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Abstract

We consider the problem of efficiently representing sets
S of size n from an ordered universe U = {0, . . . ,m−1}.
Given any ordered dictionary structure (or comparison-
based ordered set structure) D that uses O(n) pointers,
we demonstrate a simple blocking technique that pro-
duces an ordered set structure supporting the same op-
erations in the same time bounds but with O(n log m+n

n )
bits. This is within a constant factor of the information-
theoretic lower bound. We assume the unit cost RAM
model with word size Ω(log |U |) and a table of size
O(mα log2m) bits, for some constant α > 0. The time
bound for our operations contains a factor of 1/α.

We present experimental results for the STL (C++
Standard Template Library) implementation of Red-
Black trees, and for an implementation of Treaps.
We compare the implementations with blocking and
without blocking. The blocking variants use a factor of
between 1.5 and 10 less space depending on the density
of the set.

1 Introduction

Memory considerations are a serious concern in the
design of search engines. Some web search engines index
over a billion documents, and even this is only a fraction
of the total number of pages on the Internet. Most of the
space used by a search engine is in the representation of
an inverted file index, a data structure that maps search
terms to lists of documents containing those terms.
Each entry (or posting list) in an inverted file index is a
list of the document numbers of documents containing
a specific term. When a query on multiple terms is
entered, the search engine retrieves the corresponding
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posting lists from memory, performs some set operations
to combine them into a result, and reports them to the
user. It may be desirable to maintain the documents
ordered, for example, by a ranking of the pages based
on importance [13]. Typically using difference coding
these lists can be compressed into an array of bits using
5 or 6 bits per edge [17, 12, 3], but such representations
are not well suited for merging lists of different sizes.

Here we are interested in a data structure to com-
pactly represent an individual posting list, represented
as an ordered set S = {s1, s2, . . . , sn}, si < si+1, from a
universe U = {0, . . . ,m−1}. This data structure should
support dynamic operations including set union and in-
tersection, and it should operate in a purely functional
setting [10] since it is desirable to reuse the original sets
for multiple queries. In a purely functional setting data
cannot be overwritten. This means that all data is fully
persistent.

There has been significant research on succinct
representation of sets taken from U . An information-
theoretic bound shows that representing a set of size n
(for n ≤ m

2 ) requires Ω(log
(
m
n

)
) = Ω(n log m+n

n ) bits.
Brodnik and Munro [5] demonstrate a structure that
is optimal in the high-order term of its space usage
and supports lookup in O(1) worst-case time and insert
and delete in O(1) expected amortized time. Pagh
[14] simplifies the structure and improves the space
bounds slightly. These structures, however, are based
on hashing and do not support ordered access to the
data: for example, they support searching for a precise
key, but not searching for the next key greater (or less)
than the search key. Pagh’s structure does support
Rank but only statically, i.e., without allowing insertions
and deletions. As with our work they assume the unit
cost RAM model with word size Ω(log |U |).

The set union and intersection problems are directly
related to the list merging problem, which has received
significant study. Carlsson, Levcopoulos, and Peters-
son [7] considered a block metric k = Block(S1, S2)



which represents the minimum number of blocks that
two ordered lists S1, S2 need to be broken into before
being recombined into one ordered list. Using this met-
ric they show an information-theoretic lower bound of
Ω(k log |S1|+|S2|

k ) on the time complexity of list merging
in the comparison model.

Moffat, Petersson, and Wormald [11] show that the
list merging problem can be solved in O(k log |S1|+|S2|

k )
time by any structure that supports fast split and join
operations. A split operation is one that, given an
ordered set S and a value v, splits the set into sets S1

containing values less than v and S2 containing values
greater than v. A join operation is one that, given sets
S1 and S2, with all values S1 less then the least value in
S2, joins them into one set. These operations are said
to be fast if they run in O(log(min(|S1|, |S2|))) time. In
fact, the actual algorithm requires only that the split
and join operations run in O(log |S1|) time.

Here we demonstrate a compression technique
which improves the space efficiency of structures for or-
dered sets taken from U . We consider the following
operations:

• Search− (Search+): Given x, return the greatest
(least) element of S that is less than or equal
(greater than or equal) to x.

• Insert: Given x, return the set S′ = S ∪ {x}.

• Delete: Given x, return the set S′ = S \ {x}.

