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ARTICLE INFO ABSTRACT

Article history: This study examines whether asking students to critique incorrect solutions to decimal problems based
on common misconceptions can help them learn about decimals better than asking them to solve the
same problems and receive feedback. In a web-based tutoring system, 208 middle school students either
had to identify, explain, and correct errors made by a fictional student (erroneous examples group) or
solve isomorphic versions of the problems with feedback (problem-solving group). Although the two
groups did not differ significantly on an immediate posttest, students in the erroneous examples group
performed significantly better on a delayed posttest administered one week later (d =.62). Students in
the erroneous examples group also were more accurate at judging whether their posttest answers were
correct (d = .49). Students in the problem-solving group reported higher satisfaction with the materials
than those in the erroneous examples group, indicating that liking instructional materials does not
equate to learning from them. Overall, practice in identifying, explaining, and correcting errors may help
students process decimal problems at a deeper level, and thereby help them overcome misconceptions
and build a lasting understanding of decimals.
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1. Introduction
1.1. Objective

Students learn and understand mathematics at a deeper level
when they are prompted to make judgments about what is wrong
in other students’ erroneous solutions. This proposal, which we call
the erroneous examples hypothesis, is the focus of the present study.
In particular, the objective of this experiment is to examine the
effectiveness of mathematics instruction based on erroneous
examples compared to traditional problem solving when both
are incorporated into an online tutoring system.

To examine this hypothesis, we focus on the content area of
decimals, because this is a critical sub-domain of mathematics,
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essential for almost all of more advanced mathematics. Students
often have difficulty mastering decimals and misconceptions are
common and persistent (Irwin, 2001; Resnick et al., 1989;
Sackur-Grisvard & Léonard, 1985), with difficulties enduring even
into adulthood (Putt, 1995; Stacey et al., 2001). We focus on online
tutoring in order to contribute to evidence-based design principles
for improving computer-based learning of mathematics. Partici-
pants in the problem-solving control group solved problems such
as filling in the next two numbers in a sequence (i.e. 2.97, 2.98,
2.99, s ). In contrast, participants in the erroneous examples
group were presented with isomorphic questions in which a fic-
tional student had solved the same problem incorrectly due to a
misconception such as treating the two sides of the decimal as sep-
arate (i.e., 2.97, 2.98, 2.99, 2.100, 2.101) and were asked to identify
and correct errors. This study investigated whether students who
are exposed to erroneous examples (the erroneous examples
group) would have a better learning outcome than students who
get practice in solving the same problems (the problem-solving
group).
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1.2. The potential of erroneous examples

According to cognitive theory of multimedia learning and cog-
nitive load theory from which it is derived, the learner can engage
in three kinds of cognitive processing during learning (Mayer,
2009, 2011; Moreno & Park, 2010; Sweller, 1999; Sweller, Ayres,
& Kalyuga, 2011): extraneous processing (or extraneous load) is cog-
nitive processing that does not support the instructional goal and is
often caused by poor instructional design; essential processing (or
intrinsic load) is cognitive processing required to mentally repre-
sent the material as presented and is caused by the complexity
of the material; and generative processing (or germane load) is cog-
nitive processing aimed at making sense of the presented material
such as reorganizing it and integrating it with relevant prior
knowledge and is caused by the learner’s motivation to exert effort
to understand the material. The challenge of instructional design is
to promote generative processing, without burdening learners
with too much essential and extraneous processing that overloads
their limited working memory capacity.

Worked-out examples (also called worked examples), which
consist of a problem statement, the steps taken to reach a solution,
and the final solution, have been used effectively to help manage
essential processing and decrease extraneous processing (Cooper
& Sweller, 1987; McLaren, Lim, & Koedinger, 2008; McLaren &
Isotani, 2011; Renkl, 2005, 2011; Renkl & Atkinson, 2010; Zhu &
Simon, 1987). Worked examples achieve this by focusing the stu-
dent’s attention on the correct solution procedure to follow
(Sweller, Ayres, & Kalyuga, 2011), which helps the student avoid
searching their prior knowledge for solution methods and lessens
extraneous processing. The freed up cognitive resources can then
be used for generative processing, in particular, understanding
and eventually automatizing the steps in a problem’s solution pro-
cedure. In a classic experiment on worked examples, Cooper and
Sweller (1987) found that learning to solve algebra equations by
studying worked examples, paired with problems to solve, resulted
in faster transfer test performance than simply solving all the same
problems. A variety of subsequent studies and reviews have docu-
mented the superiority of instruction using worked examples
(McLaren & Isotani, 2011; Renkl, 2005, 2011; Sweller et al., 2011).

However, one possible issue with worked examples is that
although students may free up cognitive resources, this does not
mean that the freed cognitive capacity will be used for generative
processing (Renkl & Atkinson, 2010). One way to encourage gener-
ative processing is through self-explanation, in which learners
explain the instructional materials to themselves. Chi, Bassok,
Lewis, Reimann, and Glaser (1989) found that good problem solv-
ers are more likely to generate self-explanation statements while
thinking out loud when studying worked examples of physics
problems. In addition, other research has shown the importance
of explicitly prompting for self-explanation (Hausmann & Chi,
2002). While worked examples can be used to reduce processing
demands, self-explanation prompts can be used to encourage dee-
per processing leading to better performance on transfer items
(Atkinson, Renkl, & Merrill, 2003; Hausmann & Chi, 2002).

A less studied way to encourage deeper processing while using
worked examples is to present students with incorrect (i.e., errone-
ous) examples. Erroneous examples have been studied by a few
learning science researchers (e.g., Durkin & Rittle-Johnson, 2012;
GroRe & Renkl, 2007; Siegler, 2002; Tsovaltzi et al., 2010) and
involve most of the same steps as a worked example except one
or more of the steps is incorrect. In these past studies, students
typically must locate the error(s), explain the error(s), and then
make appropriate corrections. Erroneous examples may encourage
students to engage in generative processing, as they explain to
themselves why a particular part of the problem is incorrect
(Durkin & Rittle-Johnson, 2012). Erroneous examples may also

help students focus on each step of a solution method separately
to identify where the error occurred.

On the other hand, erroneous examples may also place addi-
tional processing demands on learners, overloading working mem-
ory with extraneous processing. For instance, a student working
with an erroneous example may search for what is wrong in the
example by trying to represent internally both the correct and
incorrect solution steps and compare those steps (Grof3e & Renkl,
2007). One possible way to relieve this processing demand is to
highlight the error in the problem for the student (Grof3e &
Renkl, 2007). Tsovaltzi et al. (2010) found that providing erroneous
examples of fraction problems, along with providing computer-
generated help in finding and correcting the error, was more effec-
tive than presenting erroneous examples with no help. Given what
is known from this past research, the erroneous examples materi-
als used in the present experiment indicate where an error has
occurred in the decimal problems.

