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ABSTRACT 
We introduce Peekaboom, an entertaining web-based game 
that can help computers locate objects in images. People 
play the game because of its entertainment value, and as a 
side effect of them playing, we collect valuable image 
metadata, such as which pixels belong to which object in 
the image. The collected data could be applied towards 
constructing more accurate computer vision algorithms, 
which require massive amounts of training and testing data 
not currently available. Peekaboom has been played by 
thousands of people, some of whom have spent over 12 
hours a day playing, and thus far has generated millions of 
data points. In addition to its purely utilitarian aspect, 
Peekaboom is an example of a new, emerging class of 
games, which not only bring people together for leisure 
purposes, but also exist to improve artificial intelligence. 
Such games appeal to a general audience, while providing 
answers to problems that computers cannot yet solve.  

Author Keywords 
Distributed knowledge acquisition, object segmentation, 
object recognition, computer vision, Web-based games. 

ACM Classification Keywords:  
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INTRODUCTION 
Humans understand and analyze everyday images with 
little effort: what objects are in the image, where they are 
located, what is the background, what is the foreground, 
etc. Computers, on the other hand, still have trouble with 
such basic visual tasks as reading distorted text or finding 
where in the image a simple object is located. Although 
researchers have proposed and tested many impressive 
algorithms for computer vision, none have been made to 
work reliably and generally.  

Most of the best approaches for computer vision (e.g. 
[4,5,9,10]) rely on machine learning: train an algorithm to 
perform a visual task by showing it example images in 
which the task has already been performed. For example, 

training an algorithm for testing whether an image contains 
a dog would involve presenting it with multiple images of 
dogs, each annotated with the precise location of the dog in 
the image. After processing enough images, the algorithm 
learns to find dogs in arbitrary images. A major problem 
with this approach, however, is the lack of training data, 
which, obviously, must be prepared by hand. Databases for 
training computer vision algorithms currently have 
hundreds or at best a few thousand images [13] — orders of 
magnitude less than what is required.  

In this paper we address the problem of constructing a 
massively large database for training computer vision 
algorithms. The target database will contain millions of 
images, all fully annotated with information about what 
objects are in the image, where each object is located, and 
how much of the image is necessary to recognize it. Our 
database will be similar to those previously shown to be 
useful for training computer vision algorithms (e.g. [13]).  

To construct such a database, we follow the approach taken 
by the ESP Game [1] and introduce a new game called 
Peekaboom. Peekaboom is an extremely enjoyable 
networked game in which, simply by playing, people help 
construct a database for training computer vision 
algorithms. We guarantee the database’s correctness even if 
the people playing the game don’t intend it. As we will 
show in this paper, our game is also very enjoyable, with 
some people having played over 40 hours a week. We will 
further show that this game can be used to improve image-
search results and to calculate object bounding-boxes 
similar to those in Flickr [8] (see Figure 7). 

The ESP Game [1] is an interactive system that allows 
people to label images while having fun. The ESP Game 
collects random images from the Web and outputs word 
labels describing the contents of the images. The game has 
already collected millions of labels for arbitrary images. 
Given an image, the ESP Game can be used to determine 
what objects are in the image, but cannot be used to 
determine where in the image each object is located. Such 
location information is necessary for training and testing 
computer vision algorithms, so the data collected by the 
ESP Game is not sufficient for our purposes. The game 
introduced in this paper, Peekaboom, improves on the data 
collected by the ESP Game and, for each object in the 
image, outputs precise location information, as well as 
other information useful for training computer vision 
algorithms. By playing a game, people help us collect data 
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not because they want to be helpful, but because they have 
fun. Indeed Peekaboom (or the ESP Game or any game 
built on this premise) can be treated as a “human 
algorithm”: on input an image, it outputs (with arbitrarily 
high probability) a correct annotation of the image. Instead 
of using a silicon processor, this “algorithm” runs on a 
processor consisting of regular humans interacting 
throughout the Web.  

In addition to applications in computer vision and image 
search, our system makes a significant contribution to HCI 
because of the way it addresses the problem: Peekaboom 
presents an example of a new line of research devoted to 
solving large-scale problems with human computing 
power, where people interact with computers to extend the 
computational abilities of machines.  

BASIC GAME PLAY 
Peekaboom, as the name may suggest, is a game with two 
main components: “Peek” and “Boom.” Two random 
players from the Web participate by taking different roles 
in the game — when one player is Peek, the other is Boom. 
Peek starts out with a blank screen, while Boom starts with 
an image and a word related to it (see Figure 1).   

