Learning from Labeled and Unlabeled Data using Markov Random Fields

Zoubin Ghahramani† **and Xiaojin Zhu**∗

† **Gatsby Computational Neuroscience Unit University College London**

> ∗ **School of Computer Science Carnegie Mellon University**

Aladdin Workshop, CMU, Jan 2003

Problem Statement

Labeled Data: $(x_1, y_1) \dots (x_l, y_l)$, where $Y_L = (y_1 \dots y_l)$ and $y_i \in \{1 \dots C\}$. Unlabeled Data: $(x_{l+1}, y_{l+1}) \dots (x_{l+u}, y_{l+u})$, where $Y_U = (y_{l+1} \dots y_{l+u})$ are **unobserved**, usually $l \ll u$. Let $X = (x_1 \dots x_{l+u})$ and $x_i \in \mathcal{R}^{\widetilde{D}}$ (for simplicity).

Problem is to estimate Y_U from X and Y_L .

Simple Model: P

$$
P(Y|X) = \frac{1}{Z} \exp\left[\sum_{i=1}^{l+u} \sum_{j
$$

 A_{ij} is the **affinity** between data point i and j , e.g.: $A_{ij} = \exp \bigg(-\frac{1}{2}$

 d_i^2 ij $2\sigma^2$ \setminus

- compute $P(Y_U|X, Y_L, \sigma)$ or
- $\bullet \ \ y_i^{MAP} = \arg \max_{y_i} P(y_i|Y_L, X, \sigma)$, or
- $Y_U^{MAP} = \arg \max_{Y_U} P(Y_U | Y_L, X, \sigma)$ (multiway cut problem / metric labeling)

This is a Markov Random Field, Potts Model, Boltzmann Machine, or Undirected Graphical Model.

Learning Problem

ן

 \mathbf{I}

 d_i^2 ij \setminus

 $2\sigma^2$

Simple Model: $P(Y|X) = \frac{1}{Z}$ Z exp \lceil $\overline{}$ \sum $l+u$ $i=1$ \sum $j\leq i$ $\delta(y_i,y_j)A_{ij}$

 A_{ij} is the **affinity** between data point i and j , e.g.: $A_{ij} = \exp \bigg(-\frac{1}{2}$ Learning problem: how do we set σ ?

"Obvious" Solution: Maximum Likelihood or MAP:

$$
\sigma_{MAP} = \arg \max_{\sigma} P(\sigma | X, Y_L) = \arg \max_{\sigma} P(Y_L | X, \sigma) P(\sigma)
$$

$$
= \arg \max_{\sigma} \sum_{Y_U} P(Y_L, Y_U | X, \sigma) P(\sigma)
$$

$$
\frac{\partial}{\partial \sigma} \log P(\sigma | X, Y_L) = \frac{\partial}{\partial \sigma} \log P(Y_L | X, \sigma) + \frac{\partial}{\partial \sigma} \log P(\sigma)
$$

$$
\frac{\partial}{\partial \sigma} \log P(Y_L | X, \sigma) = \left\langle \frac{\partial}{\partial \sigma} \log P(Y | X, \sigma) \right\rangle_c - \left\langle \frac{\partial}{\partial \sigma} \log P(Y | X, \sigma) \right\rangle_u
$$

Difference between clamped and unclamped expectations.

Computing Expectations

Note $\langle f(Y) \rangle_c = \sum_{Y_U} f(Y) P(Y_U | Y_L, X, \sigma)$ and $\langle f(Y) \rangle_u = \sum_Y f(Y) P(Y | X, \sigma)$.

Many methods exist for computing or approximating these expectations.