• FingerSearch−(FingerSearch+): Given a han-
dle (or “finger”) for an element y in S, perform
Search− (Search+) for x in O(log d) time where
d = |{s ∈ S | y < s < x ∨ x < s < y}|.

• First, Last: Return the least (or greatest) element
in S.

• Split: Given an element x, return two sets S′ :
{y ∈ S | y < x} and S′′ : {y ∈ S | y > x}, plus x if
it was in S.

• Join: Given sets S′, S′′ such that ∀x ∈ S′,∀y ∈
S′′, x < y, return S = S′ ∪ S′′.

• (Weighted)Rank: Given an element y and weight
function w on S, find r = Σ

x∈S,x<yw(x). In the
unweighted variant, all weights are considered to
be 1.

• (Weighted)Select: Given r and a weight function
w, find the greatest y such that Σ

x∈S,x<yw(x) ≤ r.
Return both y and the associated sum. In the
unweighted variant, all weights are considered to
be 1.

Given any ordered dictionary structure D sup-
porting certain subsets of these operations and using
O(n logm) bits to store n values from U = {0, . . . ,m−
1} we demonstrate a simple blocking technique that
produces an ordered set structure using O(n log m+n

n )
bits. This is within a constant factor of the information-
theoretic lower bound. Our technique requires that the
target machine have a word size of Ω(logm). This is
reasonable since logm bits are required to distinguish
the elements of U . Our technique also makes use of a
lookup table of size O(mα log2m) for any α > 0.

Our data structure works as follows. Elements in
the structure are difference coded [17] and stored in
fixed-length blocks of size Θ(logm). The first element of
every block is kept uncompressed. The blocks are kept
in a dictionary structure (with the first element as the
key). The data structure needs to know nothing about
the actual implementation of the dictionary. A query
consists of first searching for the appropriate block in the
dictionary, and then searching within that block. We
provide a framework for dynamically updating blocks
as inserts and deletes are made to ensure that no block
becomes too full or too empty. For example, inserting
into a block might overflow the block. This requires
it to be split and a new block to be inserted into the
dictionary. The operations we use on blocks correspond
almost directly to the operations on the tree as a whole.
We use table-lookup to implement the block operations
efficiently.

Our structure can support a wide range of oper-
ations, depending on the operations the dictionary D
supports. In all cases the cost of our operations is O(1)
instructions and O(1) operations on D.

If the input structure D supports the Search−,
Search+, Insert, and Delete operations, then our
structure supports those operations.

If D supports FingerSearch and supports
Insert and Delete at a finger, then our structure
supports those operations.

If D supports First, Last, Split, and Join, then
our structure supports those operations. If the bounds
for Split and Join are O(log min(|D1|, |D2|)), then our
structure meets these bounds (despite the O(1) calls to
other operations).

If D supports WeightedRank, then our structure
supports Rank. If D supports WeightedSelect, then
our structure supports Select. Our algorithms need
the weighted versions so that they can use the number
of entries in a block as the weight.

The catenable-list structure of Kaplan and Tar-
jan [10] can be adapted to support all of these oper-
ations. The time bounds (all worst-case) are O(log n)
for Search−, Search+, Insert, and Delete; O(log d)



for FingerSearch, where d is as defined above; O(1)
for First and Last; and O(log min(|D1|, |D2|)) for
Split and Join. Our structure meets the same bounds.
As another example, our representation based on a sim-
pler dictionary structure based on Treaps [16] supports
all these operations in the time listed in the expected
case. Both of these can be made purely functional. As
a third example, our representation using a skip-list
dictionary structure [15] supports these operations in
the same time bounds (expected case) but is not purely
functional.

In Section 5 we present experimental results for
red-black trees and treaps. For red-black trees we
consider insertions, deletions and searches. For treaps,
in addition to insertion, deletions and searches we
present results for a merge routine based on split and
join operations.

2 Block structure

Our representation consists of two structures, nested
using a form of structural bootstrapping [6]. The base
structure is the block. In this section we describe our
block structure and the operations supported on blocks.
Then, in Section 3, we describe how blocks are kept
in an ordered-dictionary structure to support efficient
operations.

The block structure, the given dictionary structure
and our combined structure all implement the same op-
erations except that the block structure has an addi-
tional BMidSplit operation, and only the given dic-
tionary supports the weighted versions of Rank and
Select. For clarity, we refer to operations on blocks
with the prefix B (e.g., BSplit), operations on the given
dictionary structure with the prefix D (e.g., DSplit),
and operations on our combined structure with no pre-
fix.

