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| ntr oduction

 How do real networks look like?
 Any ‘laws’/patterns they obey?
 How to handle huge graphs?
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Problem #1 - network and
graph mining
e How doesthe Internet look like?

e How doestheweb look like?

 What constitutes a‘normal’ social
network?

e What isthe ‘market value' of a
customer?

* |nafood web, which gene/species
affects the others the most?
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Problem#1: Patterns

Given agraph:

L

ALLADIN 2003

e WhicC
defeno

N node to market-to /
/[ Iimmunize first?

e Aret

nere un-natural sub-

graphs? (criminals’ rings or
terrorist cells)?

e HOwW

do peer-to-peer (P2P)

networks evolve?
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Problem #2: Scalability

 How to handle huge graphs (>>10**5 nodes)
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Solutions

* Problem#l - patterns. New tools. power
laws, self-ssmilarity and ‘fractals work,
where traditional assumptions fail

e Problem#2 - scalability: Approximations
In detall:
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Problem #1 - topology

How does the Internet look I1ke? Any rules?

A: sdf-smilarity and
power-laws!
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Solution#1.:

o Al: Power law in the degree distribution
[SIGCOMM99]

Inter net domains
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Solution#1’': Eigen Exponent E

Eigenvalue
100

' 'P3.0regon” +
expl4.3031) *x*™-0.47734) ——

Exponent = slope
E=-0.48

10 b

May 2001

1 10 100

Rank of decreasing eigenvalue

o A2 power law in the eigenvalues of the adjacency
matrix
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Solution#1’': Eigen Exponent E

Eigenvalue

I ——

T
—
B Y

~_

Rank of decreasing eigenvalue

Explanation [Mihail & Papadimitriou, 2002]
E=R/2 (')
(because, in aforest of ‘stars', A, ~ sqrt(degree) )
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Solution#1'': Hop Exponent H

* A3: neighborhood function N(h) = number of pairs
within h hops or less - power law, too!

_ _ Hopexp. =1
log(#pairs) Internet Py ~

e [ T T " ke 4 -/ A O

. A ! Hop exp. = 2

2.8 ‘hop’ expohent
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ALLADIN 2003 C. Faloutsos 13



School of Computer Science
Carnegie Melon

But:

e Q1: How about graphs from other domains?
e Q2: How about temporal evolution?
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Q1. Morepower laws:

citation counts:. (citeseer.nj.nec.com 6/2001)
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Q1. Morepower laws:
e web hit counts [w/ A. Montgomery]

- Web Site Traffic
log(count)

Coum of Websioe
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Q1: The Peer-to-Peer Topology

T plrlim Ly
a4 HBE

] [Jovanovic+]
'

{a) Gnutella snapshot from Dec, 28, 2000 (|r{=0.94)

e Frequency versus degree

* Number of adjacent peersfollows a power-law
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Q1: More Power laws

* Also hold for other web graphs [Barabasi+],
[Broder+], with additional ‘rules (bi-partite
cores follow power laws)
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Q2: Time Evolution: rank R

-0.5

0 200 400 600 800 )
0.6 - Domain

level
-0.7

-0.8 -

Rank exponent

-0.9 -

Instances in time: Nov'97 - now

 The rank exponent has not changed!
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Outline

 |ntroduction - motivation
o Patterns & Power laws

). Scalability & Fast algorithms
 Fractals, graphs and power laws
e Conclusions
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Hop Exponent H

* A3: neighborhood function N(h) = number of pairs
within h hops or less - power law, too!

O

. . Hopexp. =1
log(#pairs) Internet Py ~
[ T AT T ~ ~

o ‘hon! | Hop exp. = 2

28 ‘hop’ exponent

*9¢
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More on the hop exponent

‘Intrinsic’ /fractal dimensionality of the
nodes of the graph

But: naively it needs O(N**2) (terrible for
large graphs)
What to do?

ALLADIN 2003 C. Faloutsos
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Solution:

o Approximation: ‘ANF (approx.
nelghborhood function [KDDO02, w/ C.

Palmer and P. Gibbons| - response time:
from day to minutes

ALLADIN 2003 C. Faloutsos
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Scalability of ANF!

Running time (mins)
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(Approx.) neighbor hood
function N(h)

» Useful for estimating the diameter of a | /-

graph; h
m). the “effectiveradius’ of anode (distance
to 90%-tile of the other nodes)

* the connectivity under failures
o quick checksfor (dis-)ssmilarity between
two graphs
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Effective Radius

o Effective Radius( x ): radius that covers 90% of
total nodes, starting from node ‘X’

100000 —— ——
10000 - — __

# of nodes : | _
with this 1000 | - :
radius | _ — |
100 ¢ — .
[log scale] [ '

+ ﬂ—‘ hj‘ We can learn alot

iRl IERERERERERERER] by looking at the

12 79 11 13 15 17 19 21 different parts of

Effective ‘radius this histogram
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Small radii - explanation?

