Spectral Methods, Graph Partitioning, and Clustering

Shang-Hua Teng Boston University/Akamai

Joint work with Daniel Spielman (MIT)

Eigenvector tries for good ratio cut

Planar graph eigenvalue bound

$$\lambda < \frac{8 \Delta}{n}$$

 $\Delta = \max \text{ degree}$

$$\lambda \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \left(\begin{array}{c} \bot \\ X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{array} \right)$$

$$\lambda \begin{pmatrix} x_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

$$\lambda \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{pmatrix}$$

Graph Partitioning

Bisection

Motivation

- Classical idea (Donath-Hoffman; 1972)
- Works well experimentally
- WHY? And ALWAYS?
- Graphs that arise in practice:
 - planar graphs
 - meshes, N-body graphs,
 - nearest neighbor graphs
- Other Applications: Data Clustering

Future Research and Open Questions

- Constant-factor approximation of bisection
- Eigenvectors and multicommodity flow
- Spectral methods for combinatorial problems: coloring, clustering, ordering, independent sets
- Graph embedding and geometry of graphs

Small Separator Theorems

Trees	(1, 1:2)	Jordan
Planar Graphs	$(\sqrt{n}, 1:2)$	Lipton-Tarjan
Bounded-Genus Graphs	$(\sqrt{gn}, 1:2)$	Gilbert-Hutchinson-Tarjan
Bounded-Minor Graphs	$(h^{3/2}\sqrt{n}, 1:2)$	Alon-Seymour-Thomas
Nearest Neighbor Graphs	(n ^{1-1/d} , 1:d+1)	Miller-Teng-Thurston-Vavasis
Finite-Element Meshes	(n ^{1-1/d} , 1:d+1)	Miller-Teng-Thurston-Vavasis
N-body Graphs (n ¹	-1/d lg n , 1:d+1)	Teng

Spectral Separator Theorems

- Planar Graphs (Bounded Degree)
- **■** Well-Shaped Meshes
- N-Body Graphs
- Nearest Neighbor Graphs

Well Shaped Mesh

R:r is bounded

Convergence of Kleinberg Algorithms

Eigenvalues and Eigenvectors

$$-Ax = \lambda x$$

- Related with Spectral method for graph partitioning (Spielman-Teng)
 - Principle eigenvector projects good localities.
 - Eigenvector can be used for partitioning and clustering

Kleinberg's Algorithm

- Hubs: pages with links to many quality authorities
- Authorities: pages with links from many quality hubs
- Hubs (imagine a good text book and survey paper) and authorities (imagine Karp's first paper on NP complete problem).
 - $A(q) \sim \Sigma_{p \text{ in } IN(q)} H(p)$
 - $H(q) \sim \Sigma_{p \text{ in OUT}(q)} A(p)$

Ranking Relevant Web-pages

- Use Link structures (Web-Graph)
 - Pages with high in-degree are important
 - Pages has links from important pages are important
- Model Web-graph as Markov Chains
 - Model random surfers.
 - Roughly, let R(q) be the rank of a page q and let IN(q) be the set of page that refer q, then

$$R(q) \sim \Sigma_{p \text{ in IN}(q)} R(p) / N_p$$

 The rank is related with the singular vector of the web-matrix.

Search Engines

alta vista:

CLEVER Searching

QBIC

Challenging Problems

Searching Relevant Information

Fast Delivery of Contents

Secure Communication and Transaction

Very Very Large Scale

User Pattern Detection, and Profile Generation

Clustering and Hierarchy

Clustering and Hierarchy

Embedding Lemma:

- Donath-Hoffman
- Fiedler
- Cheeger, Alon, Sinclair-Jerrum
- Pothen-Simon-Liou
- Guattery-Miller

λ

cut size

2D mesh

O(1/n)

 $O(n^{1/2})$

3D mesh

 $O(1/n^{2/3})$

 $O(n^{2/3})$

Well-Shaped Meshes and Sphere-Packings

Miller-Teng-Thurston-Vavasis

Well-Shaped Meshes ==

Sphere-Packings

Miller-Talmor-Teng

Planar graph eigenvalue bound

$$\sum_{(i,j) \text{ in E}} \text{dist}(v_i, v_j)^2 < 2 \Delta \sum_i r_i^2 < 8 \Delta$$

$$\lambda < \frac{8\Delta}{n}$$

$$\Delta = \max \text{ degree}$$

 $\Sigma \pi r_i^2 < 4\pi$

 $dist(v_i, v_j)^2 < 2 r_i^2 + 2 r_j^2$

Center of gravity at sphere center

Center of gravity at sphere center

proof: Brouwer's fixed point theorem.

