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Eigenvector tries for good ratio cut
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Planar graph eigenvaluet bound
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Graph Partitioning

Bisection



1 Classical idea (Donath-Hoffman 197 2)
s Works well experimentally
| = WHY? And ALWAYS?

» Graphs that arise in practice:
= planar graphs :
'meshes, N-body graphs,
| nearest neighbor graphs

 Other Apphcatlnns. Data Cluﬁterlng
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Future Research and Open Questions

8 Constant-factor approximation of bisection

¥ Eigenvectors and multicommodity flow

8 Spectral methods for combinaterial problems:
coloring, clustering, ordering, independent sets

# Graph embedding and geometry of graphs



Small Separator Theorems

Trees (1, 1:2) Jordan
Planar Graphs (Vn, 1:2) Lipton-Tarjan
Bounded-Genus Graphs (/gn, 1:2) Gilbert-Hutchinson-Tarjan
Bounded-Minor Graphs | W/n,1:2) Alon-Seymour-Thomas

Nearest Neighbor Graphs (n' "% 1:d+1) Miller-Teng-Thurston-Vavasis
Finite—Element Meshes (0 1:d+1) Miller—Teng-Thurston—Vavasis
N-hody Graphs (n'"Y1g n, 1:d+1) Teng



Spectral Separator Theorems

8 Planar Graphs (Bounded Degree)
I Well-Shaped Meshes

I N-Body Graphs

8 Nearest Neighbor Graphs



Well Shaped Mesh

R:r 1s bounded




Convergence of Kleinberg Algorithms

» Eigenvalues and Eigenvectors

- AX =A X

* Related with Spectral method for graph
partitioning (Spielman-Teng)
Principle eigenvector projects good localities.

Eigenvector can be used for partitioning and
clustering




' Hubs: pages with links to man,
authorities

» Authorities: pages with links from many
quality hubs

» Hubs (imagine a good text book and survey
paper) and authonties (imagine Karp's first
paper on NP complete problem).

A(Q) ~ lb?";I“-' in N F1(P)
H(q} b E;Hr?{‘.l;_:' ﬁ"{{”




» Use Link structures (\Web-Graph)
- Pages with high in-dagree are important
Pages has links from important pages are importar
* Model Web-grapn 23 Markov Chains
- Model random surfars

- Roughly, let Biq) b the rank of a page g and let IN(45
be the set of page that refer g, then

R(9) ~ 25 i ing BR) /N,

» The rank is related with the singular vector of the
web-matrix.
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Challenging Problems

Searching Relevant Information
Fast Delivery of Contents
Secure Communication and Transaction

Very Very Large Scale

User Pattern Detection, and
Profile Generation




Clustering and Hierarchy
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Embedding Lemma:

l‘lll }‘1

X dist(v;, v;)°

A =min Lk

Vi emnelli » || v. |2
2v.=0



® Donath-Hoffman

® Fedler

® Cheeger, Alon, Sinclair-Jerrum

® Pothen-Simon-Liou

® Guattery-Miller



A cut size

2D mesh O(1/n) O(n'?)

3D mesh O1/n?3)  Om*?)






Well-Shaped Meshes and Sphere-Packings

Miller—Teng—Thurston—Vavasis

Well-Shaped Meshes _ -~ Sphere—Packings

Miller-Talmor-Teng
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Planar graph eigenvalue bound

T dist(v, v)* <2AZr7<8A

(1,)) n E

8 A
A < —
n

A = max degree



YTt <4m



diSt(Vi, VJ)Z <2 i‘iz + 2 f‘j2



Center of gravity
at
sphere center



Center of gravity at sphere center

proof: Brouwer’s fixed point theorem.



Use Brouwer’s Fixed Point Theorem



Clustering
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Koebe-Andreev-Thurston
Embedding Theorem:

kissing disks for planar graphs



Proof Outline

1. relate A to quality
of embedding

2. prove graphs have
good embeddings



Rayleigh Quotient
Lx

x! x

\ 4

cut ratio < (2 A4, )7

A =

X

[Cheeger, Alon, Sinclair-Jerrum |
| Mihail




Results:

graph A rafio cut size

planar O(1/n) O(1/n'2) O(n'?)
2D mesh O(1/n) O(1/n'?2) O(n'2)

3Dmesh  O(1/n??)  O@1/Mm”B)  OMm*)



Spectral Partitioning



Spectral Methods Always Work

Myth



Bisection may fail:
eigenvector tries for good ratio cut
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A small == cut of small ratio

|Cheeger, Alon, Sinclair-Jerrum |
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Spectral Embedding

X: Second Eigenvector
Y: Third Eigenvector

Smaller Eigenvalue, better locality



Rayleigh Quotient

2
Y, (%, e,
A XL X rf,mnﬁ( = %)
b, —= o —
X"X b xf
A = Mmin A
2 X |1 X

Small eigenvalues imply locality



Properties of Laplacian
(Assume G is connected)
1 Symmetric
i l, 1- 0
] ?Lza kS,'“ A‘I’l > ()

' 2
| XLX= X (x,-x,)
(i,j)in E '



Laplacian of a Graph

a

a8 b ¢ 4 b

a



Eigenvalue and Eigenvector

Ax=1x



Partitioning Methods

Local Improvement (Kernighan—-Lin)
Multicommodity Flows (Leighton—Rao)
Multilevel (Bui-Jones: Chaco; MeTiS)
seometric (Miller—Teng—Thurston—Vavasis)

Spectral (Kigenvector—Based) (Donath—Hoffman)




From Sparsest Partition to Bisection

If every subgraph of GG of size z has a
partition of sparsity

aO(1/2%)
then G has a bisection of cut size
Olnt %,



o(x) — f' d(z)de

O(1/z%) — O(nl™®)



From Sparse Cut to Bisection




Sparsity: Reduce Two Parameters to One

B

i

Cut-Size

Sparsity =

"Volume'" of the Smaller Side

Surface—to-~Volume Ratio Isoperimetric Number

Cut—-Ratio



Applications

VLSI Design

Parallel Processing
Scientific Computing
Information Organization

Efficient Search Structure



Partition and Bisection
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Graph Partitioning




Spectral Methods

Eigenvector and Eigenvector
Underlying Matrices

Classical Method (70’s)

Many Variations and Software

Great Experimental Results

Lack of Mathematical Justification



cut ratio bisection
Qb N - S @) dx
'

O(v®) = O(n"")
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Eigenvector of a Graph
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