Some of this past research suggests that erroneous examples can
facilitate learning of mathematics. For example, Durkin and Rittle-
Johnson (2012) found that students who compared worked and
erroneous examples of decimal problems learned more than stu-
dents who compared pairs of correct worked examples. Students
who compared worked and erroneous examples were also twice
as likely to discuss correct concepts as students who compared
worked examples only. In addition, Siegler (2002 ) found that having
students self explain both correct and incorrect examples of mathe-
matical equality was more beneficial for learning a generalizable
procedure than self-explaining correct examples only. In Kawasaki
(2010), 5th grade students benefited when the teacher contrasted
both a correct and an incorrect solution to a math problem, espe-
cially when the student also committed the same kind of error.

One issue with using erroneous examples for learning is that
the prior knowledge level of the learner can interact with the effec-
tiveness of the erroneous examples. Grof3e and Renkl (2007) found
that high prior knowledge (but not low prior knowledge) college
students benefitted from lessons containing both correct and
incorrect solutions to probability problems rather than seeing only
correct solutions. In addition, the high prior knowledge students
did not benefit from having errors highlighted, presumably
because they were able to identify the errors on their own. Low
prior knowledge individuals did significantly better when the
errors were highlighted than when they were not. This research
suggests that erroneous examples may not be effective for students
who do not already have a basic grasp of the instructional material
while high prior knowledge students may benefit by processing
the information at a deeper level.

Similarly, if working memory is overloaded by the essential pro-
cessing demands of the task, erroneous examples may not encour-
age deeper processing. This may have occurred, for instance, in an
earlier study by our group (Isotani et al., 2011) with similar mate-
rials to those used in the present study. Middle school students
learned decimals by either solving practice problems, or by having
to piece together self-explanation sentences for either correct
worked examples or a combination of correct and erroneous exam-
ples. There were no significant differences among the three groups
on either an immediate posttest or delayed posttest. The possible
benefits of erroneous examples may have been offset by a self-
explanation interface that inadvertently induced cognitive load.
The students were prompted to create self-explanations of why
solutions are incorrect by being presented with the start of a sen-
tence and then being asked to complete the sentence from two
pull-down menus. Instead of focusing on the mathematic content,
students may have devoted too much of their cognitive processing
to selecting the correct sentence segments and reviewing the com-
pleted sentences. For the present study a simpler self-explanation
interface was used by the erroneous examples group, aimed at
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minimizing extraneous processing while fostering generative
processing.

Finally, it is important to note that much of the prior research
on erroneous examples has focused on multi-step mathematics
problems. Worked examples, which are excellent at showing
multi-step problem solutions, were sometimes used as control
conditions to examine the possible benefits of using erroneous
examples. In contrast, the present study focuses on simpler deci-
mal problems that (for the most part) require single-step solutions
(e.g. comparing two decimals to decide which one is larger). There-
fore, worked examples are not a good control condition for the
present study; standard problem solving constitutes a better con-
trol to contrast with the effects of erroneous examples. Further-
more, previous studies, including the classic work of Cooper and
Sweller (1987), have used problem solving as the control condition
in a variety of learning situations and an analysis of mathematics
textbooks indicates that presenting students with problems to
solve is still the de facto standard in mathematics instruction
(Hiebert et al., 2005; Mayer, Sims, & Tajika, 1995). Therefore, in
order to produce a clear comparison between erroneous examples
and the instructional approach most commonly used for decimal
instruction, we focused on problem solving as the control group
in the present study.

1.3. Learning decimals

Persistent misconceptions in students’ decimal knowledge must
be overcome so students can move on to more advanced mathe-
matics. Yet, teaching students decimals is complicated by the fact
that teachers are not always aware of common misconceptions
and may misattribute incorrect answers to the wrong underlying
misunderstandings (Stacey et al., 2001). Pre-service teachers in
their study were aware of the misconception that longer decimals
are larger, i.e., what Isotani et al. (2011) have called Megz; how-
ever, few were aware of the shorter-is-larger misconception (i.e.,
called Segz) and often make those errors themselves.

Based on an extensive literature review, Isotani et al. (2011)
created a taxonomy of misconceptions that represents 17 distinct
misconceptions. The present study focuses on four of these mis-
conceptions, the ones that prior research has shown are most com-
mon and contributory to other misconceptions: Megz (“longer
decimals are larger”, e.g., 0.23 > 0.7), Segz (“shorter decimals are
larger”, e.g., 0.3 > 0.57), Negz (“decimals less than 1.0 are negative”
e.g., .07 goes to the left of 0 on a number line), and Pegz (“the num-
bers on either side of a decimal are separate and independent num-
bers”, e.g., 11.9+2.3=13.12). Our approach in this study is to
address these common misconceptions directly; all of the prob-
lems presented to students in our study target one or more of these
four misconceptions.

1.4. Present study

For the current study we streamlined the materials from Isotani
et al. (2011) to help learners more easily focus on explaining and
fixing errors in erroneous examples. The materials were altered
so that students only had to complete sentences with a single
choice for their self-explanation statements, as opposed to having
to complete a sentence with two pull-down choices. Taking a cue
from work by Johnson and Mayer (2010), in which students per-
formed better on an embedded transfer test when they selected
an explanation rather than having to generate one on their own,
we propose that providing the explanation statements for miscon-
ceptions, rather than having learners generate their own, will
relieve processing demands.

In addition, in order to focus the present study on a comparison
of erroneous examples to the most common control, as well as to

maximize statistical power, we simplified the design to two
groups: erroneous examples and problem solving. Thus, this study
examines whether erroneous examples can encourage deeper
understanding than problem solving.

Our assumption is that three basic conditions are necessary to
lead to learning from erroneous examples. First, to avoid embar-
rassment and demotivation, the errors should be examples of
another student’s errors, not their own. Second, the erroneous
examples should be interactive and engaging. Using computer-
based materials, students are prompted for explanations, asked
to find and correct errors, and given feedback. Finally, enough
guidance and structure should be provided to minimize extraneous
processing and manage essential processing during learning with
erroneous examples.

Taking those three points into consideration, the two groups in
this study were presented with isomorphic problems, but with dif-
ferent ways of interacting with those problems. Students in the
erroneous examples group were presented with an incorrect solu-
tion, prompted to explain and correct the error and reflect on the
correct answer, and received feedback on their responses. Students
in the problem-solving group were asked to solve the same prob-
lems, reflect on the correct answers and explain their solution,
and received feedback on their work. The additional steps in the
erroneous examples condition of explaining and correcting the
error were intended to improve learning outcomes by encouraging
learners to engage in generative processing of decimal principles. A
comparison of the steps presented by the two conditions can be
seen in Fig. 1.