The goal of the game is for Boom to reveal parts of the 
image to Peek, so that Peek can guess the associated word. 
Boom reveals circular areas of the image by clicking. A 
click reveals an area with a 20-pixel radius. Peek, on the 
other hand, can enter guesses of what Boom’s word is. 
Boom can see Peek’s guesses and can indicate whether 
they are hot or cold.  

When Peek correctly guesses the word, the players get 
points and switch roles; play then proceeds on a new 
image-word pair.  If the image-word pair is too difficult, 

the two players can “pass,” or opt out, of the current image. 
Passing creates the same effect as a correct guess from 
Peek, except that the players get no points. 

To maximize points, Boom has an incentive to reveal only 
the areas of the image necessary for Peek to guess the 
correct word. For example, if the image contains a car and 
a dog and the word associated to the image is “dog,” then 
Boom will reveal only those parts of the image that contain 
the dog. Thus, given an image-word pair, data from the 
game yield the area of the image pertaining to the word.  

Pings 
Another component of the game are “pings” — ripples that 
appear on Peek’s screen when Boom right-clicks on the 
image (see Figure 2).  If two players were playing with the 
image on Figure 2, then many correct words are possible 
from Peek’s point of view: elephant, trunk, tusk, ear.  
Suppose the correct word is “trunk.”  To get Peek to guess 
correctly, Boom can “ping” the trunk of the elephant by 
right-clicking on it.  In doing so, Boom helps to 
disambiguate the trunk from the rest of the elephant. 

 
Figure 2. Pings. To help Peek, Boom can “ping” parts of 

the image by right-clicking on them. 

Figure 1. Peek and Boom. Boom gets an image along with a word related to it, and must reveal parts of the image 
for Peek to guess the correct word. Peek can enter multiple guesses that Boom can see.  
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Hints 
Another feature of the game are buttons that allow Boom to 
give hints to Peek about how the word relates to the image 
(See Figures 1 and 3). Upon Boom’s pressing of one of the 
hint buttons, a corresponding flashing placard appears on 
Peek’s screen. The reason for having hints is that often the 
words can relate to the image in multiple ways: as nouns, 
verbs, text, or related nouns (something not in the image, 
but related to it).   

THE ORIGIN OF IMAGES AND LABELS 
All words presented to the players are related to their 
corresponding image. On input an image-word pair, 
Peekaboom outputs a region of the image that is related to 
the word. We obtain millions of images with associated 
keyword labels from the ESP Game [1], which we now 
describe in more detail.    

As mentioned before, the ESP Game is a two-player online 
game that pairs random players from the Web. From the 
player’s perspective, the goal of the ESP Game is to guess 
the word that their partner is typing for each image. Once 
both players have typed the same string, they move on to a 
next image. Since the players can’t communicate and don’t 
know anything about each other, the easiest way for both to 
type the same string is by typing something related to the 
common image. The string upon which the two players 
agree is a very good label for the image. We use the labels 
collected from the ESP Game as the words we present to 
the players in Peekaboom.  

GAME POINTS AND THE BONUS ROUND 
Although the exact number of points given to the players 
for different actions is not important, we mention it to show 
the relative proportions. Furthermore, we mention the 
different point strategies used by Peekaboom to keep 
players engaged.  

Points are given to both Peek and Boom equally whenever 
Peek guesses the correct word. In the current 
implementation, both obtain 50 points. Points are not 
subtracted for passing. Points are also given to both Peek 
and Boom for using the hint buttons. Although this might 

appear counterintuitive since using hints deducts points in 
many other games, we actually want the players to use the 
hint buttons. As mentioned above, hints give us additional 
information about the relationship between the word and 
the image, and therefore we encourage players to use them. 
Twenty-five extra points are given to both Peek and Boom 
whenever Peek guesses the correct word and Boom had 
used a hint. Points are not given for usage of the hot/cold 
buttons.  

Every time the players correctly complete four images, they 
are sent to a “bonus” round. The bonus round is different in 
nature from the rest of the game and allows players to 
obtain up to 150 points. In the bonus round (see Figure 4), 
players simply click on an object in the image. The closer 
they are to each other’s clicks, the more points they get. For 
example, both players could obtain an image of a car and 
be told “click on the car.”  

 

 
Figure 4. The Peekaboom Bonus Round. Players must 

click on the specified object within the image; they 
obtain points proportional to how close their clicks are 

to each other’s clicks.  

