only sketched here, with the details deferred to the complete
version of this manuscript.

When a client is assigned to a facility (ie, xfj is set to 1), we either assign
it to a facility within distance c] %> or 1t is assigned when some other client
4" with c;?‘, Py G was being considered. In either case, a simple application
of triangle 1nequality yields ¢;; < 3¢5 T

When a facility 4 is chosen for opening in the first stage (ie, 97 is set to
1), case 2(a) must have occurred. In that case, we have a sufficiently large
fraction (B) of facilities which have 3% > 0 which we are shutting, and we can
charge the cost of opening ¢ to the fractional solution. A similar argument
holds for the case when a facility is opened in recourse in scenario k.

The solution produced is also feasible, because we start with a feasible
solution (Z,7), and in each step, we maintain feasibility by ensuring that a
client-scenario pair is marked “served” only when its z¥; variable is set to 1

ij
(ie, it is assigned to a facility) for some facility . O



Theorem 2 There is a polynomial time approzimation algorithm with per-
formance ratio 8 for SFL.

Proof:  Setting a = i and 8 = %, along with Theorem 1 and Lemma 1,
yields the performance guarantee. The running time of the algorithm is
polynomial in |D|,|F|, m. m|

Extensions The algorithm easily extends to allowing demands at client-
scenario pairs which are positive real numbers instead of just 0 or 1. We
may also allow the costs to transport one unit of demand per unit length
in different scenarios to be different, motivated by, e.g., different scenarios
having different prices of gas. In other words, each scenario has a multiplier
7 such that the distance between ¢ and j in scenario k is yxc;;. Essentially,
this can be incorporated into the demand variables d;?, and the rest of the
algorithm proceeds as before to give identical results.

3 Shortest paths

Motivation Consider a supplier who wishes to ship a single unit of a
good to a single destination ¢ from a single source s, in a graph where the
shipping cost is just the cost of the edge. The solution to this problem
is to compute a shortest path from s to ¢, and this can be easily done in
polynomial time, for example by using Dijkstra’s algorithm [4].

Now consider the following stochastic extension. The supplier does not
know in advance what the destination is going to be. In particular, any of
m scenarios could materialize, with the destination being ¢* in scenario k.
The supplier could enter into contracts in stage 1 to ship the good along
edge e at cost ce, but this might be disadvantageous if the destination turns
out to be in the opposite direction. However, if the supplier decides to wait
for the scenarios to materialize, then the cost of edge e in scenario k changes
t0 frce, which could be disadvantageous if fi is large. Hence the supplier
might wish to reserve some edges now at cost ¢, and augment the network
in scenario k if necessary.

Problem definition We are given a graph G = (V, E), with metric edge
costs ¢, and a single source s € V. We also have a set of m scenarios,
with scenario k specified by a destination vertex 1, € V', a cost scale factor
fx, and a probability p,. A feasible solution is specified by a set of edges
E' C E. The first-stage cost of this solution is ) . g ce, and in scenario
k, a second stage solution is a path Py from s to tj; for the second stage

10



costs, we assume the edges in P bought in the first stage, namely in E’,
have cost zero, while the remaining edges are increased in cost by factor
[k, giving second-stage cost fi > . P\ Ce- The objective is to compute E’
which minimizes the sum of first stage edge costs and expected second stage
edge costs. We abbreviate this problem as SSP (stochastic shortest paths).

While it is not obvious that E' even induces a connected component, the
following lemma, can be proved using the facts that an edge is purchased in
the first stage only if it is cheaper to do so than wait for the second stage for
the set of scenarios which use it, and that we are in the single source-sink
model.

Lemma 2 The set of edges E' bought in the first stage in an optimal solu-
tion to SSP induces a tree containing the source s.