1.5. Theory and predictions

From the perspective of generative learning theory (Mayer,
2009, 2011), the theoretical rationale for using erroneous examples
is that they offer enough challenge to foster generative processing
in learners—that is, cognitive processing aimed at making sense of
the material by mentally reorganizing it and connecting it with rel-
evant prior knowledge—while providing enough structure and
guidance to not overload the learner with extraneous processing.
In contrast, problem solving can cause learners to engage in so
much extraneous processing that they fail to abstract the underly-
ing solution principle used for solving the problem (Sweller et al.,
2011). Based on research and theory on generative learning tech-
niques in the science of learning, deep learning may be most sen-
sitive to delayed rather than immediate tests (Dunlosky, Rawson,
Marsh, Nathan, & Willingham, 2013).

Hypothesis 1. Thus, we expect the erroneous examples group to
engage in deeper cognitive processing during learning than the
problem-solving group, yielding superior posttest performance,
particularly on delayed tests as has been found with other
generative techniques such as the testing effect (Dunlosky et al.,
2013; Johnson & Mayer, 2009).

Hypothesis 2. By virtue of their training in evaluating student
solutions, we also expect the erroneous examples group to outper-
form the problem-solving group on correctly assessing their level
of confidence for their solutions of posttest problems.

2. Method
2.1. Participants and design

The participants were 208 middle-school students (101 boys
and 107 girls) from the same Pittsburgh area school. One hundred
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Fig. 1. Comparison between the sequences of steps in the two experiment conditions.

and five students were in the 6th grade and 103 were in the 7th
grade. The students’ ages ranged from 11 to 13 years old
(M=11.99, SD =.72). In a between subjects design, 100 students
served in the erroneous examples group and 108 students served
in the problem-solving group.

2.1.1. Materials and apparatus

The computer-based materials consisted of three isomorphic
versions of an online 46-item decimal assessment test (with the
three tests referred to as A, B, and C and used as pretest, immediate
posttest, and delayed posttest, with counterbalanced orderings), a
demographic questionnaire, an evaluation questionnaire, and two
versions of an online lesson on decimals (i.e., the erroneous exam-
ples lesson and the problem-solving lesson) both implemented
using intelligent tutor authoring software (Aleven, McLaren,
Sewall, & Koedinger, 2009).

Corresponding items on the three 46-item decimal assessment
tests were equivalent difficulty but contained different cover sto-
ries and values. Question types included placing decimals on a
number line (i.e. “Place .7 on a number line between O and 1”),
putting a given list of decimal numbers in order (“Please list
.345, .34, and .4 in order from largest to smallest”), providing the
next two decimal numbers in a sequence (“3.97, 3.98, 3.99, ___,
__ ), and answering true/false statements (“All decimals that have
0 in the ones place are negative”). All three tests had a total of 50
points possible; some of the problems included multiple parts that
were scored separately. The 46 questions were designed to assess
whether students held any of the four misconceptions before and
after the intervention. To increase the accuracy in evaluating stu-
dents’ misconceptions, multiple question types addressed the
same misconception to determine whether answers made by stu-
dents were due to possible guessing or simple computation mis-
takes. For a subset of 15 of these items, spanning an equal number
of the four target misconceptions, students were asked to rate
how sure they were that their answer was correct using a 5-point
Likert scale ranging from “Not at all sure” (1) to “Very sure” (5).

The demographic questionnaire, presented to all students
before working on the online lesson, solicited basic information
about age, gender, and grade level.

The evaluation questionnaire, presented to all students just
after finishing the intervention, asked students how they felt about
the lesson using a 5-point Likert scale ranging from “Strongly
agree” (1) to “Strongly disagree” (5). The questionnaire included
10 items, which were combined into 4 categories: how well stu-
dents liked the lesson, ease of interacting with the tutor, positive
feeling about math, and perceived difficulty of the lesson. For
how well students liked the lesson we averaged the ratings for
two items, “I would like to do more lessons like this,” and “I liked
doing this lesson.” For ease of interacting with the tutor we
averaged four items: “I liked the way the material was presented

on the screen,” “I liked the way the computer responded to my
input,” “I think the interface of the system was confusing,” and
“It was easy to enter my answer into the system.” For whether
the tutor gave the student a positive feeling about math two items
were combined: “This lesson made me feel more like I am goof at
math,” and “This lesson made me feel that math is fun.” Lastly, for
perceived difficulty of the lesson, two items were combined: “The
material in this lesson was difficult for me,” and “I worked hard on
understanding the materials in this lesson.”

Each of the two decimal interventions (i.e., the erroneous exam-
ples lesson and the problem solving lesson) was comprised of a
total of 36 problems, organized into 12 blocks of three related
problems, with each group targeted at one of the four misconcep-
tion types. Table 1 shows the intervention format including the

Table 1

Problem order for the problem solving and erroneous examples conditions. Each row
represents problems that are isomorphic between conditions except every third
question which are the identical embedded test questions.

Supported Problem Solving (PS) Erroneous Examples (ErrEx)

1. Megz supported PS 1 1. Megz ErrEx 1
2. Megz supported PS 2 2. Megz ErrEx 2
3. Megz PS 1 3. Megz PS 1

4. Segz supported PS 1 4. Segz ErrEx 1
5. Segz supported PS 2 5. Segz ErrEx 2
6. Segz PS 1 6.Segz PS 1

7. Pegz supported PS 1 7. Pegz ErrEx 1
8. Pegz supported PS 2 8. Pegz ErrEx 2
9. Pegz PS 1 9. Pegz PS 1

10. Negz supported PS 1 10. Negz ErrEx 1
11. Negz supported PS 2 11. Negz ErrEx 2
12. Negz PS 1 12. Negz PS 1
13. Megz supported PS 3 13. Megz ErrEx 3
14. Megz supported PS 4 14. Megz ErrEx 4
15. Megz PS 2 15. Megz PS 2
16. Segz supported PS 3 16. Segz ErrEx 3
17. Segz supported PS 4 17. Segz ErrEx 4
18. Segz PS 2 18. Segz PS 2

19. Pegz supported PS 3 19. Pegz ErrEx 3
20. Pegz supported PS 4 20. Pegz ErrEx 4
21. Pegz PS 2 21. Pegz PS 2

22. Negz supported PS 3 22. Negz ErrEx 3
23. Negz supported PS 4 23. Negz ErrEx 4
24. Negz PS 2 24. Negz PS 2
25. Megz supported PS 5 25. Megz ErrEx 5
26. Megz supported PS 6 26. Megz ErrEx 6
27. Megz PS 3 27. Megz PS 3
28. Segz supported PS 5 28. Segz ErrEx 5
29. Segz supported PS 6 29. Segz ErrEx 6
30. Segz PS 3 30. Segz PS 3

31. Pegz supported PS 5 31. Pegz ErrEx 5
32. Pegz supported PS 6 32. Pegz ErrEx 6
33. Pegz PS 3 33. Pegz PS 3

34. Negz supported PS 5 34. Negz ErrEx 5
35. Negz supported PS 6 35. Negz ErrEx 6
36. Negz PS 3 36. Negz PS 3
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FlCthnal Shilpa said this incorrect answer: 0.12 and 0.16 come next in the sequence.
Student’s
Error
| 00 L o4 | a8 [ 012 || 016 |
Type in the correct numbers in the sequence to fix Shilpa's error. Press
Enter after making each correction.
Error 00 04 0.8 2 6
N £ F 2 g 1.2 . 16
Correction

What advice would you give to Shilpa to solve the problem right next time?