Logarithmic codes. Our data structures are com-
pressed using logarithmic codes. A logarithmic code is
any variable-length prefix code that uses O(log v) bits to
represent a value v. An example of a logarithmic code
is the gamma code [8]. The gamma code represents a
positive integer v with blog vc zeroes, followed by the
blog vc+ 1-bit binary representation of v, for a total of
2blog vc+ 1 bits. Gamma codes for multiple values can
be concatenated to form a sequence of bits. Since the
codes are prefix codes, this sequence can be uniquely
decoded.

We use M to denote the maximum possible length
of a difference code. In the case of gamma codes, M =
2blogmc+ 1 bits. Throughout Sections 2 and 3 we will
assume the use of gamma codes. For the experiments
we use a different logarithmic code.

011 011 010 1 001000100110010

3 3 2 1 4306

{306, 309, 312, 314, 315, 319}

Figure 1: The encoding of a block of size 15. In this
case the universe has size 1024, so the head is encoded
with 10 bits.

Block encoding. A block Bi is an encoding of a
series of values (in increasing order) v1, v2, . . . , vk.
The block is encoded as a logm-bit representation of
v1 (called the “head”) followed by difference codes for
v2 − v1, v3 − v2, . . . , vk − vk−1. (See Figure 1 for an
example.) We say that the size of a block size(B) is
the total length of the difference codes contained in that
block. In particular we are interested in blocks of size
O(logm) bits.

It is important for our time bounds that the oper-
ations on blocks are fast—they cannot take time pro-
portional to size of the block. Operations such as
BFingerSearch have to take time proportional to d and
a block can have up to logm entries.

Lemma 2.1 If a block contains s values and has size b
bits, then using a lookup table of size O(m2α logm) it is
possible to search the block for a value v in O( b

α logm )
time in the worst case. In particular, if b is O(α logm)
then it is possible to search in O( 1

α ) worst-case time.

Proof. To search a block of size b for a key k, our
algorithm makes use of an auxiliary decoding table
which maps chunks of α logm bits of code to the result
when those bits are decoded. The chunk may contain
multiple difference codes but the first code must be
aligned with the start of the chunk. Each entry in the
lookup table contains two arrays.

Each entry i in the the first array contains two
values: the greatest value encoded in the chunk that
is less than i and the least value in the chunk that is
greater than i. If i is in the chunk, the entry also lists
the bit offset from the start of the chunk to the end of
the difference code for i. Note that this array describes
values rather than differences: if the chunk contains
gamma codes for the sequence 3, 1, 4, 1, then the array
describes the decoded values 3, 4, 8, 9. We assume the
part of the block before the chunk has been decoded so
we know the start value v for the chunk. In searching
for a key k we therefore look in array position i = k− v
(if in bounds).



The second array contains one entry for each bit-
position in the chunk. This entry gives the ending bit-
position of the difference encoded there, if it is in the
chunk. This is needed for the BMidSplit operation.

The first array in each entry contains space for
O(2α logm) values, each using O(logm) bits. The
second array contains space for α logm values, each
using O(logm) bits. In all the table contains 2α logm

entries using O(2α logm) logm bits each, for a total of
O(22α logm logm) = O(m2α logm) bits. By choosing an
appropriate α < .5 we can control the size of the table.

When decoding using table lookup it may occur
that a chunk contains no full gamma codes—that is,
that the first gamma code in the chunk is longer than the
chunk size. In this case, our algorithm can decode the
gamma code in constant time. The length of a gamma
code is 2z+1 where z is the number of zeroes preceding
the first one; the value of the gamma code is simply
the last z + 1 bits of the code. Our algorithm finds the
location of the first 1 using table lookup (the table size
is O(mα log logm)), then reads the last z + 1 bits using
shift operations.

Consider one “decoding step” on a chunk to consist
of a table-lookup operation followed (if necessary) by
decoding an oversized gamma code as described above.
At the end of a decoding step, the algorithm moves
to the end of the final gamma code that was decoded
and performs another step. Any two decoding steps
must decode at least α logm bits, so at most O( b

α logm )
decoding steps are required in the worst case.