Figure 3. Hints.  Boom can further help Peek by giving hints about how the word relates to the image: is it a noun 
describing something in the image, a noun related to the image, text on the image, or a verb?  



Players obtain between 0 and 10 points for every click in 
the bonus round, depending on how far the click is from 
their partner’s corresponding click. The bonus round is 
timed: players have to click on the same place as their 
partner as many times as they can in 5 seconds. If the 
object is not in the image, players can pass. Because some 
images do not contain the object related to the word, 
passing in the bonus round generates 25 points for both 
players (so we can learn whether the object is there). 
Players cannot pass after they have clicked on the image.   

There are two reasons for the Peekaboom bonus round. 
First, by giving players “bite-size” milestones (getting four 
images correctly), we reinforce their incremental success in 
the game and thus encourage them to continue playing. 
Second, the bonus round is an alternative approach to 
collecting training data for computer vision. In it, players 
click inside specific objects within an image. Such clicks 
give additional information for training computer vision 
algorithms. In this paper we do not concern ourselves with 
such information, but remark that it is also useful.  

COLLECTING IMAGE METADATA 
Our goal is to construct a database for training computer 
vision algorithms. Here we discuss exactly what 
information is collected by Peekaboom and how it is 
collected.  

On input an image-word pair (coming directly from the 
ESP Game), Peekaboom collects the following 
information: 

• How the word relates to the image. Is it an 
object, person, or animal in the image, is it text in 
the image, is it a verb describing an action in the 
image, is it an object, person, or animal not in the 
image but related to it? The ESP Game associates 
words to images, but does not say how the word 
is related to the image. Figure 3, for instance, 
shows multiple ways in which a word can be 
related to an image. Hint buttons in Peekaboom 
allow us to determine the relation of the word to 
the image. This is useful in multiple ways, but for 
the purposes of constructing training sets for 
computer vision, it allows us to weed out “related 
nouns” and to treat “text” separately.  

• Pixels necessary to guess the word. When Peek 
enters the correct word, the area that Boom has 
revealed is precisely enough to guess the word. 
That is, we can learn exactly what context is 
necessary to determine what the word refers to. 
This context information is absolutely necessary 
when attempting to determine what type of object 
a set of pixels constitutes (see Figure 5). 

• The pixels inside the object, animal, or person. 
If the word is a noun directly referring to 
something in the image, “pings” give us pixels 
that are inside the object, person, or animal.  

• The most salient aspects of the objects in the 
image. By inspecting the sequence of Boom’s 
clicks, we gain information about what parts of 
the image are salient with respect to the word. 
Boom typically reveals the most salient parts of 
the image first (e.g., face of a dog instead of the 
legs, etc.).  

• Elimination of poor image-word pairs. If many 
independent pairs of players agree to pass on an 
image without taking action on it, then likely 
they found it impossibly hard because of poor 
picture quality or a dubious relation between the 
image and its label.  By implementing an eviction 
policy for images that we discover are “bad,” we 
can improve the quality of the data collected (as 
well as the fun level of the game). 

When multiple players have gone through the same image, 
these pieces of information can be combined intelligently to 
give extremely accurate and useful annotations for 
computer vision. Later in the paper, for example, we show 
how a simple algorithm can use the data produced by 
Peekaboom to calculate accurate object bounding-boxes 
(see Figure 7).  

THE SINGLE PLAYER GAME 
Peekaboom is a two-player game.  Oftentimes, however, 
there will be an odd number of people attempting to play 
the game, so the remaining person cannot be paired. To 
prevent their frustration, we also have a single-player 
version of the game in which the player is matched with a 
server-side “bot.” 

Our bot acts intelligently to simulate a human player by 
being based on pre-recorded games. In other words, we 
take data collected from pairs of humans and use it as the 
basis for the computer player’s logic. Emulating a Boom 
player is fairly simple: the bot can regurgitate the sequence 
of recorded clicks to the human. Emulating Peek is much 
more complicated; the bot needs to have some concept of 
closeness of the human’s clicks to the set of recorded 
clicks. For instance, if the human does not reveal the dog in 
the picture, the bot should not guess “dog.” Our bot only 
reveals a certain pre-recorded guess if enough area has 

Figure 5. The image on the left contains a car driving 
through the street, while the one on the right has a person 
crossing the same street. Both the car and the person are 
exactly the same set of pixels up to a rotation by 90 
degrees. (Example taken from [11].) 



been revealed. Towards this end, it employs a spatial data 
structure whose members are circles, each of which 
corresponds to a click.  Elements of the data structure are 
removed as they are clicked on by the human player. When 
the data structure becomes empty, the bot gives the correct 
answer.  Moreover, it has the ability to make incorrect 
guesses along the way, based on the relative emptiness of 
the spatial data structure.  