_ treatthe numbers after the decimal point as fractions

_ carty a one from the ones to the tenths place
_ carrya one from the tenths to the ones place

You need to add 0.4 to each number and remember to

_ treatthe numbers after the decimal point as fractions.

_ carry a one from the ones to the tenths place
QO cany 37 from the tenths to the ones place

Shilpa is asked to find the next two numbers in the following sequence: 0.0,0.4,08, __,

Identifying the
Misconception

What did Shilpa do wrong?
She thinks that she can treat the numbers 5

_ after the decimal point like fractions

_ before the decimal point as whole numbers, separate from those after

(© after the decimal point as whole numbers, separate from those before

_ before the decimal point like fractions

Shilpa, to find the next numbers in the sequence, you need to remember that you can't

(O treatthe numbers after the decimal point as whole numbers, separate from those before

_ treat the numbers after the decimal point as whole numbers, separate from those before

Correct
Answer
Confirmation

The answers are 1.2 and 1.6 because when adding 0.4 to 0.8, you need to
carry the 1from the 2

_ ones to the tenths
tenths to the hundredths
_ tenths to the tenths

( tenths to the ones

Message Window

You've got it. Well done.

Explaining the Correct vs.the
Incorrect Method.

Feedback Window

Fig. 2. Sample Pegz sequence completion problem from the erroneous condition.

order in which the targeted misconception question types were
presented. The intervention questions were more complex than
the relatively straightforward assessment questions. Thus, while
the raw number of questions vary between the assessments and
the intervention, the depth and time required to complete the
intervention questions was considerably greater than the assess-
ment questions.

For the erroneous examples intervention, each of the 12 blocks
consisted of a series of three problems. All three problems in a
block involved the same misconception. The first two problems
in each block asked students to evaluate an erroneous example,
whereas the third problem required students to solve a problem
that commonly produced the same misconception, with feedback
on correctness provided. The erroneous examples problems con-
tained up to 5 components (not including the problem statement)
for the students to interact with.

Fig. 2 shows an erroneous example. It starts with a problem in
which a fictional student has incorrectly filled in the next two
numbers in a sequence by committing the Pegz misconception
and treating the two sides of the decimal point as separate. In
the top left box students read the error made by the fictional stu-
dent in the word problem. After pressing a “Next” button students
were asked to identify what the fictional student had done wrong
from a list of 3-4 options, one of which was the misconception
exhibited by that student. In the left middle panel students were
asked to correct the mistake. This involved either placing a decimal
correctly on a number line, correctly adding two decimals, correct-
ing an incorrect sequence of decimals, or correctly ordering a list of
decimals. In the right middle panel participants explained why the
new answer was correct or confirmed the correct solution. Finally,
in the bottom left panel the students were asked to give advice on
how to solve the problem correctly. For every panel that required
students to make a selection, feedback was provided (with the
answer turning green' for correct answers, or red for incorrect

! For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.

answers). Students also received text feedback from a message win-
dow in the bottom right corner of the intervention screen. Messages
included encouragement for students to try incorrect steps again
(e.g., “Can you try that again? That answer is not correct”) or “suc-
cess” feedback to continue onto the next step or problem after cor-
rectly solving a step (e.g., “Nice. On to the next step ...”).

In the problem-solving intervention, students were given the
same problems as those in the erroneous examples lesson except
they were asked to solve the problems on their own. Fig. 3 includes
the problem-solving version of the sequence completion problem
from Fig. 2. These problems were also arranged in groups of three,
isomorphic in content to the erroneous examples lesson sequence.
For the first two problems of each group, students solved the prob-
lem, received feedback on correctness, and then were prompted to
explain their solution. The explanation statements, which were
multiple-choice questions, included one correct explanation, along
with misconception distracters. Students in this group also
received feedback from a message window in the bottom right
panel as well as green/red feedback on their solution and multi-
ple-choice explanation questions. On the third problem of each
group the students were given simple correct/incorrect feedback
but were not required to explain their solution.

The study took place in the school’s computer lab, with lab time
replacing the students’ regular math class. The grades students
received on the tests they took were averaged and used for a real
class grade on decimals (and the students knew the test grades
from the study would be used for a real class grade). Students
worked on Apple computers with Internet connectivity.

2.2. Procedure

The students were randomly assigned to either the problem-
solving group or the erroneous examples group. Students were also
randomly assigned to receive one of the six possible pretest/post-
test/delayed-posttest orderings (ABC, ACB, BAC, BCA, CAB, CBA).
The students received a total of five 43-min sessions to complete
the entire sequence of materials (i.e., pretest, demographic
questionnaire, intervention, evaluation questionnaire, immediate
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00 , 04 , 08 [12 ][ 716

How would you explain your solution to another student?

To find the next numbers in the sequence, I first noticed that _.
_ there was a difference of 4 between each number
 there was a difference of 40 between each number
_ the numbers were getting smaller

Olhere was a difference of 0.4 between each number

Next, | knew that | should add 0.4 to each number and that | should -
O carry a one from the tenths to the ones place

_ carry a one from the ones to the tenths place

_ treatthe numbers afler the decimal point as whole numbers

_ treatthe numbers after the decimal point as fractions

Find the next two numbers in the following sequence: 0.0, 04,08, __,

Problem Solving
Component

/

Message Window

You've got it. Well done.

Explaining the Solution Method.

Feedback Window

Fig. 3. Sample Pegz sequence completion problem from the problem solving condition.

posttest, delayed-posttest). Students completed the pretest during
the first session. During the second and third session students
completed their respective versions of the intervention as well as
the evaluation questionnaire. During the 4th session students com-
pleted the immediate posttest. Finally, one week later, the students
returned to the computer lab at the school for the fifth and final
session, in which they took the delayed posttest. In every case, if
the student finished early in that session, they were given non-dec-
imal math homework to work on.