The search algorithm keeps track of the value of
the last element in each chunk it decodes. It performs
decoding steps until the last element of the current
chunk is greater than the target value v. The algorithm
then examines the array at the appropriate offset for
v and returns the result. Each decoding step takes
O(1) time, so the total time used is O( b

α logm ); if b is
O(logm) then the total time used is O( 1

α ). �

In our application constant-time search will not be
needed since dictionary operations will use O(log n)
time for regular searches or O(log d) time for finger
searches. For this bound the lookup table can be
simplified: each lookup table entry can be an array
containing O(α logm) elements, one for each value
encoded in the chunk. This reduces the lookup table
size to O(mα log2m) bits, which implies that larger
values of α are practical. The array can be searched
using binary search in O(log n) worst-case time, or
using doubling search in O(log d) worst-case time for
FingerSearch type operations.

We define the following operations on blocks. All
operations require constant time assuming constant α
and that the blocks have sizeO(logm). Some operations

increase the size of the blocks and we describe in
Section 3 how the block sizes are bounded.

BSearch− (BSearch+): Given a value v and a block
B, these operations return the greatest (least) value in
B that is less than or equal (greater than or equal) to v.
This is just an application of the search method above.

BInsert: Given a value v and a block B, this
operation inserts v into B. If v is less than the head
for B, then our algorithm encodes that head by its
difference from v and adds that code to the block.
Otherwise, our algorithm searches B for the value vj
that should precede v. The gamma code for vj+1−vj is
deleted and replaced with the gamma codes for v − vj
and vj+1 − v. (Some shift operations may be needed to
make room for the new codes. Since each shift affects
O(logm) bits, this requires constant time.)

BDelete: Given a block B and a value vj contained
in B, this operation deletes vj from B. If vj is the head
for B, then its successor is decoded and made into the
new head for B. Otherwise, our algorithm searches B
for vj . It deletes the gamma codes for vj − vj−1 and for
vj+1 − vj and replaces them with the gamma code for
vj+1 − vj−1. (Part of the block may need to be shifted.
As in the Insert case, this requires a constant number
of shifts.)

BMidSplit: Given a block B of size b bits (where
b > 2M), this operation splits off a new block B′ such
that B and B′ each have size at least b/2 − M . It
searches B for the first code c that starts after position
b/2−M (using the second array stored with each table
entry). Then c is decoded and made into the head for
B′. The codes after c are placed in B′, and c and its
successors are deleted from B. B now contains at most
b/2 bits of codes, and c contained at most M bits, so
B′ contains at least b/2 −M bits. This takes constant
time since codes can be copied Ω(logm) bits at a time.

BFirst: Given a block B, this operation returns the
head for B.

BLast: Given a block B, this operation scans to the
end of B and returns the final value.

BSplit: Given a block B and a value v, this
operation splits a new block B′ off of B such that all
values in B′ are greater than v and all values in B are
less than v. This is the same as BMidSplit except that
c is chosen by a search rather than by its position in B.
This operation returns v if it was in B.

BJoin: The join operation takes two blocks B and
B′ such that all values in B′ are greater than the



greatest value from B. It concatenates B′ onto B.
To do this it first finds the greatest value v in B. It
represents the head v′ from B′ with a gamma code for
v′−v and appends this code to the end of B. It appends
the remaining codes from B′ to B. This takes constant
time since codes can be copied Ω(logm) bits at a time.

BRank: To support the BRank operation the lookup
table needs to be augmented: with each value is stored
that value’s rank within its chunk. To find the rank of
an element v within a block B, our algorithm searches
for the element while keeping track of the number of
elements in each chunk skipped over.

BSelect: To support the BSelect operation the
lookup table needs to be augmented: in addition to the
decoding table, each chunk has an array containing its
values. (This addsO(mα log2m) bits to the table, which
does not alter its asymptotic space complexity.) To find
the element with a given rank, our algorithm searches
for the chunk containing that element, then accesses the
appropriate index of the array.

3 Representation

To represent an ordered set S = {s1, s2, . . . , sn}, si <
si+1, our approach maintains S as a set of blocks
Bi where Bi = {sbi , sbi+1, . . . , sbi+1−1}. The values
b1 . . . bk are maintained such that the size of each block
is between M and 4M . The first block and the last
block are permitted to be smaller than M . (Recall that
M = 2blogmc+ 1 is the maximum possible length of a
gamma code.) This property is maintained through all
operations performed on S.

