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Introduction

• How do real networks look like?
• Any ‘laws’/patterns they obey?
• How to handle huge graphs?
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Problem #1 - network and 
graph mining
• How does the Internet look like?
• How does the web look like?
• What constitutes a ‘normal’ social 

network?
• What is the ‘market value’ of a 

customer? 
• In a food web, which gene/species 

affects the others the most?
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Problem#1: Patterns
Given a graph:

• which node to market-to / 
defend / immunize first?

• Are there un-natural sub-
graphs? (criminals’ rings  or 
terrorist cells)?

• How do peer-to-peer (P2P) 
networks evolve?
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Problem #2: Scalability

• How to handle huge graphs (>>10**5 nodes)
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Solutions

• Problem#1  - patterns: New tools: power 
laws, self-similarity and ‘fractals’ work, 
where traditional assumptions fail

• Problem#2 - scalability: Approximations
In detail:
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Problem #1 - topology

How does the Internet look like? Any rules?

A: self-similarity and 
power-laws!
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Solution#1:
• A1: Power law in the degree distribution 

[SIGCOMM99]
internet domains

log(rank)

log(degree)

-0.82

att.com

ibm.com
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Solution#1’: Eigen Exponent E
Eigenvalue

Exponent = slope

E = -0.48

May 2001

Rank of decreasing eigenvalue

• A2: power law in the eigenvalues of the adjacency 
matrix 
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Solution#1’: Eigen Exponent E
Eigenvalue

Rank of decreasing eigenvalue

Explanation [Mihail & Papadimitriou, 2002]:
E = R/2 (!!)  

(because, in a forest of ‘stars’, λi ~ sqrt(degreei) )
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Solution#1’’: Hop Exponent H
• A3: neighborhood function N(h) = number of pairs 

within h hops or less - power law, too!
Hop exp. = 1

internetlog(#pairs)

log(hops)

2.8 ‘hop’ exponent Hop exp. = 2
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But:

• Q1: How about graphs from other domains?
• Q2: How about temporal evolution?
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Q1: More power laws:

citation counts: (citeseer.nj.nec.com 6/2001)
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Q1: More power laws:

• web hit counts [w/ A. Montgomery]

Web Site Traffic

log(freq)

log(count)

Zipf
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Q1: The Peer-to-Peer Topology

[Jovanovic+]

• Frequency versus degree 
• Number of adjacent peers follows a power-law
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Q1: More Power laws

• Also hold for other web graphs [Barabasi+], 
[Broder+], with additional ‘rules’ (bi-partite 
cores follow power laws)
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Q2: Time Evolution: rank R
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• The rank exponent has not changed!

Domain
level
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Hop Exponent H
• A3: neighborhood function N(h) = number of pairs 

within h hops or less - power law, too!
Hop exp. = 1

internetlog(#pairs)

log(hops)

2.8 ‘hop’ exponent Hop exp. = 2
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More on the hop exponent

• ‘Intrinsic’/fractal dimensionality of the 
nodes of the graph

• But: naively it needs O(N**2) (terrible for 
large graphs)

• What to do?
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Solution:

• Approximation: ‘ANF’ (approx. 
neighborhood function [KDD02, w/ C. 
Palmer  and P. Gibbons] - response time: 
from day to minutes
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Scalability of ANF!

ANF-C

ANF

Sampling (0.15%)

RI

ANF-0

Millions of edges

Running time (mins)
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(Approx.) neighborhood 
function

• Useful for estimating the diameter of a 
graph;

• the ``effective radius’’ of a node (distance 
to 90%-tile of the other nodes)

• the connectivity under failures
• quick checks for (dis-)similarity between 

two graphs

h

N(h)
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Effective Radius
• Effective Radius( x ): radius that covers 90% of 

total nodes, starting from node ‘x’

# of nodes 
with this 

radius

[log scale]

Effective ‘radius’

We can learn a lot 
by looking at the 
different parts of 

this histogram
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Small radii - explanation?
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Identify Outliers / Data Errors
Actual Subgraph 

of these nodes

Eff. Ecc. 
of 1 or 2
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Nodes of radius 7-9?
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Identify “Important” Nodes

• Topologically important nodes: very well connected.
• Conjecture: These are “core” routers in the Internet..
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“Poor” Nodes ?



ALLADIN 2003 C. Faloutsos 32

School of Computer Science
Carnegie Mellon

“Poor” Nodes ?

Who and what are these nodes?  Data collection error?  
Poorly connected countries?  Other?

Internet
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(Approx.) neighborhood 
function

• Useful for estimating the diameter of a 
graph;

• the ``effective radius’’ of a node (distance 
to 90%-tile of the other nodes)

• the connectivity under failures
• quick checks for (dis-)similarity between 

two graphs
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Link Failures

>25K deletions for 
big change

Internet very resilient to link failures

Experiment: Pick an edge at random, delete it 
and measure network disruption.