3. Results

3.1. Are the groups equivalent on basic demographic characteristics
and prior knowledge measures?

Based on t-tests and chi-square results, the two groups did not
differ significantly (with p <.05) on average age, proportion of boys
and girls, or proportion of 6th and 7th graders.

Concerning pretest score, due to an error in data logging for four
of the test problems, the data for those problems was removed
from the pretest, immediate posttest, and delayed posttest scores
making the total possible score out of 46. The first column of
Table 2 shows the mean (and standard deviation) of the prob-
lem-solving group (PS) and the erroneous examples group (ErrEx)

Table 2
Test performance for the two conditions.

Test Groups

Problem solving Erroneous examples

M SD M SD
Pretest 24.68 (9.42) 28.69 (9.58)
Posttest 29.07 (9.48) 32.58 (8.95)
Delayed posttest 31.06 (9.20) 36.23 (7.47)*

Note. Asterisk indicates ErrEx group is significantly greater than PS group at p <.05.

on the pretest. Despite random assignment, a t-test showed that
the ErrEx group performed significantly better on the pretest than
the PS group, t(206) = 3.045, p =.003, so subsequent analyses were
based on using pretest score as a covariate as well as other tech-
niques to mitigate this issue, as recommended by statisticians to
statistically correct for selection bias (Hayes, 1994; Schneider,
Carnoy, Kilpatrick, Schmidt, & Shavelson, 2007). We also applied
other recommended techniques that offer converging ways of sta-
tistically equating the groups on pretest score—removing outliers
based on pretest score and partitioning groups into high and low
pretest-score subgroups.

3.2. Do the groups differ on learning outcomes?

The second row of Table 2 shows the mean (and standard devi-
ation) on the immediate posttest for the PS and ErrEx groups. An
ANCOVA with pretest score as a covariate revealed that the ErrEx
and PS group did not perform significantly differently from one
another on the immediate posttest, F(1,205)=.768, MSE = 34.97,
p=.382, d=.38. The third row of Table 2 shows the mean (and
standard deviation) on the delayed posttest for the PS and ErrEx
groups. An ANCOVA with pretest score as a covariate showed that
students in the ErrEx students scored significantly higher than stu-
dents in the PS group on the delayed posttest, F(1,205) = 9.896,
MSE = 349.08, p =.002, d =.62. Thus, the major empirical finding
in this study is that the erroneous example students had higher
learning gains than the problem-solving students on the delayed
posttest but not the immediate posttest, suggesting that the effects
of the erroneous example training are more significant over time.

To examine whether grade level affected performance on the
immediate posttest and delayed posttest an ANCOVA with pretest
as a covariate found no significant differences between 6th and 7th
grades on either the immediate posttest, F(1,203)=.111,
MSE =5.095, p=.739, or the delayed posttest, F(1,203)=.010,
MSE = .350, p=.921. There were also no significant interactions
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between condition and grade level for either the immediate post-
test, F(1,203)=.038, MSE=1.761, p=.845 or delayed posttest,
F(1,203)=.267, MSE =9.511, p = .606. Thus, we conclude that the
erroneous examples training was equally effective for the 6th
and 7th graders.

In addition to using ANCOVA to statistically equate the groups
for pretest score, we conducted an ANOVA after removing students
who scored one standard deviation above or below the overall
mean on the pretest (M =26.61, SD = 9.696). This left 69 students
in the ErrEx group and 71 in PS group. Using this smaller better
matched sample, a t-test showed that the pretest score of the ErrEx
group (M =26.06, SD =6.80) did not differ significantly from the
pretest score of the PS group (M =24.99, SD = 6.23), t(138)=.973,
p=.332, d=.16. The immediate posttest score of the ErrEx group
(M=31.09, SD = 8.01) did not differ significantly from that of the
PS group (M=29.54, SD=8.239), t(138)=1.13, p=.261, d=.19.
However, on the delayed posttest, students in the ErrEx group
scored significant higher (M =35.14, SD = 6.74) than did the stu-
dents in the PS group (M=31.58, SD=7.71), t(138)=2.911,
p=.004, d=.49. Thus, the same pattern of results favoring the
ErrEx group on a delayed posttest was replicated with a smaller,
better-matched sample that did not have the pretest differences.
This analysis provides converging evidence based on recom-
mended techniques for mitigating differences in pretest score that
erroneous examples was a more effective instructional method
than problem solving for learning about decimals.

Although not the primary focus of the study, we also note that
overall students improved their test performance from pretest and
immediate posttest, t(207)=—-8.06, p <.001, d=0.44, and from
immediate posttest to delayed posttest, t(207)=—8.23, p <.001,
d =0.31. The increase from immediate posttest to delayed posttest
may be an example of a testing effect in which the act of taking a
test can help improve learning.

3.3. Are the group differences in learning outcome greater for students
with low or high prior knowledge?

To determine whether the intervention had a different effect for
students with high versus low prior knowledge we conducted an
additional analysis. First, we classified students based on a median
split on pretest score, with 107 students classified as low prior
knowledge (i.e., pretest score from 8 to 25 points) and 101 students
classified as high prior knowledge (i.e., pretest score from 26 to 45
points). Although this approach loses some information, it allows
for a third way of mitigating the effects of unequal pretest scores
in a way that is not biased in favor of the predicted group differ-
ences. Table 3 shows the mean (and standard deviation) for each
group on the pretest, immediate posttest, and delayed posttest
separately for low prior knowledge students and high prior knowl-
edge learners. For high prior knowledge students, there was no dif-
ference for pretest scores between the two conditions, t(99) = 1.65,
p =.103; however, for low prior knowledge students the ErrEx
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group had a non-significant trend of scoring higher than the PS
group, t(105) = 1.96, p = .052.

For low prior knowledge students, to examine whether immedi-
ate posttest scores or the delayed posttest scores differed between
the two groups, ANCOVAs with pretest as a covariate were con-
ducted. Low prior knowledge participants in the ErrEx and PS
groups did not perform significantly different on the immediate
posttest, F(1,105) = 2.33, MSE = 169.43, p=.13, d =.30; however,
the ErrEx condition performed significantly better on the delayed
posttest, F(1,105) = 8.95, MSE = 588.61, p =.003, d =.59. The same
pattern was found for students classified as having high prior
knowledge with no significant difference on the immediate post-
test, F(1,99) = 1.08, MSE = 40.91, p =.301, d = .21, but significantly
higher performance on the delayed posttest favoring the ErrEx
group, F(1,99)=7.58, MSE=165.39, p=.007, d=.55. Thus, the
ErrEx group outscored the PS group on the delayed posttest for
both low and high prior knowledge learners, yielding results con-
sistent with other techniques for mitigating unequal pre-test
scores. Similar results were found when participants were broken
down into three equal groups (high, low, and average) as well as
into 4 groups.