CHEATING 
Peekaboom is a collaborative game: partners work together 
to maximize their score. When both partners do not 
communicate outside the game environment, we obtain 
correct information. However, if the two partners collude to 
cheat on the game, the data could be poisoned. For 
instance, if Boom and Peek know each other and have an 
outside means of communication, then Boom can simply 
tell Peek what words to type.  

Peekaboom contains multiple anti-cheating mechanisms. 
Through a combination of online in-game enforcement and 
offline analysis, we are able to detect and deal with 
cheating. Before detailing Peekaboom’s anti-cheating 
measures, we mention that cheating attempts are 
uncommon. Although a minority of players might obtain 
satisfaction from “gaming the system,” the majority of 
them just want to play the game honestly. Indeed, as 
anecdotal evidence, when Peekaboom was tested in a room 
with children of ages 9-13, they would cover the word with 
their hand to prevent others in the room from seeing the 
answers. Nevertheless, Peekaboom does have a full set of 
measures to prevent collusion.  

• The player queue. When players log on to the 
game server, they are not immediately paired off.  
Instead, the server makes them wait n seconds, 
where n is the number of seconds until the next 
matching interval.  Currently, matching intervals 
happen every 10 seconds, and when they do, the 
server matches everyone in the queue with a 
partner (any odd person out will be paired with a 
bot).  With a large number of players in the 
system, we can ensure that a player’s partner is 
random and prevent colluders from getting 
matched just because they clicked “start playing” 
at the same time. 

• IP address checks. We also check player’s IP 
addresses to ensure that they are not paired with 
themselves or with others that have a similar 
address (similarity in IP addresses can imply 
geographical proximity).  

• Seed images. Because our system is a web-based 
game, one point of concern is that bots (i.e. 
automated players) might play the game and 
pollute the pool of collected data.  To detect them, 
we introduce seed images into the system; in other 
words, those for which we have hand-verified 
metadata.  On being presented seed images, if a 

player consistently fails to click on the relevant 
parts when playing Boom or to guess the correct 
words when playing Peek, they will be added to a 
blacklist.  We discard all current and future game 
play data associated with anyone on the blacklist. 
Notice that, almost by definition, a computer 
program cannot successfully play Peekaboom — 
if it were able to do so, then it would be able to 
recognize the objects in the images. Therefore, this 
strategy prevents bots (as well as otherwise 
malicious players) from poisoning our data.  

• Limited freedom to enter guesses. Since Boom 
can see all of Peek’s guesses, the game allows a 
limited form of communication between the 
players. Indeed, many of the Peekaboom players 
use the guess field as a way to communicate with 
their partner. It is not uncommon for the first 
guess in a game to be “hi” or for the first guess 
after passing on an image to be the correct word 
associated with the previous image. It is also not 
uncommon for players to type “sorry” after taking 
too long on an image. A possible cheating strategy 
is to exchange IM screen names through the guess 
field and then, using IM, communicate the correct 
words. Although we have never observed attempts 
to execute such a strategy, we can mitigate it by 
not allowing Peek to enter any non-alphabetical 
characters (such as numbers). Similarly, we can 
prevent Boom from seeing any guesses that are 
not words in the dictionary (currently we do allow 
Boom to see such guesses because we have not 
seen players attempt to cheat in this way). 
However, even if players are successful in such a 
strategy, the other anti-collusion mechanisms can 
deal with the corrupted data.  

• Aggregating data from multiple players. In 
addition to the above strategies, we aggregate data 
from multiple players for a given image-word pair. 
By doing this, we can eliminate outliers.  

IMPLEMENTATION 
We implemented the architecture of the game under the 
client-server model.  The client application is delivered as a 
Java applet, while the server is written purely in Java.  
Applets connect to a server, http://www.peekaboom.org, 
which then matches the players with games of Peekaboom.  
Upon two players’ completion of a match, the server writes 
their game play data and scores to disk.  We then compile 
the collected data into desired formats.  

Our implementation of the game contains many features to 
improve game-play: 

• Spelling check. Incorrectly spelled words are 
displayed in a different color to notify players. 
This is important because the Peek player usually 
types multiple guesses in a short time, often 
making spelling mistakes. 