#deleted edges

#pairs
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Effect of node deletions
• Robust to random failures, focussed failures are a 

problem
• What is best way to break connectivity:

– delete highest degree first? or
– delete highest hop-exponent (~smalles radius) first?
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Effect of node deletions
• Robust to random failures, focussed failures are a 

problem
• ALL these runs would take >100x times longer 

without ANF!

Disconnection is 
relatively slow for 
random failures.

Faster for hop 
exponent and 

degree.
#deleted nodes

#pairs
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Why power laws appear at all?

Q: Why do they appear so often? (Pareto, 
Lotka, Gutenberg-Richter, Sirbu, ...)
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Why power laws?

Q: Why do they appear so often? (Pareto, 
Lotka, Gutenberg-Richter, Sirbu, ...)

A: One possible explanation: self-similarity / 
recursion / fractals – in detail:
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What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:
B

CA A C

B

A C

B

C’

’

A’

B’

C’

B’

A’

(a)

...
zero area;

infinite length!

Q: What is its dimensionality??
A: log3 / log2 = 1.58 (!?!)



ALLADIN 2003 C. Faloutsos 41

School of Computer Science
Carnegie Mellon

Intrinsic (‘fractal’) dimension

• Q: fractal dimension 
of a line?

• A: nn ( <= r ) ~ r^1
(‘power law’: y=x^a)

• Q: fd of a plane?
• A: nn ( <= r ) ~ r^2
fd== slope of (log(nn) vs.. 

log(r) )
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Sierpinsky triangle

log( r )

log(#pairs 
within <=r )

1.58

== ‘correlation integral’

= CDF of pairwise distances
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Solution#1’’: Hop Exponent H
• A3: neighborhood function N(h) = number of pairs 

within h hops or less - power law, too!
Hop exp. = 1

internetlog(#pairs)

log(hops)

2.8 ‘hop’ exponent Hop exp. = 2
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Observations: Fractals <-> 
power laws

Closely related:
• fractals <=>
• self-similarity <=>
• scale-free <=>
• power laws ( y= xa )
• (vs y=e-ax or y=xa+b)

log( r )

log(#pairs 
within <=r )

1.58
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Fractals in nature

• Q: How often do they appear in practice?
• A: extremely often!

– coastlines (~1.2)
– mammalian brain surface (~2.6)
– bark of trees (~2.1)
– ... 

[See Schroeder: “Fractals, Chaos & Power 
laws”]
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Fractals – discussion

• Also related to fractals/self-similarity:
– phase transitions / renormalization / Ising spins
– cellular automata
– self-organized criticality (SOC) [Bak]
– long-range dependency  / heavy tailed distr. in 

network traffic [Leland+]

To iterate is human; to recurse is divine
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Conclusions

• Many real graphs/networks follow ‘power 
laws’ (~ fractals ~ self-similarity)
– and continue that over time

• We need fast, scalable algorithms for large 
graphs, like ‘ANF’

• Cross-disciplinarity: pays off (DB + Theory 
+  Networks + Physics + … )
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Thank you!

Contact info:
christos@cs.cmu.edu
www.cs.cmu.edu/~christos

• Code for fractal dimension: on the web
• Network data: 

– CAIDA caida.org ; 
– NLANR nlanr.net


	Data mining in large graphs
	Outline
	Introduction
	Problem #1 - network and graph mining
	Problem#1: Patterns
	Problem #2: Scalability
	Solutions
	Outline
	Problem #1 - topology
	Solution#1:
	Solution#1’: Eigen Exponent E
	Solution#1’: Eigen Exponent E
	Solution#1’’: Hop Exponent H
	But:
	Q1: More power laws:
	Q1: More power laws:
	Q1: The Peer-to-Peer Topology
	Q1: More Power laws
	Q2: Time Evolution: rank R
	Outline
	Hop Exponent H
	More on the hop exponent
	Solution:
	Scalability of ANF!
	(Approx.) neighborhood function
	Effective Radius
	Small radii - explanation?
	Identify Outliers / Data Errors
	Nodes of radius 7-9?
	Identify “Important” Nodes
	“Poor” Nodes ?
	“Poor” Nodes ?
	(Approx.) neighborhood function
	Link Failures
	Effect of node deletions
	Effect of node deletions
	Outline
	Why power laws appear at all?
	Why power laws?
	What is a fractal?
	Intrinsic (‘fractal’) dimension
	Sierpinsky triangle
	Solution#1’’: Hop Exponent H
	Observations: Fractals <-> power laws
	Fractals in nature
	Fractals – discussion
	Conclusions
	Thank you!