- Enumeration
- Gibbs Sampling
- Gibbs & Metropolis Sampling
- Swendsen Wang Sampling
- Mean Field
- Structured Variational Approximations
- Loopy Belief Propagation (Bethe/Kikuchi)
- Convex Combinations of Trees

Extended Model

We define a richer model $p(O, Y | X, \Theta)$ where, Y are the true (hidden) labels; O are the noisy observed labels; Includes three terms: "separation", "assignment", and class priors:

$$
\frac{1}{Z} \exp \left(\sum_{i=1}^{l+u} \sum_{j
$$

 β_c defines class priors. $\gamma_{cc'}$ defines a cost matrix for mislabeling a class c' as $c.$

Affinity matrix is parameterized: $A_{ij} = \exp\left\{\alpha_0 - \sum_{i=1}^D \alpha_i^2 \right\}$ D $d=1$ $\left(x_i^d-x_j^d\right)$ $\binom{d}{j}$ ² $2\alpha_d^{\;2}$) $\alpha = {\alpha_0, \ldots, \alpha_D}$ are analogous to the length scales in a Gaussian process. The parameters of this MRF are $\Theta = {\alpha, \beta, \gamma}.$

Double Arcs Datasets

Note: Max likelihood Θ disconnects all points if only one point per class.

Cube with Irrelevant Dimensions

Only the first dimension x^1 is relevant to classification.

Noisy Labels

The Noisy Labels Dataset. x_1 and x_2 are intentionally mislabeled in (a). The trained MRF (b) corrects x_1 's, but not x_2 's, label.

Several Synthetic Datasets

Several synthetic datasets. Large symbols are labeled data, dots are unlabeled.

Log Likelihood for Synthetic Datasets

Log likelihood of labeled data (y-axis) vs. σ (x-axis) for the synthetic datasets. The vertical line marks the σ learned with gradient ascent after we add a prior.

Results for Synthetic Datasets

The labels of the synthetic datasets, under the learned σ with a prior.

Summary of MRF for labeled/unlabeled classification

Advantages:

- sound probabilistic framework
- interpretable hyperparameters

Disadvantages:

- The likelihood of the observed data is **not** a sensible objective function for classification with very few labeled points. We get unintuitive classifications.
- Exact and sampling methods are **slow**
- Sensitive to initial conditions; local minima.
- Inherently transductive: optimal Θ only optimal for some data set size.

More details in: Zhu, X. and Ghahramani, Z. (2002) Towards Semi-supervised Classification with Markov Random Fields. Technical Report CMU-CALD-02-106. Carnegie Mellon.

Part II: Bayesian Learning of Undirected Graphical Models

In an Undirected Graphical Model (or Markov Network), the joint probability over all variables can be written in a factored form:

$$
P(\mathbf{x}) = \frac{1}{Z} \prod_j g_j(\mathbf{x}_{C_j})
$$

where $\mathbf{x} = [x_1, \ldots, x_K]$, and

$$
C_j \subseteq \{1, \ldots, K\}
$$

are subsets of the set of all variables, and $\mathbf{x}_S \equiv [x_k : k \in S]$.

This type of probabilistic model can be represented graphically.

Graph Definition: Let each variable be a node. Connect nodes i and k if there exists a set C_j such that both $i \in C_j$ and $k \in C_j$. These sets form the *cliques* of the graph (fully connected subgraphs).

Undirected Graphical Models: An Example

$$
P(A, B, C, D, E) = \frac{1}{Z}g(A, C)g(B, C, D)g(C, D, E)
$$

Semantics: Every node is conditionally independent from its non-neighbors given its neighbors.

Conditional Independence: $X \perp\!\!\!\perp Y | V \Leftrightarrow p(X|Y, V) = p(X|V)$ for $p(Y, V) > 0$ also $X \perp\!\!\!\perp Y | V \Leftrightarrow p(X, Y | V) = p(X | V) p(Y | V)$.