• Inappropriate word replacement. Since Boom 
can see Peek’s guesses, we do not allow Peek to 
enter inappropriate words. Whenever one of 
Peek’s guesses is among a list of possible 
inappropriate words, we substitute it with another 
word chosen from a list of innocent words such as 
“love,” “caring,” “ILuvPeekaboom,” etc.  

• Top scores list and ranks. The Peekaboom 
website prominently displays the cumulative top 
scores of the day as well as the top scores of all 
time. Furthermore, players are given a rank based 
on the total number of points they have 
accumulated throughout time (see Figure 6). The 
different ranks are: Fresh Meat (0-15,000 points), 
Newbie (15,000-75,000 points), Player (75,000-
250,000 points), Gangster (250,000-1,000,000 
points) and Godfather (1,000,000 or more points).  

We remark that ranks have proven an important 
component of Peekaboom’s incentive strategy. Of 
the 15,000+ players that have obtained an account, 
47% of them have scores that fall within 5,000 
points of the rank cutoffs. Given that these 
intervals cover less than 2% of the space of 
possible cumulative scores, this strongly suggests 
that many players simply play to reach a new rank.  

 

Figure 6. Top scores and player ranks. Players are 
shown their current rank and the number of points 

remaining for the next rank. 

ADDITIONAL APPLICATIONS 
Before going to the evaluation section, we mention two 
additional applications for the data collected by 
Peekaboom. A benefit of these applications is that they are 
“direct” in that they do not require the training of machine 
learning algorithms.  

Improving Image-Search Results 
Peekaboom gives an accurate estimate of the fraction of the 
image related to the word in question. This estimate can be 
calculated from the area revealed by Boom. The fraction of 
the image related to a word can be used to order image-
search results: images in which the word refers to a higher 
fraction of the total pixels should be ranked higher. Much 
like the goal of the ESP Game is to label all images on the 
Web, we can imagine Peekaboom doing the same and thus 
further improving image-search.     

Object Bounding-Boxes 
In the same vein, Peekaboom can be used to directly 
calculate object bounding-boxes similar to those used in 
Flickr [8] (see Figure 7). Flickr is a photo sharing service 
that allows users to “tag” images with keywords and to 
associate keywords with rectangular areas in the image (the 
areas and tags, however, are not guaranteed to be correct 
since a user can enter anything they wish for their own 
images). To exhibit the power of the data collected by 
Peekaboom, we show how to use it calculate such 
rectangles. We emphasize, however, that the data collected 
by Peekaboom is significantly richer and that to calculate 
the rectangles, we discard vast amounts of the information 
collected by our game.   

Since Peekaboom annotates arbitrary images on the Web, 
its data allows for an image search engine in which the 
results are highlighted (similar to the highlighted words in 
Google’s text search results). Using the data obtained in the 
first two weeks of game-play, we have implemented a 
prototype of such a search engine (see Figure 7). The 
search engine can be accessed from the Peekaboom 
website: http://www.peekaboom.org.  

The bounding boxes were calculated as follows. For a 
single play of an image-word pair, we create a matrix of 0s 
and 1s. The dimensions of the matrix are the same as the 
dimensions of the image (in pixels). At first, every entry in 
the matrix is a 0. We add a 1 in every pixel clicked by 
Boom, as well as in the circle of radius 20 pixels around the 
click. We thus obtain a matrix of 0s and 1s corresponding 
to the exact area that was revealed in a single game-play. 
Next, we combine different plays of the same image-word 
pair by adding their corresponding matrices. This gives a 
matrix whose entries are integers corresponding to the 
number of different players that revealed each pixel of the 
image. On this combined matrix, we apply a threshold of 2, 
meaning that we substitute every value less than 2 with 0 
and every value greater than 2 with 2. This gives a matrix 
corresponding to all the pixels that have been revealed by at 
least 2 players. Next, we cluster these pixels and calculate 



the bounding boxes by taking, for each cluster, the leftmost, 
rightmost, topmost and bottommost points. This algorithm 
may produce multiple bounding-boxes for a single image-
word pair. For instance, in Figure 7, we can see that many 
of the results for “eyes” have two-bounding boxes, one 
corresponding to each eye.  

As we will see, the results produced by this simplistic 
algorithm are extremely accurate. Such results could be 
improved by making intelligent use of the additional data 
given by Peekaboom (such as pings, the precise order of 
the areas revealed, etc.), but for the purposes of this paper, 
we use the simplistic algorithm.  