Interpretation as a network design problem Armed with the above
lemma, SSP can be interpreted as the tree-star network design problem,
defined as follows. In tree-star network design, demand nodes have a demand
for d; units of goods to be shipped to a source. A feasible solution is specified
by a tree, with the cost of the solution being M times the cost of the tree
(for pre-specified M) plus the length of the shortest path from each demand
node to the tree, weighted by the demand at the node. A constant-factor
approximation algorithm for this problem was first provided by Ravi and
Salman [22], and it has also been studied subsequently as the connected
facility location problem [13, 15], and the asymmetric VPN design problem

[7].

Theorem 3 There is a polynomial-time constant-factor approzximation al-
gorithm for SSP.

Proof: SSP is equivalent to the tree-star network design problem, via the
following transformation. The fixed cost multiplier of the tree M is set
to 1. The demand of each node t is set to fypr. Now purchasing a tree
T in stage 1 for SSP is equivalent to building T' in the tree-star problem.
The expected second stage cost is exactly Y 7 pg frdist(¢x, T'), which is the
same as incurred in the tree-star problem when the demand at node t; is
Pk k- O

The equivalence of SSP and tree-star network design also implies the
NP-hardness of SSP. Note that SSP is different from the maybecast problem
studied by Karger and Minkoff [13], because in their model, each node is a
terminal independently with a certain probability, edge costs do not change

11



across scenarios, and the solution is required to be a single tree spanning all
potential terminals.

3.1 Stochastic metric

The problem becomes even more interesting (and harder) when the metric
itself is allowed to change arbitrarily across scenarios. This might happen,
for example, because shipping by sea becomes much cheaper than air trans-
port in one scenario, and vice-versa in another. The problem is defined
exactly as in Section 3, except that the cost of edge e in the first stage is
2 and in scenario k is cf. We call this the stochastic metric shortest paths
(SMSP) problem.

In general, the first-stage component of an optimal solution for SMSP
need not be a tree. Consider the following example, where there is only one
second-stage scenario. The graph is a path with five vertices s = vg,...,v4 =
t, where s and t are the source and the sink respectively. Let M be a large
constant. The costs of the four edges (vo,v1), ..., (vs3,vs4) in the first stage
are respectively 1, M,1, M, and in the second stage are M,1, M,1. The
optimal solution is clearly to purchase edges (vg,v1) and (vg,v3) in the first
stage, and the others in the second stage; this solution has cost 4. Any
solution which requires the first stage to be a tree has cost at least M.

Hardness FEven with the restriction that the first stage set of edges form
a tree, SMSP is as hard as the group Steiner tree problem (GST), defined
as follows. G = (V, E) is an undirected graph with edge weights c., and
there are m vertex subsets (called groups) Si. The objective is to compute
a minimum cost tree which includes at least one vertex from every group.
This problem was studied by Garg, Konjevod and Ravi [6] who also gave an
approximation algorithm with performance ratio roughly O(log?nlogm),
and recently Halperin and Krauthgamer [8] showed an inapproximability
threshold of Q(log?n) even when G is a tree. For the rest of this section,
we consider the restriction of SMSP where the first stage solution has to
be a tree, which we dub Tree-SMSP. An Q(log? n) hardness for Tree-SMSP
follows from the reduction of GST to Tree-SMSP, shown below.

Theorem 4 An instance of GST can be modeled as a special case of Tree-
SMSP.

Proof: Suppose we are given an instance of group Steiner tree, specified
by G = (V, E), metric edge costs ¢, and groups S1,S2,...,Sy,. We create
an instance of SMSP with one scenario for every group. The graph remains

12



the same, and the first stage edge costs ¢ are the same as ¢, the edge costs
in the GST instance. In scenario k, the metric is as follows. The distance
between any two vertices in Sy is zero, and all other distances are infinity.
Any vertex in S; is defined to be the destination ¢; for scenario k. All
scenarios are equally likely.