Examples of Undirected Graphical Models

• Markov Random Fields

• Exponential Language Models

$$
p(s) = \frac{1}{Z}p_0(s) \exp\left\{\sum_i \lambda_i f_i(s)\right\}
$$

• Products of Experts

$$
p(\mathbf{x}) = \frac{1}{Z} \prod_j p_j(\mathbf{x} | \theta_j)
$$

 \star Boltzmann Machines

Boltzmann Machines

Undirected graph over a vector of binary variables $s_i \in$ $\{0,1\}$. Variables can be hidden or visible (observed).

$$
P(\mathbf{s}|W) = \frac{1}{Z} \exp\left\{\sum_{j
$$

where Z is the *partition function* (normalizer)

Maximum Likelihood Learning Algorithm: a gradient version of EM

- **E step** involves computing averages w.r.t. $P(s_H|s_V, W)$ ("clamped phase"). This could be done via a propagation algorithm or (more usually) an approximate method such as Gibbs sampling.
- **M step** requires gradients w.r.t. Z, which can be computed by averages w.r.t. $P(s|W)$ ("unclamped phase").

Hebbian and anti-Hebbian rule:

$$
\Delta W_{ij} = \eta [\langle s_i s_j \rangle_c - \langle s_i s_j \rangle_u]
$$

Why Bayesian Learning?

- Useful prior knowledge can be included (e.g. sparsity)
- Avoids overfitting
- Error bars
- Model selection

A Simple Idea

Define the following **joint distribution** of weights W and matrix of binary variables S , organized into N rows (data vectors) and M columns (features, variables). Some variables on some data points may be hidden and some may be observed.

$$
p(S, W) = \frac{1}{Z} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i,j=1}^{M} W_{ij}^2 + \sum_{n=1}^{N} \sum_{j
$$

Where $Z = \int dW \sum_S \exp\{\ldots\}$ is a nasty partition function.

Gibbs sampling in this model is very easy!

- Gibbs sample s_{ni} given all other s and W : Bernouilli, easy as usual.
- Gibbs sample W given s : diagonal multivariate Gaussian, easy as well. What is wrong with this approach?

...a Strange Prior on W

$$
p(S, W) = \frac{1}{Z} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i,j=1}^{M} W_{ij}^2 + \sum_{n=1}^{N} \sum_{j
$$

This defines a Boltzmann machine for the data given W , but defines a **somewhat strange** and hard to compute "prior" on the weights. What is the prior on W?

$$
p(W) = \sum_{S} p(S, W) \propto N(0, \sigma^2 I) \sum_{S} \exp \left\{ \sum_{n,j < i} W_{ij} s_{ni} s_{nj} \right\}
$$

where the second factor is data-size dependent, so it's not a valid hierarchical Bayesian model of the kind $W \rightarrow S$. The second factor can be written as:

$$
\sum_{S} \exp\left\{\sum_{n,j
$$

This will not work!

Estimating Z(W)

To define a valid prior we need to compute $Z(W) \equiv \sum_s \exp\left\{ \sum_{j < i} W_{ij} s_i s_j \right\}$.

$$
p(W, S) = p(W)P(S|W) = P(W) \left[\frac{1}{Z(W)^N} \exp \left\{ \sum_{n=1}^N \sum_{j < i}^M W_{ij} s_{ni} s_{nj} \right\} \right]
$$

- Mean-field $\sum q(s) \sum W_{ij} s_i s_j + H(q)$ s $j\leq i$ where $q(s)=\prod_i m_i^{s_i}$ $i^{s_i}(1-m_i)^{(1-s_i)}$ and H is entropy.
- Tree-based variational approximation. Use a spanning tree for $q(s)$.
- Bethe free energy. Approximate $Z(W)$ by running loopy propagation and computing Bethe free energy.
- Annealed Importance Sampling: $\frac{Z(W)}{Z(0)} = \frac{Z(\alpha_1 W)}{Z(0)}$ $Z(0)$ $Z(\alpha_2W)$ $Z(\alpha_1W)$ $\cdots \frac{Z(\alpha_t W)}{Z(\alpha_{t-1} W)}$ where $0 \leq \alpha_1 \ldots \leq \alpha_t = 1$.
- Contrastive Sampling: Brief Gibbs sampling starting at data to compute $Z(W)/Z(W')$

Mean Field vs Tree Variational Approximation

The tree based approximation found an MST and then used Wiegerinck's (UAI, 2000) variational approximation.