Alternative: Using Ping Data for Pointing 
Instead of showing bounding-boxes calculated from 
revealed areas, we could show arrows or lines pointing to 
the objects (see Figure 8). Such pointers can be easily 
calculated from the ping data. The simplest algorithm for 
doing so is to select a ping at random and assume it is a 
good pointer for the object. We will show that this 
simplistic algorithm gives very accurate results. (Figure 8 
shows an image in which the different objects have been 
located using ping data.) More elaborate algorithms could 
give even better results. We remark, however, that simply 
“averaging” the pings over multiple players to obtain a 
single pointer does not give accurate results. For instance, 
if the object was “eyes,” averaging the pings gives a pointer 
to a region that is not an eye.  

 
Figure 8. Calculation of object pointers using pings. 

 

EVALUATION: USER STATISTICS 
The evaluation of our claims consists of two parts. First, we 
must show that the game is indeed enjoyable. Second, we 
must show that the data produced by the game is accurate.  

It is difficult to evaluate how enjoyable a game really is. 
One approach is to ask participants a series of questions 
regarding how much they enjoyed playing the game. Our 
data for such an approach were extremely positive, but we 
follow a different approach in this paper: we present usage 
statistics from arbitrary people playing our game online 
(this same approach was used by the ESP Game [1]). 

Figure 7. Object bounding-boxes obtained from Peekaboom data.  



Usage Statistics 
Peekaboom was released to a general audience on August 1 
of 2005. We present the usage statistics from the period 
starting August 1, 2005 and ending September 1, 2005. A 
total of 14,153 different people played the game during this 
time, generating 1,122,998 pieces of data. By “different 
people” we mean different user IDs. By a “piece of data,” 
we mean a successful round of Peekaboom in which Peek 
correctly guessed the word given Boom’s revealed region. 
We mention that an image-word pair can have multiple 
pieces of data associated to it if it occurs in multiple games.  

If 14,153 people gave us 1,122,998 pieces of data, then on 
average each person played on 158.68 images. Since each 
session of the game lasts 4 minutes and on average players 
go through 8.7 images during a session, in this one month 
period each person played on average 72.96 minutes 
(without counting time spent waiting for a partner, etc.).      

Over 90% of the people played on more than one occasion 
(that is, more than 90% of the people played on different 
dates). Furthermore, every player in the top scores list 
played over 800 games (that’s over 53 hours without 
including the time they spent waiting for a partner!). This 
undoubtedly attests to how enjoyable the game is.  

User Comments 
To give a further sense for how much the players enjoyed 
the game, we include below some quotes taken from 
comments submitted by players using a link on the website: 

“The game itself is extremely addictive, as there is an 
element of pressure involved in beating the clock, a 
drive to score more points, the feeling that you could 
always do better next time, and a curiosity about 
what is going to come up next.  I would say that it 
gives the same gut feeling as combining gambling 
with charades while riding on a roller coaster.  The 
good points are that you increase and stimulate your 
intelligence, you don't lose all your money and you 
don't fall off the ride.  The bad point is that you look 
at your watch and eight hours have just disappeared!” 

“One unfortunate side effect of playing so much in 
such a short time was a mild case of carpal tunnel 
syndrome in my right hand and forearm, but that 
dissipated quickly.” 

“This game is like crack. I’ve been Peekaboom-free 
for 32 hours. Unlike other games, Peekaboom is 
cooperative (rather than competitive).” 

EVALUATION: ACCURACY OF COLLECTED DATA 
The usefulness of Peekaboom as a data-collection method 
rests in the quality of the data we collect. Although the 
design of the game inherently ensures correctness of the 
data, we wanted to test whether it is as good as what would 
be collected directly from volunteers in a non-game setting. 
To do so we conducted two experiments to test first the 
accuracy of the bounding boxes we defined, and second the 
utility of the pointing behavior in the game. 

Notice that these experiments are meant to analyze the 
correctness of the data, and not whether such data can be 
used to train computer vision algorithms. The usefulness of 
data about location of objects for training computer vision 
algorithms has been previously established [13].     

Experiment 1: Accuracy of Bounding Boxes 
In the first experiment, we tested whether the bounding 
boxes for objects within an image that are calculated from 
Peekaboom are as good as bounding boxes people would 
make around an object in a non-game setting. We selected 
at random 50 image-word pairs from the data pool that had 
been successfully played on by at least two independent 
pairs of people. The images selected all had nouns as their 
word (as opposed to text in the image, or an adjective, etc.; 
see Figure 3). All the images chosen had the word refer to a 
single object in the image. For each image, Peekaboom 
data was used to calculate object bounding boxes using the 
method explained in previous sections. 