An optimal solution to this instance of Tree-SMSP must select a first
stage tree which includes at least one vertex from each Si, to avoid infinite
cost. If the tree includes any vertex in Sk, it can be augmented at cost zero
to a tree which includes #; if scenario k materializes. O

Approximation algorithm Our approximation algorithm relies on the
following IP formulation of Tree-SMSP. Variable 7%, is 1 if edge (u,v) (in the
direction u — v) is part of the path traversed from #; to s and edge (u,v)
is chosen in the recourse solution. Variable f¥ is 1 if edge (u,v) is chosen
in the path from #; to s and edge (u,v) is part of the first-stage solution.
Variable z,,, is 1 if edge (u, v) is chosen in the first-stage tree.

m
(IPSMSP) min Z Cele + Zpk Z ’I‘gclg
e k=1 e
st Y (. +fh,) >1 Vk
v

Z(’rﬁv + fﬁv) = Z(Tfu + ffu)

v

Yu € V\ {tg, s}, Vk

»ork, <>k,

v v
YueV \ {tk},Vk

féc < Te
Vee E, Vk

f,r,x non-neg. integers

The third set of inequalities are strengthenings valid only for the tree
version of SMSP, insisting that flows along recourse arcs from t; to s via
any node are non-increasing; they are also crucial for obtaining the result
below. IPgsassp is polynomial in size, so its linear relaxation LPgpssp can be
solved optimally in polynomial time. Let (f,r, ) denote an optimal solution
to the linear program LPsyrsp, and OPTgspysp be its value. The following
theorem describes our rounding algorithm, with the full proof deferred to

13



the full version of this manuscript.

Theorem 5 The fractional solution (f,r,z) can be rounded in polynomial
time to an integer solution (f,7,%) such that its cost is O(log? nlogm) times
OPTTree—SMSP-

Proof Sketch: For each destination tj, let r*(k) = Y, r¥ck be the cost
incurred by the recourse component of the fractional path for ¢;. Let Sy be
the set of all nodes within distance 2r*(k) of 5 in the metric cF. The idea
is that we can incur a factor of 2 and pay for a path from ¢; to any node
in Sy by charging it to r*(k), and hence we need a first stage tree which
reaches at least one node in S;. We construct sets Sy for every scenario k,
and create an instance of the group Steiner tree problem using the metric c.

Using Markov’s inequality, it can be shown that if s ¢ Sy, then we have
Ze:(u,v):uESk,v¢Sk Te > % Hence 2z is a fractional solution to the linear
relaxation of the following IP formulation of the group Steiner tree problem:
min ), ez, such that Ee:(u,v):ueS,ngS e > 1 VS Ik : S CS. Using
the result of [6], we can construct an integer solution & at a cost which is no
more than O(log? nlogm - OPTsyrsp) which is a tree and includes at least
one vertex of every Si. Since for every scenario k we can augment this tree
to include t; at cost no more than 27*(k), our approximation ratio follows.
O

4 Stochastic versions of other classical approxima-
tion problems

4.1 Bin packing

Problem definition and algorithm Stochastic bin packing is motivated
by applications where storage capacity has to be reserved in advance of the
arrival of the objects, and if the reserved capacity is insufficient, we have
to purchase additional capacity at possibly higher costs. Formally, we are
given a bin capacity B, known in advance. There is a set of m possible
scenarios, with scenario k£ specified by a probability p; of occurrence, a set
Sy, of objects (each with size s¥ < B), and a bin cost f;. A feasible solution
is specified by a number x of bins purchased in stage 1, at unit cost per bin.
If scenario k materializes, the objects in Sy need to be packed into bins of
capacity B, which may necessitate the purchase of an additional number of
bins at cost fi per bin. The objective is to compute z so as to minimize the
expected total cost. Let [z] denote the integer nearest to z.

14



Let p denote the approximation ratio of some (the best) approxima-
tion algorithm for the bin-packing problem. Any locally optimal algorithm
(first-fit, for example) achieves p = 2. An asymptotic PTAS was given by
Fernandez de la Vega and Lueker [5], which uses at most (1 + 2¢)OPT + 1
bins. The following theorem shows how to extend any bin-packing algorithm
to handle stochastic bin-packing.