Metropolis with Importance Sampling Inner Loop

- Sample S given W .
- Sample W given S :
	- $-$ Propose W' given W from some symmetric proposal distribution
	- Compute acceptance probability $a(W'|W) = \min(1, \frac{p(W')}{p(W)}$ $p(W)$ $p(S|W')$ $\frac{p(S|W|)}{p(S|W)}$) where the second term is:

$$
\frac{p(S|W')}{p(S|W)} = \exp\left\{\sum_{n,j
$$

and the last term is estimated as below.

$$
\frac{Z(W)}{Z(W')} = \frac{\sum_{s} \exp\left\{\sum_{j
$$

Contrastive Sampling to Estimate Z(W)

We wish to compute:

$$
\frac{Z(W)}{Z(W')} = \frac{\sum_{s} \exp\left\{\sum_{j < i} W_{ij} s_i s_j\right\}}{\sum_{s} \exp\left\{\sum_{j < i} W'_{ij} s_i s_j\right\}}
$$

- Start from data set
- Create a "corrupted" data set, for example, by Gibbs sampling briefly starting from data using W (or W' , or many W s)
- Define $q(s)$ to be the empirical distribution of this corrupted data
- Then use:

$$
\frac{Z(W)}{Z(W')} \approx \frac{\sum_s q(s) \exp\left\{\sum_{j
$$

- * A pseudo-Bayesian posterior can be computed by fixing $q(s)$. This concentrates "posterior" mass on weights that are good at explaining the real data and bad at explaining the corrupted data.
- * We get a nice bias/variance trade-off and a huge computational savings!

Part II: Summary and Future Directions

- Tree-based approximations seem to work well, but exponentiating amplifies any errors.
- We are comparing these methods (and hopefully others) on small BMs where the exact solution can be computed.
- There is much future work in this area!

```
http://www.gatsby.ucl.ac.uk/∼zoubin
http://www.variational-bayes.org/
```
Appendix

Clique Potentials and Markov Networks

Definition: a *clique* is a fully connected subgraph (usually maximal). C_i will denote the set of variables in the i^{th} clique.

- 1. Identify cliques of graph G
- 2. For each clique C_i assign a non-negative function $g_i(C_i)$ which measures "compatibility".
- 3. $p(X_1,\ldots,X_n)=\frac{1}{Z}\prod_i g_i(C_i)$ where $Z=\sum_{X_1\cdots X_n}\prod_i g_i(C_i)$ is normalizer

The graph G embodies the conditional independencies in p (i.e. G is a Markov Field relative to p): If V lies in all paths between X and Y in G, then $X \perp\!\!\!\perp Y |V$.

Hammersley–Clifford Theorem (1971)

Theorem: A probability function p formed by a normalized product of positive functions on cliques of G is a Markov Field relative to G .

Definition: The graph G is a *Markov Field relative to p* if it does not imply any conditional independence relationships that are not true in p . (We are usually interested in the minimal such graph.)

Proof: We need to show that the neighbors of X, $ne(X)$ are a Markov Blanket for X :

$$
p(X, Y, \ldots) = \frac{1}{Z} \prod_i g_i(C_i) = \frac{1}{Z} \prod_{i:X \in C_i} g_i(C_i) \prod_{j:X \notin C_j} g_j(C_j)
$$

=
$$
\frac{1}{Z} f_1(X, ne(X)) f_2(ne(X), Y) = \frac{1}{Z'} p(X|ne(X)) p(Y|ne(X))
$$

This shows that: $p(X, Y | ne(X)) = p(X | ne(X)) p(Y | ne(X)) \Leftrightarrow X \perp \perp Y | ne(X)$.