We then had four volunteers make bounding boxes around 
the objects for each image, providing us with 200 bounding 
boxes drawn by volunteers. The volunteers were asked, for 
each image, to draw a bounding box around the object that 
the word referred to. We then selected at random one of the 
four volunteer’s bounding boxes for each image, so as to 
end up with one volunteer-generated bounding box for 
every one of the 50 images. 

Finally, we tested the amount of overlap between the 
bounding boxes generated by Peekaboom and those 
generated by our volunteers. The amount of overlap was 
determined using the formula: 

OVERLAP(A,B) = AREA(A∩B) / AREA(A∪B), 

where A and B are the bounding boxes. Notice that if A=B 
then OVERLAP(A,B)=1 and if A is disjoint from B then 
OVERLAP(A,B)=0. We calculated the average overlap 
across the 50 images, as well as the standard deviation.   

Results 
On average, the overlap between the Peekaboom bounding 
boxes and the volunteer-generated ones was 0.754, with 
standard deviation 0.109. This means that the Peekaboom 
bounding boxes were very close to those generated by the 
volunteers. To illustrate, we show in Figure 9 the bounding 
box that obtained the lowest overlap score (0.552).  

 
Figure 9. Experiment image with lowest overlap 

between a volunteer generated bounding-box (solid 
lines) and one generated by Peekaboom (dashed lines).  



Given that Peekaboom was not directly built to calculate 
bounding boxes, this shows the wide applicability of the 
data collected.   

Experiment 2: Accuracy of Pings 
In the second experiment, we tested whether the object 
pointers that are calculated from Peekaboom are indeed 
inside the objects. As in the previous experiment, we 
selected at random 50 image-label pairs from the data pool 
that have been successfully played on by at least two 
independent pairs of people. The images selected all had 
the word as a “noun” (as opposed to as text in the image, or 
an adjective, etc.; see Figure 3). All the images chosen had 
the word refer to a single object in the image. For each 
image, Peekaboom data was used to calculate object 
pointers using the method explained in previous sections. 

We then asked three volunteer raters to determine, for each 
pointer, whether it was inside the object or not. The raters 
were shown examples of pointers inside and outside the 
object and were told that “near an object” does not count as 
inside the object.   

Results 
According to all the raters, 100% of the pointers were 
inside the object referred to by the word. This gives 
positive evidence that ping data is accurate, especially since 
it was calculated using such a simplistic algorithm.    

GENERALIZING OUR APPROACH 
The approach presented in this paper, solving a problem by 
having people play games online, can be generalized to 
many other problems in Artificial Intelligence. In follow-up 
work, for example, we have created two other games, 
Verbosity [3] and Phetch [2], in which players solve 
problems that computers cannot yet solve. Verbosity 
collects common-sense facts to train reasoning algorithms. 
For instance, for the word “milk,” the game outputs facts 
such as “it is white,” “people usually eat cereal with it,” etc. 
Verbosity is a two-player game in which one player 
attempts to make the other say a target word (e.g., “milk”) 
without using the word. They do so by saying many facts 
without using the word itself in their statements (e.g. “it is a 
white liquid.”). The underlying game mechanism of 
Verbosity is similar in nature to that of Peekaboom.  

Much like designing an algorithm to solve a problem, 
designing a game to harness valuable human cycles is to a 
large extent an “art”: problems usually require a 
specifically tailored game.  In addition to an original idea, 
creating such a game also depends on a broader set of 
criteria including looks (the fluidity of the game graphics), 
ease of use (an intuitive user interface), cognitive load (the 
amount of user attention required to play the game), and 
action (the extent to which the game absorbs the user in the 
experience). All of these aspects have been treated in this 
paper and we believe many of the techniques here 
presented generalize to creating other games with a 
purpose. Finally, we believe that these design principles, 
like the scientific method, don’t just provide ideas, but a 

way of thinking: games provide a valuable vehicle to solve 
problems that computers cannot yet solve.       

ETHICAL CONSIDERATIONS 
As with all systems soliciting input from humans, we must 
address the ethical issues behind the usage of the collected 
data.  Towards this end, we inform the players of the 
game’s purpose on the Peekaboom website — players 
participate willingly and knowingly. Indeed, many people 
play because they like the fact that the game has a purpose.   