Theorem 6 Order the scenarios so that we have Y, s} > Y. 82 > ...

;8. Let k* be the largest integer such that Eﬁ;l fepk > 1. Then x =

p[>; s¥°] is an asymptotic p-approzimate solution.

Vv

Proof:  Consider the fractional relaxation of the problem, when we can
pack items fractionally into bins. In that case, z* = [3, s¥] is the optimal
solution, because it is the point where the expected marginal cost of buying
an additional bin in recourse goes below 1. The expected total cost if we
purchase z* bins is z* + Y. 4. Prfi([Y; s¥] — 2*), which is a lower bound
on the value of an optimal solution of stochastic bin packing.

Since p[>>; sf'| bins are asymptotically sufficient to pack the objects in
Sk, we will need to purchase at most p([Y,s¥] — z*) additional bins if
scenario k > k* materializes. If scenario k& < k* is realized, then pz* bins
are sufficient and no additional bins are needed. Hence the expected cost of
our solution is pz* + Yo 4« PefrP([D; s — 2*), which is asymptotically no
more than p times our lower bound. O

4.2 Vertex cover

Problem definition We are given an undirected graph G = (V, E). As
usual, there are m scenarios. In scenario k, vertex v has cost cﬁ and edge e
has requirement d’g which is 1 if e is required to be covered in scenario k, and
0 otherwise. Each vertex also has a first-stage cost, c0. The objective is to
identify a set of vertices to be selected in the first stage, so that the expected
cost of extending this set to a vertex cover for each scenario is minimized.

Generalization We generalize the problem defined above, and provide a
2-approximation for the generalized problem. This matches the approxima-
tion ratio for classical vertex cover. In the generalization, in addition to the
problem specified above, the first stage graph Gy = (V, Ey) and the second
stage graphs Gy = (V, E},) have possibly different edge-sets, though the ver-
tex set is the same. If vertex v is selected in the first stage and scenario k
materializes, then v covers only those edges adjacent to it which are in both
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Ej and Ey. Edges in Ej \ Ejy have to be covered by vertices purchased in
the second stage.

Integer program formulation Our algorithm is a primal-dual algo-
rithm which rounds the natural IP formulation of stochastic vertex cover.
Variable z¥ indicates whether or not vertex v is purchased in scenario k
(where k = 0 as usual denotes the first stage), and d¥, indicates the exis-
tence of edge (u,v) in scenario k. In the program below, df, = 1 always,
but we retain d¥, to allow for the extension when some edges may require
coverage at both ends.

m
min %z + Zpkckmk (IPsyc)
k=1
st. 20 + 20 + a2k 42k > dk,
Yuv € Ex, N Ey,Vk
zk+zk > dk,
Yuv € Ey \ Ey, Vk

Z non-neg. integers
Dual program  The dual of the linear relaxation of IPgy ¢ is shown

below. Variable y* packs edge e in Ej if e € Ej, and it packs e € Ej if
e € E, N Ey.

m
maxz Z dﬁvyﬁv (DPSV(;')
k=1 u,weV
s.t. Z ylg < prek Vo,VE
ecEy:v€Ee

m
Z Z ylg < & You

k=1 ecEoNEy:vce
y 2 0

Algorithm The algorithm is a greedy dual-ascent type of primal-dual al-
gorithm, with two phases. In Phase I, we raise the dual variables y’g uni-
formly for all edges in E¥ \ Ey, separately for each k. All vertices which
become tight (have the first dual constraint packed to pkcﬁ) have :1:113 set to
1, and deleted along with adjacent edges. We proceed this way until all
edges in E* \ E° are covered and deleted.
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In Phase II, we do a greedy dual-ascent on all uncovered edges of Ey.
These edges are contained in Ey N Ey. This time around, we use a slightly
different rule for purchasing vertices. If a vertex is tight for z¥ (i.e., second
dual constraint packed to ), then we select it in the stage 1 solution, and if
it is not tight for z° but is tight for z* (packed in the second dual constraint),
then we select it in the recourse solution.