To determine whether prior knowledge level interacted with
lesson condition, an ANCOVA with pretest score as a covariate
was conducted. There were no significant interactions between
prior knowledge level (high versus low) and lesson condition (PS
versus ErrEx) for either immediate posttest scores, F(1,203) = .55,
MSE =.01, p=.46, or delayed posttest scores, F(1,203)=1.94,
MSE = .03, p =.17. These results suggest that the erroneous exam-
ples lesson was just as effective for participants with low prior
knowledge as it was for participants with high prior knowledge.

These analyses suggest that using erroneous examples to learn
a relatively simple area of math, i.e., decimals, may be successful,
regardless of prior knowledge. This result differs from that of
Grof3e and Renkl (2007) in which higher prior knowledge students
benefited more from erroneous examples, but in a more complex
mathematics domain (i.e., statistics) and with older learners (col-
lege students). This might have occurred because the erroneous
examples students, both low and high prior knowledge, were
encouraged to engage in more generative processing than the
problem solving students, through the prompted explanation and
correction of errors.

3.4. Does gaming behavior affect learning through problem solving or
erroneous examples

One possible issue with using an interactive intelligent tutor,
especially one that prompts for many multiple-choice responses
(as the explanation statements did in this study), is that students
may progress through the intervention without seriously engaging
with the materials, clicking quickly through the answers while
receiving visual feedback, and, consequently, not learning. This
behavior has been referred to as gaming the system (Baker,
Corbett, & Koedinger, 2004). Students who game the system take

Table 3
Test scores of high and low prior knowledge individuals in both lesson conditions.
Test Groups
Low prior knowledge High prior knowledge
PS (N=63) ErrEx (N = 44) PS (N=45) ErrEx (N = 56)
M SD M SD M SD M SD
Pretest 17.71 (3.89) 19.25 (4.01) 34.40 (5.36) 36.11 (5.03)
Posttest 24.24 (8.82) 26.8 (8.06) 35.84 (5.33) 37.13 (6.75)
Delayed-posttest 26.30 (8.53) 31.07 (7.47)* 37.71 (5.06) 40.29 (4.34)"

Note: Asterisk indicates ErrEx groups is significantly greater than PS group at p <.05.
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advantage of elements of the system to progress quickly through
the intervention, while only paying superficial attention to the les-
son. To determine whether a student was gaming the system the
amount of time the student took to complete the lesson along with
the number of incorrect selections the student made was exam-
ined. A gaming score was calculated per student - dividing the total
lesson time for that student by the number of incorrect choices
made by the student. Students who gamed the system should have
smaller gaming scores whereas students who seriously engaged
and struggled with the problems, without rushing and rapidly
responding, should have larger gaming scores. Due to a varying
number of total possible responses between the two intervention
conditions, median splits were conducted within each condition
separately to determine gamers versus non-gamers, yielding 50
gamers and 50 non-gamers for the erroneous examples condition
and 54 gamers and 54 non-gamers for the problem solving condi-
tion. Table 4 includes the means and standard deviations for the
pretest, posttest, and delayed posttest for gamers and non-gamers
for each condition.

When examining learning outcome differences between gamers
and non-gamers, non-gamers scored significantly higher on the
pretest than gamers, t(206) = —8.277, p <.001, d = 1.15. To look at
how performance differed on the immediate and delayed posttest
with regards to condition and gaming, an ANCOVA with pretest as
a covariate showed a main effect of gaming in which non-gamers
scored significantly higher on both the immediate posttest,
F(1,203) = 13.75, MSE = 588.94, p <.001, d = 1.15, and the delayed
posttest, F(1,203) = 29.73, MSE = 902.05, p <.001, d = 1.33. Condi-
tion still showed a significant main effect favoring the EXErr group
only on the delayed posttest favoring the ErrEx group,
F(1,203)=16.11, MSE = 488.64, p <.001, but not on the immediate
posttest, F(1,203) = 1.80, MSE = 77.19, p = .18. There was a non-sig-
nificant interaction trend between condition and gaming behavior
for the delayed posttest, F(1,203)=3.76, MSE =114.12, p =.054,
but no interaction for the immediate posttest, F(1,203)=.672,
MSE = 28.78, p = .413. These results are consistent with the claim
that students who game the system are less likely to learn the
material in the lesson, and the erroneous example training is more
effective than problem solving training on the delayed posttest for
both gamers and non-gamers.

3.5. Do students differ in misconceptions they have?

To determine the types of errors students made during the
intervention and whether they were consistent with our target
misconceptions, the students’ behavior was modeled using a Bayes
Net of decimal misconceptions (Goguadze, Sosnovsky, Isotani, &
McLaren, 2011). These models are updated when students take
the A, B, C pretests described above. The Bayes Net represents
the misconceptions that a student might have - Megz, Segz, Pegz,
and Negz - and is updated based on test questions that precisely
probe for each of the misconceptions. Our A, B, C isomorphic tests
contain 9 Megz problems, 10 Segz problems, 10 Pegz problems,
and 9 Negz problems, after the 4 buggy problems were eliminated

(there are also 8 problems that are targeted at a more general mis-
conception called Regz, which contributes to all of the other mis-
conceptions). Students can either get these problems correct, in
which case the probability of the targeted misconception drops,
they can get them incorrect in an unexpected way, in which case
the misconception in the Bayes Net is only partially increased, or
they can get them incorrect in a way that provides direct evidence
for the misconception, in which case the misconception in the
Bayes Net is increased more. Some of the misconception problems
have possible answers that can indicate more than one misconcep-
tion. The details of the Bayes Net are discussed in Goguadze et al.,
2011. Our approach was inspired by the similar implementation of
Stacey, Sonenberg, Nicholson, Boneh, and Steinle (2003).

Given how the Bayes Net of each of the 208 students in the
present study were updated, we calculated mean probabilities over
all misconceptions as Segz=0.37; Megz=0.31; Pegz=0.15;
Negz = 0.15. Furthermore, we created misconception profiles for all
of the students, based on the order of probability of each of the
misconceptions for that student. For instance, a student with a
Megz probability of 0.92, Segz probability of 0.75, Pegz probability
of 0.32 and Negz probability of 0.20 would have a misconception
profile of Megz > Segz > Pegz > Negz. Table 5 summarizes the mis-
conception profiles of all the students by most prominent miscon-
ception, i.e., the misconception that has the highest probability. As
can be seen, the students were reasonably well distributed across
the most prominent misconception categories, but there are stark
differences in the mean values. Note that students who displayed
the Megz misconception (“longer decimals are larger”) and Segz
misconception (“shorter decimals are larger”) as their most likely
misconception, show a very high probability for actually having
those misconceptions (see bold items in rows 1 and 2), while the
students who displayed the Pegz (“each side of the decimal is sep-
arate and independent”) and Negz (“decimals less than 1.0 are neg-
ative”) misconceptions as most likely, show a much lower
probability for actually having those misconceptions (see bold
items in rows 3 and 4). Furthermore, the pretest scores of the Megz
and Segz students are dramatically lower than the Pegz and Negz
students, and the other possible misconceptions of the Megz and
Segz students have a much high probability than those of the Pegz
and Negz students.

