

Data mining in large graphs

Christos Faloutsos

Carnegie Mellon University www.cs.cmu.edu/~christos

Outline

- Introduction motivation
- Patterns & Power laws
- Scalability & Fast algorithms
- Fractals, graphs and power laws
- Conclusions

Introduction

- How do real networks look like?
- Any 'laws'/patterns they obey?
- How to handle huge graphs?

Problem #1 - network and graph mining

- How does the Internet look like?
- How does the web look like?
- What constitutes a 'normal' social network?
- What is the 'market value' of a customer?
- In a food web, which gene/species affects the others the most?

Problem#1: Patterns

Given a graph:

- which node to market-to / defend / immunize first?
- Are there un-natural subgraphs? (criminals' rings or terrorist cells)?
- How do peer-to-peer (P2P) networks evolve?

Problem #2: Scalability

• How to handle huge graphs (>>10**5 nodes)

Solutions

- Problem#1 patterns: New tools: power laws, self-similarity and 'fractals' work, where traditional assumptions fail
- Problem#2 scalability: Approximations In detail:

Outline

• Introduction - motivation

- Patterns & Power laws
 - Scalability & Fast algorithms
 - Fractals, graphs and power laws
 - Conclusions

Problem #1 - topology

How does the Internet look like? Any rules?

A: self-similarity and power-laws!

Solution#1:

• A1: Power law in the degree distribution [SIGCOMM99]

internet domains

Solution#1': Eigen Exponent E

Eigenvalue

Exponent = slope

E = -0.48

May 2001

Rank of decreasing eigenvalue

• A2: power law in the eigenvalues of the adjacency matrix

Solution#1': Eigen Exponent E

Eigenvalue

Rank of decreasing eigenvalue

Explanation [Mihail & Papadimitriou, 2002]:

$$E = R/2 \tag{!!}$$

(because, in a forest of 'stars', $\lambda_i \sim sqrt(degree_i)$)

Solution#1": Hop Exponent H

• A3: neighborhood function N(h) = number of pairs within h hops or less - power law, too!

But:

- Q1: How about graphs from other domains?
- Q2: How about temporal evolution?

Q1: More power laws:

citation counts: (citeseer.nj.nec.com 6/2001)

Q1: More power laws:

• web hit counts [w/ A. Montgomery]

Q1: The Peer-to-Peer Topology

- Frequency versus degree
- Number of adjacent peers follows a power-law

Q1: More Power laws

Also hold for other web graphs [Barabasi+],
 [Broder+], with additional 'rules' (bi-partite cores follow power laws)

Q2: Time Evolution: rank R

Instances in time: Nov'97 - now

The rank exponent has not changed!

Outline

- Introduction motivation
- Patterns & Power laws
- Scalability & Fast algorithms
 - Fractals, graphs and power laws
 - Conclusions

Hop Exponent H

• A3: neighborhood function N(h) = number of pairs within h hops or less - power law, too!

More on the hop exponent

- 'Intrinsic'/fractal dimensionality of the nodes of the graph
- But: naively it needs O(N**2) (terrible for large graphs)
- What to do?

Solution:

 Approximation: 'ANF' (approx. neighborhood function [KDD02, w/ C. Palmer and P. Gibbons] - response time: from day to minutes

Scalability of ANF!

Running time (mins)

(Approx.) neighborhood function N(h)

• Useful for estimating the diameter of a graph;

- the ``effective radius'' of a node (distance to 90%-tile of the other nodes)
 - the connectivity under failures
 - quick checks for (dis-)similarity between two graphs

Effective Radius

• Effective Radius(x): radius that covers 90% of total nodes, starting from node 'x'

We can learn a lot by looking at the different parts of this histogram

Small radii - explanation?

Identify Outliers / Data Errors

Actual Subgraph of these nodes

Nodes of radius 7-9?

Identify "Important" Nodes

- Topologically important nodes: very well connected.
- Conjecture: These are "core" routers in the Internet..

"Poor" Nodes?

"Poor" Nodes?

Who and what are these nodes? Data collection error's Poorly connected countries? Other?

ALLADIN 2003

(Approx.) neighborhood function

- Useful for estimating the diameter of a graph;
- the ``effective radius'' of a node (distance to 90%-tile of the other nodes)
- the connectivity under failures
 - quick checks for (dis-)similarity between two graphs

Link Failures

Experiment: Pick an edge at random, delete it and measure network disruption

#pairs

#deleted edges

Internet very resilient to link failures

Effect of node deletions

- Robust to random failures, focussed failures are a problem
- What is best way to break connectivity:
 - delete highest degree first? or
 - delete highest hop-exponent (~smalles radius) first?

Effect of node deletions

- Robust to random failures, focussed failures are a problem
- ALL these runs would take >100x times longer without ANF!

#pairs

Outline

- Introduction motivation
- Patterns & Power laws
- Scalability & Fast algorithms
- Fractals, graphs and power laws
 - Conclusions

Why power laws appear at all?

Q: Why do they appear so often? (Pareto, Lotka, Gutenberg-Richter, Sirbu, ...)

Why power laws?

Q: Why do they appear so often? (Pareto, Lotka, Gutenberg-Richter, Sirbu, ...)

A: One possible explanation: self-similarity / recursion / fractals – in detail:

What is a fractal?

= **self-similar** point set, e.g., Sierpinski triangle:

Q: What is its dimensionality??

A: $\log 3 / \log 2 = 1.58$ (!?!)

Intrinsic ('fractal') dimension

- Q: fractal dimension of a line?
- A: nn (<= r) ~ r^1 ('power law': y=x^a)

- Q: fd of a plane?
- A: nn (<=r) ~ r^2

fd== slope of (log(nn) vs.. log(r))

Sierpinsky triangle

Solution#1": Hop Exponent H

• A3: neighborhood function N(h) = number of pairs within h hops or less - power law, too!

Observations: Fractals <-> power laws

Closely related:

- fractals <=>
- self-similarity <=>
- scale-free <=>
- power laws ($y = x^a$)
- (vs $y=e^{-ax}$ or $y=x^a+b$)

Fractals in nature

- Q: How often do they appear in practice?
- A: extremely often!
 - coastlines (~1.2)
 - mammalian brain surface (~2.6)
 - bark of trees (~2.1)

_ ...

[See Schroeder: "Fractals, Chaos & Power laws"]

Fractals – discussion

- Also related to fractals/self-similarity:
 - phase transitions / renormalization / Ising spins
 - cellular automata
 - self-organized criticality (SOC) [Bak]
 - long-range dependency / heavy tailed distr. in network traffic [Leland+]

To iterate is human; to recurse is divine

Conclusions

- Many real graphs/networks follow 'power laws' (~ fractals ~ self-similarity)
 - and continue that over time
- We need fast, scalable algorithms for large graphs, like 'ANF'
- Cross-disciplinarity: pays off (DB + Theory
 + Networks + Physics + ...)

Thank you!

Contact info: christos@cs.cmu.edu www.cs.cmu.edu/~christos

- Code for fractal dimension: on the web
- Network data:
 - CAIDA caida.org;
 - NLANR nlanr.net