Lemma 3.1 Given any set S from U = {0, . . . ,m−1},
let |S| = n. Given any assignment of bi such that
∀Bi,M ≤ size(Bi) ≤ 4M , the total space used for the
blocks is O(n log n+m

n ).

Proof. We begin by bounding the space used for the
gamma codes. The cost to gamma code the differences
between every pair of consecutive elements in S is

n∑
i=2

(2blog(si − si−1)c+ 1).

Since the logarithm is concave, this sum is maximized
when the values are evenly spaced in the interval 1 . . .m;
at that point the sum is

∑n
i=2(2 log m

n + 1), which is
O(n log m

n + n) = O(n log m+n
n ).

The gamma codes contained in the blocks are a
subset of the ones considered above (since the head
of each block is not gamma coded). For every logm
bits used by a head there are at least M bits used
by gamma codes; since M > 2 logm the amount of

additional space used by heads is at most half that
used by gamma codes. �

The blocks Bi are maintained in an ordered-
dictionary structure D. The key for each block is its
head. We refer to operations on D with a prefix D to
differentiate them from operations on blocks and from
the interface to our representation as a whole. D
may use O(logm) bits to store each value. Since each
value stored in D contains Θ(logm) bits already, this
increases our space bound by at most a constant factor.
Our representation, as a whole, supports the following
operations. They are not described as functional but
can easily be made so: rather than change a block, our
algorithm could delete it from the structure, copy it,
modify the copy, and reinsert it into the structure.

Search−: First, our algorithm calls DSearch−(k),
returning the greatest block B with head k′ ≤ k. If
k′ = k, return k′. Otherwise, call BSearch−(k) on B
and return the result.

Search+: First, our algorithm calls DSearch−(k),
returning the greatest block B with head k′ ≤ k. If
k′ = k, return k′. Otherwise, call BSearch+(k) on B. If
this produces a value, return that value; otherwise, call
DSearch+(k) and return the head of the result.

Insert: First, our algorithm calls DSearch−(k),
returning the block B that should contain k. (If there
is no block with head less than k, our algorithm uses
DSearch+(k) to find a block instead.) Our algorithm
then calls BInsert(k) on B. If size(B) > 4M , our
algorithm calls BMidSplit on B and uses DInsert to
insert the new block.

Delete: First, our algorithm calls DSearch−(k),
returning the block B that contains the target element
k. Then our algorithm calls BDelete(k) on B. If
size(B) < M , our algorithm uses DDelete to delete
B from D. It uses DSearch− to find the predecessor of
B and BJoin to join the two blocks. This in turn may
produce a block which is larger in size than 4M , in which
case a BMidSplit operation and a DInsert operation
are needed as in the Insert case.

(Under rare circumstances, deleting a gamma-coded
element from a block may cause it to grow in size by one
bit. If this causes the block to exceed 4M in size, this
is handled as in the Insert case.)

We define a “finger” to an element v to consist of a
finger to the block B containing v in D.

FingerSearch: Our algorithm calls
DFingerSearch(k) for the block B′ which con-
tains k. It then calls BSearch−(k) and returns the
result.



First: Our representation calls DFirst and then
BFirst and returns the result.

Last: Our representation calls DLast and then
BLast and returns the result.

Join: Given two structures D1 and D2, our al-
gorithm first checks the size of B1 = DLast(D1) and
B2 = DFirst(D2). If size(B1) < M , our algorithm
uses DSplit to remove B1 and its predecessor, BJoin to
join them, and BMidSplit if the resulting block is over-
sized. It uses DJoin to join the resulting block(s) back
onto D1. If size(B2) < M , our algorithm joins B2

onto its successor using a similar method. Then our
algorithm uses DJoin to join the two structures.

Split: Given an element k, our algorithm first calls
DSplit(k), producing structures D1 and D2. If the split
operation returns a block B, then our algorithm uses
BDelete onB to delete the head, uses DJoin to joinB to
D2, and returns (D1, k,D2). Otherwise, our algorithm
calls BSplit(k) on the last block DLast(D1). If this
produces an additional block, this block is inserted using
DJoin into D2.

Rank: The weighted rank of a block is defined to be
the number of elements it contains. Our algorithm calls
DSearch−(k) to find the block B that should contain k.
It calls DWeightedRank(B) and BRank(k) and returns
the sum.