3.6. Do the groups differ on their awareness of misconceptions?

In addition to measuring the prevalence of students’ miscon-
ceptions, the strength of students’ misconceptions was also calcu-
lated. First, the mean confidence level for each student was
calculated using the data from the confidence scales. Overall, after
including pretest confidence as a covariate in the ANCOVA model,
there were no differences between groups for level of confidence at
immediate posttest or delayed posttest, F(1,205)=0.16,
MSE =.224, p=.693 and F(1,205)=1.49, MSE=.249, p=.224,
respectively. Students’ responses were then categorized by confi-
dence level and accuracy, which led to four response categories:
high confidence error, low confidence error, low confidence

Table 4
Test scores of students classified by gaming behavior according to their condition.
Test Groups
Gamers Non-gamers
PS (N=54) ErrEx (N =50) PS (N=54) ErrEx (N = 50)
M SD M SD M SD M SD
Pretest 20.52 (6.78) 23.14 (7.83) 28.83 (9.9) 34.24 (7.83)
Posttest 24.41 (8.86) 27.88 (8.52) 33.74 (7.64) 37.28 (6.64)
Delayed-posttest 25.8 (8.29) 31.76 (7.65) 36.31 (6.76) 40.7 (3.67)
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Table 5
Summary of the misconception profiles of all 208 students.

Most prominent misconception Number of students

Pretest average score (out of 46) Megz Segz Pegz Negz

General misconception profile

Megz 42 18.1
Segz 60 193
Pegz 58 33.9
Negz 48 343

0.97 0.55 0.28 0.19
0.34 0.89 0.10 0.21
0.03 0.02 0.22 0.03
0.00 0.00 0.00 0.19

Megz > Segz > Pegz > Negz
Segz > Megz > Negz > Pegz
Pegz > Megz > Negz > Segz
Negz > Pegz > Megz > Segz

correct, and high confidence correct. Students’ responses were cat-
egorized as being low confidence if they were a 1 or 2 on the 5-
point scale and high confidence if they were a 4 or 5 on the 5-point
scale. High confidence errors were most likely strongly held mis-
conceptions, while low confidence errors were most likely due to
guessing.

At pretest, there were no significant differences between groups
for any of the response types (p’s > .06) except for high confidence
correct responses, F(1,206)=11.33, MSE =.061, p=.001, d=.44.
Students in the ErrEx condition made high confidence correct
responses more often (M =44.33%, SD =26.16) than students in
the PS condition (M =32.78%, SD = 23.35). ANCOVA models were
then run with each of the four response types as an outcome mea-
sure for immediate posttest and delayed posttest, with the pretest
rate of the respective response type as a covariate to control for any
pretest differences. These analyses indicated that on the immedi-
ate posttest, students in the ErrEx group were less likely to make
high confidence errors (i.e., strong misconception errors),
F(1,205)=4.42, MSE = .016, p =.037, d = —.36. Students in the ErrEx
group only made such errors 13.93% of the time (SD = 11.76), while
students in the PS condition made them 18.89% of the time
(SD =15.48). On the delayed posttest, there was a nonsignificant
trend in which students in the ErrEx group were less likely to make
high confidence errors (M = 14.60%, SD = 15.06) than students in
the PS condition (M =20.00%, SD=16.98), F(1,205)=3.52,
MSE =.020, p =.062, d=—.34. Also on the delayed posttest, stu-
dents in the ErrEx group were more likely to make high confidence
correct responses (M = 62.20%, SD = 26.21) than students in the PS
condition (M =47.72%, SD=26.62), F(1,205)=5.20, MSE =.042,
p=.024, d=.55. There were no other significant differences
between conditions for the different response types (p’s >.272).

These response categorizations based on confidence level and
accuracy were also used to measure students’ ability to accurately
assess their own knowledge (i.e., knowledge calibration). In this
case, students’ answers were considered well calibrated if they
had low confidence in errors and high confidence in correct
responses, but they were considered poorly calibrated if they had
high confidence in errors and low confidence in correct responses.
The mean proportions of well-calibrated answers were calculated
for each student for the pretest, immediate posttest, and delayed
posttest. There was a significant difference between groups for cal-
ibration on the pretest, F(1,205)=8.531, MSE=.039, p=.004,
d=.41. Students in the ErrEx condition gave well-calibrated
responses more often (M =52.44%, SD =20.45) than students in
the PS condition (M =44.41%, SD = 19.22). To control for these dif-
ferences, pretest calibration was used as a covariate in all subse-
quent models on calibration. Using an ANCOVA model that
included pretest calibration as a covariate, there was no significant
difference between conditions for calibration on the immediate
posttest, F(1,205)=0.78, MSE =.036, p =.379, d =.32. Students in
the ErrEx condition gave well-calibrated responses about as often
(M=59.07%, SD=23.82) as students in the PS condition
(M =51.98%, SD = 20.52). However, there was a significant differ-
ence between groups for calibration on the delayed posttest, even
after controlling for pretest calibration, F(1,205) = 5.48, MSE = .041,
p=.020, d=.49. Students in the ErrEx condition gave well-cali-
brated responses more often (M=65.39%, SD=23.62) than

students in the PS condition (M =53.81%, SD = 23.37). Overall, the
results are consistent with the prediction that the ErrEx group
developed better skill at making evaluative judgments for solving
decimal problems than the PS group.

3.7. Do the groups differ on their satisfaction with the online lesson?

To examine whether students’ evaluations of the two lessons
differed four scales were created to assess different aspects of
the lesson: lesson enjoyment, perceived material difficulty, feel-
ings of math efficacy, and ease of interface use. The PS condition
students reported that they liked the lesson significantly more
than the ErrEx students t(206) = -2.37, p=.02, d = —0.33, as well
as finding it easier to interact with the tutor interface,
t(206)=-2.69, p=.008, d=—-0.37. PS students were also more
likely to report that the lesson gave them more positive feelings
about math, t(206) = —2.05, p =.04, d = —028. There was no signif-
icant difference between the two groups on perceived difficulty of
the lesson materials between the two groups, t(206) = —.71, p = .48.
Overall, the results show that the PS students liked the lesson more
than the ErrEx students, even though previous analysis showed
that the ErrEx group performed better on the delayed pretest than
the PS group. Clearly, liking instructional materials does not trans-
late into learning.