Use Brouwer's Fixed Point Theorem

Clustering

sphere-preserving map

Koebe-Andreev-Thurston Embedding Theorem:

kissing disks for planar graphs

Proof Outline

1. relate λ to quality of embedding

2. prove graphs have good embeddings

Rayleigh Quotient

$$\lambda_x = \frac{x^T L x}{x^T x}$$

cut ratio
$$< (2 \Delta \lambda_x)^{1/2}$$

[Cheeger, Alon, Sinclair-Jerrum]
[Mihail]

Results:

graph	λ	ratio	cut size
planar	O(1/n)	O(1/n ^{1/2})	O(n ^{1/2})
2D mesh	O(1/n)	O(1/n ^{1/2})	O(n ^{1/2})
3D mesh	$O(1/n^{2/3})$	$O(1/n^{1/3})$	$O(n^{2/3})$

Spectral Partitioning

Spectral Methods Always Work

Myth

Bisection may fail: eigenvector tries for good ratio cut

λ small cut of small ratio

[Cheeger, Alon, Sinclair-Jerrum]

Spectral Embedding

X: Second Eigenvector

Y: Third Eigenvector

Smaller Eigenvalue, better locality

Rayleigh Quotient

$$\lambda_{\mathbf{X}} = \frac{\mathbf{X}^{T} L \mathbf{X}}{\mathbf{X}^{T} \mathbf{X}} = \frac{\sum_{(i,j) \text{ in } E} (x_{i} - x_{j})^{2}}{\sum_{i} x_{i}^{2}}$$

$$\lambda_2 = \min_{\mathbf{x} \perp \vec{\mathbf{1}}} \lambda_{\mathbf{x}}$$

Small eigenvalues imply locality

Properties of Laplacian (Assume G is connected)

Symmetric

$$\mathbb{I}$$
 λ_{2} , λ_{3} ,... $\lambda_{n} > 0$

$$\mathbf{X}^{T}L \mathbf{X} = \sum_{(i,j) \text{ in } E} (x_i - x_j)^2$$

Laplacian of a Graph

Eigenvalue and Eigenvector

$$A x = \lambda x$$

Partitioning Methods

Local Improvement

(Kernighan-Lin)

Multicommodity Flows

(Leighton-Rao)

Multilevel

(Bui-Jones: Chaco; MeTiS)

Geometric

(Miller-Teng-Thurston-Vavasis)

Spectral (Eigenvector-Based) (Donath-Hoffman)

From Sparsest Partition to Bisection

If every subgraph of G of size x has a partition of sparsity

$$O(1/x^{\alpha})$$

then G has a bisection of cut size

$$O(n^{1-\alpha}).$$

$$\phi(x) \to \int_1^n \phi(x) dx$$

$$O(1/x^{\alpha}) \to O(n^{1-\alpha})$$

From Sparse Cut to Bisection

Sparsity: Reduce Two Parameters to One

Surface-to-Volume Ratio Isoperimetric Number Cut-Ratio

Applications

VLSI Design

Parallel Processing

Scientific Computing

Information Organization

Efficient Search Structure

Partition and Bisection

Cut-Size Splitting-Ratio

Bisection

Separator

Graph Partitioning

Spectral Methods

Eigenvector and Eigenvector

Underlying Matrices

Classical Method (70's)

Many Variations and Software

Great Experimental Results

Lack of Mathematical Justification

$$\phi(x) \rightarrow \int_{x}^{x} \phi(x) dx$$

$$O(u_{-\alpha}) \rightarrow O(u_{-\alpha})$$

Eigenvector of a Graph

$$\lambda \begin{pmatrix} -.7 \\ -.3 \\ .3 \\ .7 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -.7 \\ -.3 \\ .3 \\ .7 \end{pmatrix}$$

Eigenvector with min non-zero λ