Select: The size of a block is defined to be the
number of elements it contains. Our algorithm uses
DWeightedSelect(r) to find the block B containing the
target, then uses BSelect with the appropriate offset
on B to find the target.

Lemma 3.2 For an ordered universe U =
{0, . . . ,m − 1}, given an ordered dictionary struc-
ture (or comparison-based ordered set structure) D that
uses O(n logm) bits to store n values, our blocking
technique produces a structure that uses O(n log n+m

n )
bits.

1. If D supports DSearch−, DSearch+, DInsert, and
DDelete, the blocked set structure supports those
operations using O(1) instructions and O(1) calls
to operations of D.

2. If D supports DFingerSearch, the blocked set
structure supports FingerSearch in O(1) instruc-
tions and one call to DFingerSearch. If D sup-
ports DInsert and DDelete at a finger, then
the blocked set structure supports those opera-
tions using O(1) instructions and O(1) calls to
DInsert and DDelete at a finger.

union(S1,S2)
if S1 = null then

return S2

if S2 = null then
return S1

(S2A,v,S2B) ← DSplit(S2,DFirst(S1))
SB ← union(S2B ,S1)
return DJoin(S2A,SB)

Figure 2: Pseudocode for a union operation.

3. If D supports the DFirst, DLast, DSplit, and
DJoin operations, then the blocked set structure
supports those operations using O(1) instructions
and O(1) calls to operations of D.

4. If D supports the DWeightedRank operation,
then the blocked set structure supports the
Rank operation in O(1) instructions and one
call to DWeightedRank. If D supports the
DWeightedSelect operation, then the blocked set
structure supports the Select operation using O(1)
instructions and one call to DWeightedSelect.

The proof follows from the descriptions above.

4 Applications

By combining the Split and Join operations it is
possible to implement efficient set union, intersection,
and difference algorithms. An example implementation
of union is shown in Figure 2. If Split and Join run
in O(log |D1|) time, then these set operation algorithms
run in O(k log |D1|+|D2|

k + k) time, where k is the least
possible number of blocks that we can break the two
lists into before reforming them into one list. (This is
the Block Metric of Carlsson et al. [7].)

As described in the introduction, the catenable
ordered list structure of Kaplan and Tarjan [10] can
be modified to support all of the operations described
here in worst-case time. (To do this, we use Split as
our search routine; to support FingerSearch we define
a finger for k to be the result when the structure is split
on k. To support weighted Rank and Select, we let each
node in the structure store the weight of its subtree.)
Thus our representation using their structure supports
those operations in worst-case time using O(n log n+m

n )
bits. This structure may be somewhat unwieldy in
practice, however.

If expected-case rather than worst-case bounds are
acceptable, Treaps [16] are an efficient alternative.
Treaps can be made to support the Split and Join
operations by flipping the pointers along the left spine
of the trees—each node along the left spine points to



|U | |S| Insert Times Delete Times Space Needed
Standard Blocked Standard Blocked Standard Blocked

220 210 0.001 0.004 0.001 0.003 12 4.62
220 212 0.010 0.016 0.012 0.013 12 3.80
220 214 0.061 0.067 0.058 0.076 12 3.02
220 216 0.363 0.348 0.343 0.369 12 2.28
220 218 2.007 1.790 1.920 1.901 12 1.64
225 210 0.004 0.001 0.000 0.006 12 6.37
225 212 0.009 0.013 0.010 0.017 12 5.67
225 214 0.062 0.073 0.058 0.087 12 4.96
225 216 0.351 0.393 0.347 0.465 12 4.18
225 218 1.875 2.071 1.828 2.365 12 3.42
230 210 0.001 0.005 0.002 0.003 12 8.15
230 212 0.012 0.013 0.011 0.019 12 7.43
230 214 0.061 0.078 0.062 0.093 12 6.68
230 216 0.357 0.424 0.346 0.515 12 5.89
230 218 1.865 2.283 1.798 2.745 12 5.33

Table 1: Performance of a standard treap implementation versus our blocked treap implementation, averaged
over ten runs. Time is in seconds; space is in bytes per value.

its parent instead of its left child. To split such a treap
on a key k, an algorithm first travels up the left spine
until it reaches a key greater than k, then splits the
treap as normal. Seidel and Aragon showed that the
expected path length of such a traversal is O(log |T1|).
By copying the path traversed this can be made purely
functional.