Theorem 7 The integer program IPsyc can be rounded by a primal-dual
algorithm within a factor of 2 in polynomial time.

Proof:  We analyze the performance of the algorithm described above.
Every edge must become tight in either Phase I or Phase II, by definition
of the algorithm. Since at least one of the two end-points are purchased for
every tight edge, the algorithm yields a feasible solution. We show the ratio
of 2 by arguing that every edge pays at most twice its accumulated dual
value to account for the total cost of the chosen primal solution.

We now analyze the cost of this solution. First consider edges in E¥ N Ej.
Each such edge pays its dual value at most twice, once at each end, since it
only enters the algorithm in Phase II.

We next bound the payment of edges in Ej \ Ey. Consider one such edge,
e = uv. Without loss of generality, e went tight at v in Phase 1. In that
case, vertex u is selected in scenario k, paid for only by the dual of Ej \ Ey,
and its stage 1 copy is not packed at all by scenario k since only uncovered
edges have their duals grown in Phase II. The same argument holds if e also
became tight at v.

Now suppose e became tight at u in Phase I, but tightened at (packed)
v only in Phase II. In this case, e paid only one copy of its dual in Phase 1
(for u). It needs to pay at most one more copy of its dual, for v (whether
in stage 1 or recourse). Again, the dual is charged at most twice. O

4.3 Set cover

Problem definition There is a universe U of |[U| = n elements, and a
collection § of subsets of U. Each set S € S has a stage 1 cost cOS and
a cost of cg in scenario k, some of which might be infinity reflecting the
unavailability of the set in certain scenarios. Each element v € U has a
demand vector d, with the k' component d¥ being 1 if it is required to
cover u in scenario k, and 0 otherwise. A feasible solution is specified by a
collection S' C S, with stage 1 cost Y g cg. If scenario k is realized, then
S’ must be extended by purchasing some more sets S¥ to cover all elements
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with d® = 1. The cost of this recourse solution is 3 Sesk c’é, and we incur
this with probability p;. The objective is a solution which minimizes the
sum of first stage and expected second stage costs.

Reduction to classical set cover  While set cover is known to be
inapproximable better than Q(logn), it is easy to show an inapproxima-
bility of Q(logm) for stochastic set cover through the simple artifact of
associating every element with a distinct scenario. We show below an
O(log nm) = O(log n + log m) approximation algorithm by viewing stochas-
tic set cover as an ordinary set cover problem, which matches the inapprox-
imability upto constants. The reduction in Theorem 8 allows us to extend
the model to the following generalization, for which the same approxima-
tion guarantee holds: In scenario k, each set Sy covers only a subset of the
elements that the first-stage set S covers.

Theorem 8 Any stochastic set cover problem is equivalent to a classical set
cover problem with mn elements and |S|(m + 1) sets.

Proof: Associate an element uy, for every element-scenario pair (u, k) such
that d¢ = 1. Create m + 1 copies of every set S € S. Set S° contains
all elements uy for all k£ = 1,2,...,m such that w € S, while set S* only
contains uy, for all u € S. Finally, the cost of S0 is c?g and that of S¥ is pkc’g.
O

5 Conclusion

We have examined some discrete optimization problems under the two-stage
stochastic optimization model with recourse, which is a useful model for
practical decision making. We initiate the use of approximation algorithms
for problems in this model.

Open questions There are several classical combinatorial optimization
problems for which algorithms in the two-stage stochastic model are not
known. An orthogonal direction of research is to develop polynomial time
algorithms for other models of stochastic optimization. For example, the
two-stage model can be extended to multiple stages. It would also be in-
teresting to approximate stochastic optimization problems where the un-
certainty is modeled by other distributions, particularly continuous ones.
Finally, can stronger inapproximability results be proved for stochastic ver-
sions of classical problems using the inherent uncertainty that these models
can encode?
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