100000 —— ———
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Nodes of radius 7-9?
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Identlfy Im
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* Topologically important nodes: very well connected.
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o Conjecture: These are “core” routersin the Internet..
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“Poor” Nodes ?
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“Poor” Nodes’7

100000 —— ———— |
| L | Internet | w
10000 ¢ - B '
1000 | ] 9101010 @ O ': 0
o _ B __ _ .....'u.,.._.""""""_____,.---.“..‘“w B ° n
10 _-|_|_‘ ﬁ: {?J o o [ }’?\]

12 'r‘ ‘El 1I1 1I3 1l5 1l'.* 1§\Ey
Who and what are these nodes? Data collection error?
Poorly connected countries? Other?
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(Approx.) neighbor hood
function

o Useful for estimating the diameter of a
graph;

o the effectiveradius’ of anode (distance
to 90%-tile of the other nodes)

B « the connectivity under failures
o quick checksfor (dis-)ssmilarity between
two graphs
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Link Failures

Experiment: Pick an edge at random, delete it
and measure network disruption.

L Be+10
3

#pa| IS z Te+10 -_:

2 fe+10 -E

>25K deletions for
big change

#deleted edges

Miinfty)

S0k 100K 150K 200K 250K 300K 350K 400K
# of edges deleted {(out of 430K edges)

Internet very resilient to link failures
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Effect of node deletions

Robust to random failures, focussed failures are a
problem
What Is best way to break connectivity:

— delete highest degree first? or
— delete highest hop-exponent (~smalles radius) first?
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Effect of node deletions

 Robust to random failures, focussed failures are a

problem

o ALL theserunswould take >100x times longer

without ANF

L Je+10

#Hpairs S Be+10 §

Ill

T Ge+10
0
L Se+10

B de+10 |
Je+10 |
Ze+10 |
le+10 |

0

Niinfty) -- #
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_-a Te+10 -
=5

(Unifaorm) random selection
Decreasing hop exponent
Decreasing node degree

Disconnection S
relatively slow for
random failures.

Faster for hop
exponent and

degr ee. 1
#deleted nodes

10K 20K 30K 40K S0K 60k 70K 80K 90K
# of nodes deleted (out of 285K nodes)
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Outline

 |ntroduction - motivation
o Patterns & Power laws
o Scalability & Fast algorithms
m). Fractals, graphsand power laws
e Conclusions
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Why power laws appear at all?

Q: Why do they appear so often? (Pareto,
L otka, Gutenberg-Richter, Sirbu, ...)
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Why power |laws?

Q: Why do they appear so often? (Pareto,
L otka, Gutenberg-Richter, Sirbu, ...)

A: One possible explanation: self-ssmilarity /
recursion / fractals—in detail:

ALLADIN 2003 C. Faloutsos
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What 1sa fractal?

= salf-similar point set, e.qg., Sierpinski triangle:

B B

ZEro areaq,

infinite length!

(a)
Q: What isitsdimensionality??
A:log3/log2=1.58 (I1?)

ALLADIN 2003 C. Faloutsos 40



School of Computer Science
Carnegie Melon

Intrinsic (‘fractal’) dimension

e Q: fractal dimension e Q:fdof aplane?

of aline? e Ainn(<=r)~1"2
e Ainn(<=r)~rl fd== slope of (log(nn) vs..
(‘ power law’;: y=x"a) log(r) )
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Sierpinsky triangle

N =="‘correlation integral’
log(#pairs

within <=r ) = CDF of pairwise distances

1.58

log(r)
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Solution#1'': Hop Exponent H

* A3: neighborhood function N(h) = number of pairs
within h hops or less - power law, too!

_ _ Hopexp. =1
log(#pairs) Internet Py ~

e [ T T " ke 4 -/ A O

. A ! Hop exp. = 2

2.8 ‘hop’ expohent

S
7T T 71
| Iog(hops)m O—O O—0O
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Observations: Fractals <->
power laws

Closdly related:
e fractals<=>

o salf-amilarity <=>

e scale-free<=>

e power laws (y= x2)
o (VSy=eor y=x2+D)

ALLADIN 2003

C. Faloutsos
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Fractalsin nature

e Q: How often do they appear in practice?

o A: extremely often!
— coastlines (~1.2)
— mammalian brain surface (~2.6)
— bark of trees (~2.1)

[ See Schroeder: “ Fractals, Chaos & Power
laws’]

ALLADIN 2003 C. Faloutsos
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Fractals — discussion

o Alsorelated to fractals/self-similarity:
— phase transitions / renormalization / |sing spins
— cellular automata
— self-organized criticality (SOC) [BakK]

— long-range dependency / heavy tailed distr. in
network traffic [Leland+]

To Iterate 1s human; to recurseisdivine

ALLADIN 2003 C. Faloutsos 46



School of Computer Science
Carnegie Melon

Conclusions

 Many real graphs/networks follow ‘power
laws' (~ fractals ~ self-smilarity)
— and continue that over time

We need fast, scalable algorithms for large
graphs, like ‘ANF’

Cross-disciplinarity: pays off (DB + Theory
+ Networks + Physics + ... )

ALLADIN 2003 C. Faloutsos a7
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Thank you!

Contact info:
christos@cs.cmu.edu
WWwWw.cs.cmu.edu/~christos

e Codefor fractal dimension: on the web

 Network data:
— CAIDA caida.org ;
— NLANR nlanr.net

ALLADIN 2003 C. Faloutsos
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