5 Experimentation

We implemented our blocking technique in C using both
treaps and red-black trees. Rather than the gamma
code we use the nibble code, a code of our own devising
which stores numbers using 4-bit “nibbles” [4]. Each
nibble contains three bits of data and one “continue”
bit. The continue bit is set to 0 if the nibble is the
last one in the representation of that number, and
1 otherwise.

We decode blocks nibble-by-nibble rather than with
a lookup table as described above. For very large prob-
lems, using such a table might improve performance.

We use a maximum block size of 46 nibbles (23
bytes) and a minimum size of 16 nibbles (8 bytes). We
use one byte to store the number of nibbles in the block,
for a total of 24 bytes per block.

We combined our blocking structure with two sep-
arate tree structures. The first is our own (purely func-
tional) implementation of treaps [2]. Priorities are gen-
erated using a hash function on the keys. Each treap
node maintains an integer key, a left pointer, and a right
pointer, for a total of 12 bytes per node. In our blocked
structure each node also keeps a pointer to its block.

Since each block is 24 bytes, the total space usage is 40
bytes per treap node.

The second tree structure is the implementation
of red-black trees [9] provided by the RedHat Linux
implementation of the C++ Standard Template Library
[1]. We used the map<int, unsigned char*> template
for our blocked structure and the set<int> template
for the unblocked equivalent. A red-black tree node
includes a key, three pointers (left, right, and parent),
and a byte indicating the color of the node. Since
a C compiler allocates memory to data structures in
multiples of 4, this requires a total of 20 bytes per node
for the unblocked implementation, and 48 bytes for our
blocked implementation.

We ran our simulations on a 1GHz processor with
1GB of RAM.

For each of our tree structures we tested the time
needed to insert and delete elements. We used universe
sizes of 220, 225, and 230, with varying numbers of
elements. Elements were chosen uniformly from U . All
elements in the set were inserted, then deleted. We
calculated the time needed for insertion and deletion
and the space required by each implementation, and
computed the average over ten runs.

Results for the treap implementations are shown
in are shown in Table 1. Our blocked version uses
considerably less space than the non-blocked version:
the improvement is between a factor of 1.45 and 7.3,
depending on the density of the set. The slowdown
caused by blocking varies but is usually less than 50%.
(In fact, sometimes the blocked variant runs faster. We



|U | |S| Insert Times Delete Times Space Needed
Standard Blocked Standard Blocked Standard Blocked

220 210 0.001 0.002 0.000 0.003 20 5.49
220 212 0.004 0.006 0.003 0.014 20 4.55
220 214 0.013 0.033 0.023 0.054 20 3.62
220 216 0.064 0.136 0.100 0.230 20 2.74
220 218 0.357 0.559 0.538 0.972 20 1.97
225 210 0.001 0.003 0.000 0.000 20 7.66
225 212 0.004 0.008 0.004 0.015 20 6.80
225 214 0.012 0.037 0.022 0.056 20 5.96
225 216 0.064 0.152 0.098 0.247 20 5.02
225 218 0.384 0.634 0.583 1.066 20 4.10
230 210 0.000 0.003 0.002 0.003 20 9.79
230 212 0.003 0.010 0.005 0.015 20 8.91
230 214 0.013 0.040 0.020 0.060 20 8.01
230 216 0.066 0.170 0.100 0.262 20 7.08
230 218 0.385 0.714 0.589 1.143 20 6.39

Table 2: Performance of a standard red-black tree implementation versus our blocked red-black tree implementa-
tion, averaged over ten runs. Time is in seconds; space is in bytes per value.

suspect this is because of caching and memory issues.)
Results for the red-black tree implementations are

shown in Table 2. Here the space improvement is
between a factor of 2 and 10. However the slowdown
is sometimes as much as 150%.

Note that the STL red-black tree implementation
is significantly faster than our treap implementation.
In part this is because our treap structure is purely
functional (and thus persistent). The red-black tree
structure is not persistent.

For our treap data structure we also implemented
the serial merge algorithm described in Section 4. We
computed the time needed to merge sets of varying sizes
in a universe of size 220. Results are shown in Figure 3.
The slowdown caused by blocking was at most 150%.
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