Furthermore, we state on the record that the game’s 
purpose is to obtain accurate segmentations of objects from 
backgrounds and to train computer vision algorithms to 
recognize simple objects. We have no intention of applying 
our data towards, for example, military surveillance. 

RELATED WORK 
We have presented a method for annotating arbitrary 
images and we have presented evidence that it produces 
high-quality data. We now survey the related work.  

The ESP Game 
As mentioned before, the ESP Game [1] is two-player 
game that collects word labels for arbitrary images. 
Peekaboom is similar to the ESP Game and in fact was 
inspired by it. We consider Peekaboom an extension of 
ESP. Whereas ESP gives data to determine which objects 
are in the image, Peekaboom can augment this data with 
information about where in the image objects are located.  

In terms of game mechanics, Peekaboom is different from 
the ESP Game in several ways. First, Peekaboom is 
asymmetric: whereas both players in the ESP Game are 
performing the same role, players of Peekaboom alternate 
in performing different roles. Second, Peekaboom allows a 
significantly higher level of interaction among the players. 
Whereas in the ESP Game, players cannot communicate at 
all, in Peekaboom one of the players can freely 
communicate with the other. Third, the usage of hint 
buttons has proven very successful in Peekaboom, and such 
buttons could as well be incorporated into ESP.  

Such differences in game mechanics reflect the difference 
in purpose of Peekaboom and ESP.     

The Open Mind Initiative 
Perhaps less so, Peekaboom is also similar (at least in 
spirit) to the Open Mind Initiative (e.g., [11,12]), a 
worldwide effort to develop “intelligent” software. Open 
Mind collects data from regular Internet users (referred to 
as “netizens”) and feeds it to machine learning algorithms. 
Volunteers participate by answering questions and teaching 
concepts to computer programs. Peekaboom is similar to 
Open Mind in that we use regular people on the Internet to 
annotate images. However, as with the ESP Game, we put 
much greater emphasis on our method being fun.  

We don’t expect volunteers to annotate millions of images 
on the Web: we expect images to be annotated because 
people want to play our game. Whereas a typical Open 
Mind activity would ask participants to point to the object 



in question, we transform the activity into a two-player 
game in which players are not even asked to point to the 
object; they do so only as a side effect of playing the game.  

LabelMe 
LabelMe [9] is a web-based tool for image annotation. 
Anybody can annotate data using this tool and thus 
contribute to constructing a large database of annotated 
objects. The incentive to annotate data is the data itself. 
You can only have access to the database once you have 
annotated a certain number of images. The main difference 
between Peekaboom and LabelMe is the game aspect. 
Whereas LabelMe simply asks users to annotate an image, 
Peekaboom transforms the process into an enjoyable game. 
LabelMe relies on people’s desire to help and thus assumes 
that the entered data is correct. On the other hand, 
Peekaboom has multiple mechanisms to prevent players 
from polluting the data.   

Interactive Machine Learning 
Another area of related work is that of interactively training 
machine learning algorithms (e.g., [6]). In these systems, a 
user is given immediate feedback about how well an 
algorithm is learning from the examples provided by them. 
As with LabelMe, Peekaboom differs from these systems in 
the gaming aspect as well as in the assumption that our 
users are interested in training an algorithm.  

CONCLUSIONS AND FUTURE WORK 
Peekaboom is a novel, complete game architecture for 
collecting image metadata.  Segmenting objects in images 
is a unique challenge, and we have tailored a game 
specifically to this end. In the very near future, we would 
like to make our 1,000,000+ pieces of data available to the 
world by formatting it as an image segmentation library. 

Like the ESP Game, Peekaboom encompasses much more 
than just a Java applet delivered from a website.  Rather, 
the ideas behind the design and implementation of the 
game generalize to a way of harnessing and directing the 
power of the most intricate computing device in the world 
— the human mind.   

Some day computers will be able to segment objects in 
images unassisted, but that day is not today.  Today we 
have engines like Peekaboom that use the wisdom of 
humans to help naïve computers get to that point.  The 
actual process of making computers smarter given 
segmentation metadata is beyond the scope of this paper, 
since it would require a far more sophisticated 
interpretation of the data than the simple bounding box 
derivation we have presented.  Thus, we see great potential 
in future work at the crossroads of human-computer 
interaction and artificial intelligence, where the output of 
our interactive system helps advance the state of the art in 
computer vision. 
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