4. Discussion
4.1. Empirical contributions

Consistent with Hypothesis 1, the primary finding is that the
ErrEx group significantly outperformed the PS group on the
delayed posttest, both when pretest score was used as a covariate
(d =.62) and when outliers were eliminated (d = .49). However, the
superiority of the ErrEx group over the PS group (d =.38) did not
reach statistical significance on the immediate posttest. This pat-
tern of results is a major new contribution to the research litera-
ture on erroneous examples and is consistent with some research
on other generative learning methods, such as the testing effect
(Dunlosky et al., 2013; Johnson & Mayer, 2009), in which the
effects of generative learning methods tend to be strongest on
delayed posttests. It is also important to note that the ErrEx group
significantly outperformed the PS group on the delayed posttest
both for low prior knowledge learners (d=.59) and high prior
knowledge learners (d = .55).

Consistent with Hypothesis 2, another important finding that
represents a new contribution to the research literature is that
the ErrEx group demonstrated better ability to judge the correct-
ness of their answers. In short, erroneous examples helped stu-
dents make fewer errors related to strongly held misconceptions
and have more accurate knowledge calibration (d = .49). This con-
firms our prediction and complements past findings that exposing
students to erroneous examples can reduce the frequency of mis-
conceptions (e.g., Durkin & Rittle-Johnson, 2012). By directly
addressing students’ misconceptions, students may be forced to
recognize that their previous conceptions were incorrect and that
they need to accommodate a new conception of the material
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(Eryilmaz, 2002). Erroneous examples may have improved stu-
dents’ knowledge calibration by helping students label incorrect
concepts as wrong and correct concepts as right by emphasizing
critical features of erroneous and correct examples (Van den
Broek & Kendeou, 2008). This improved knowledge calibration
can help people learn by making them aware of weaknesses in
their knowledge and by motivating them to attend to information
that could strengthen this knowledge (Cunningham, Perry,
Stanovich, & Stanovich, 2004).

Results also showed that students did best in the erroneous
examples group if they engaged in deeper processing of the mate-
rial, by taking their time and making fewer answer attempts, and
did not “game the system.” In contrast, students performed worse
if they were in the problem solving condition and engaged in gam-
ing behavior by quickly clicking through answer choices to find the
correct solution. Overall, students who gamed the system were the
least likely to actually learn the material.

Finally, the PS group reported liking the lesson more than the
ErrEx group although liking did not translate into better learning.

4.2. Theoretical contributions

The results on the delayed posttest are consistent with the idea
that erroneous examples encourage learners to process the mate-
rial more deeply during learning—more specifically, erroneous
examples prime generative processing without creating extrane-
ous processing. We infer these processes from posttest perfor-
mance, so future work is needed to directly assess cognitive
processing during learning. Furthermore, the results on the calibra-
tion measures are consistent with the idea that erroneous exam-
ples help students build skills that allow them to better judge
the adequacy of their own solutions. Overall, these results suggest
that students taught with erroneous examples may have had a
deeper learning experience that persists over time. In particular,
when the erroneous example treatment is designed to not overload
the learner’s cognitive system, it appears to encourage generative
processing (i.e., deeper cognitive processing aimed at organizing
the material and relating it to relevant prior knowledge) and the
development of metacognitive skills, such as how to evaluate the
adequacy of a solution procedure.

4.3. Practical contributions

The present study provides evidence for instructional design
based on what can be called the erroneous examples principle: Peo-
ple learn more deeply when they are asked to critique the incorrect
solution procedures of others. For example, when teaching how to
solve mathematics problems, students can benefit from being
asked to critique an incorrect worked example by articulating what
is wrong in the student’s conceptualization of the problem and
comparing the wrong approach with a correct one. The erroneous
example principle complements the well-established worked
example principle (Sweller, Ayres, & Kalyuga, 2011; Renkl, 2011).
The present study suggests that training with erroneous examples
is effective when extraneous load is minimized and when the lear-
ner ultimately is encouraged to explain the correct steps. The
appropriate balance between erroneous examples and problem
solving - how much and precisely when to present each type of
material - is a matter for additional research.

4.4. Methodological contributions

Our study also found evidence that middle school students hold
misconceptions such as thinking longer decimals are larger or
Megz (as is so with whole numbers) or that shorter decimals are
larger or Segz (as is so with shorter denominators in fractions),

confirming prior mathematics education findings (Irwin, 2001;
Resnick et al., 1989; Sackur-Grisvard & Léonard, 1985). By taking
these results into account, later versions of this intervention will
be adapted by focusing on problems that might correct these mis-
conceptions. An adaptive tutoring system could also use the mis-
conception profile for each student in order to create an
intervention curriculum that fits the individual needs of each lear-
ner. If the system identifies that a student holds a particular mis-
conception then more problems can be added from the available
problem sets that address that misconception. Future studies will
be conducted to explore whether an adaptive intervention might
further increase learning outcomes with erroneous examples.

4.5. Limitations and future directions

One limitation of the present study is that we did not include a
correct worked examples condition. The reasons for this are
straightforward. First, in the present study we wanted to compare
the most common ecological control condition - that of students
solving problems - to the much less typical learning experience
of working with erroneous examples. Second, analysis of the
instructional materials from the Isotani et al. (2011) study showed
us that erroneous examples and problem solving were more com-
parable from a cognitive load perspective. As designed, they both
require active problem solving - in the case of erroneous examples,
finding the error and correcting it; and in the case of problem solv-
ing, generating the solution from the given problem - something
worked examples do not require. Third, as we mentioned in the
introduction, this work focused on simpler decimal problems that
require single-step solutions and, therefore, worked examples may
not be a useful control condition. Studying just the worked exam-
ples without any active problem solving may become redundant,
thus decreasing the amount of mental effort students put into
the lesson. Nevertheless, to more completely compare instruc-
tional approaches, in a future study it would be useful to include
a worked examples condition.

The use of a multiple-choice format for responding during
learning has the disadvantage of enabling students to game the
system by trying responses until one works, but has the advantage
of minimizing cognitive load and guiding learner’s choices so that
learners can focus on content of the lesson. Future research is
needed to examine response formats that reduce cognitive load
during learning without encouraging students to game the system.

In addition, although this study included a one-week delayed
test, it would be useful in future work to examine whether the
effects persist over a longer term. In summary, this study provides
evidence that presenting students with erroneous examples along
with prompts to analyze, explain, and correct the errors can facil-
itate the learning of decimals from a computer-based tutor.
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