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The solving for the shape of a raindrop, as reported by [1] is repeated in this project. Its governing equations
are derived from basic equations, and the resulting solutions provided by numerical computations. The computer
program procedure is also discussed. A comparison of the resulting model is done against the original paper [1]
and with a photo of a raindrop from [2].

I. INTRODUCTION

To a layperson, a raindrop would have the shape of a tear
drop, as often renditioned in popular media. However, to an
acute individual, and as pointed out fervently by Fraser [17],
a raindrop would have more of a spherical shape. The tear
drop shape applies only just as the drop falls from a surface.
It would then take a somewhat spherical form, and then distort
to a shape like an oblate spheroid that many call a ’hamburger
shape.’ This is mainly because of the drag force on the falling
drop causing it to be flattened. There are also other factors that
give a raindrop its shape. Five key factors commonly agreed
to affect the raindrop shape are

• surface tension

• hydrostatic pressure

• aerodynamic pressure

• internal circulation

• electric stress

Due to the scope of each factor and in keeping with the origi-
nal work [1], the derivation in this paper neglects internal cir-
culation and electric stress. There is another paper [3] that gar-
nered a large number of citations prior to [1], and even though
Beard and Chuang drew a lot from Pruppacher’s work, they
have refined the derivations and used slightly different tech-
niques to arrive at a more accurate model. Much work has
been done on calculating the shape of raindrops, and one may
wonder why. A common application is so that the axis ra-
tios and exact shape profiles of the drops can be determined
to investigate how the drops would appear on weather satel-
lites. By knowing the shapes, one can determine the intensity
of rain and clouds from satellite images.

II. THEORY

A. Calculation of drop shape

The governing physical equation determining the drop
shape is the Laplace-Young equation for pressure balance at
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the drop surface (see Eq (B9) for derivation)
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)
= ∆p (1)

where ∆p = pi − pe is the pressure difference across the
interface, and R1 and R2 are the radii of curvature. Using the
tangential coordinate system (see Appendix A 2), substituting
Eqs (A2) and (A3), Eq (1) becomes
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Tangent angle coordinate system auxilliary equations:

dx

ds
= cosφ (3a)

dz

ds
= sinφ (3b)

By assuming the external pressure as, pe = 0, and internal
pressure as pi = (pi)t + ∆ρgz, Bashforth and Adams (1883)
were able to determine the shape of a sessile drop. ∆ρ =
ρw − ρa is the density difference between the fluid inside the
boundary and the fluid outside. Since the curvatures at the top
of the drop are equal, i.e. R1 = R2, substituting the pressure
expressions into Eq (1) gives (pi)t = 2σ/Rt, where Rt is the
radius of curvature at the top. Eq (2) thus becomes
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sinφ
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)
=

2σ
Rt

+ ∆ρgz (4)

The shape can be calculated by forward integration of
ds/dφ, from tangent angle 0 to 180o, however, it is conve-
nient to use the dimensionless form of Eq (4)

σ
dφ

dS
= − sinφ

X
+

2
C

+ Z (5)

where dS = bds,X = bx, C = bRt and Z = bz, and inverse
length b =

√
∆ρg/σ.

B. Simple calculations using the new model

Aerodynamic pressure can be added to Eq. (2) to give

σ

(
dφ

ds
+

sinφ
x

)
= (pi)t + ∆ρgz − pa (6)
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FIG. 1: Diagram of curve for the drop surface in the x-z plane with
radius of curvature R1 given by BP and R2 by AP (both lying on the
perpendicular to the curve at P). Adapted from Beard and Chuang
[1]. At the side, a 3D revolvement of the drop.

At top, pi = (pi)t and pa = (pa)t, so curvature 2σ/Rt =
(pi)t − (pa)t, and Eq. (6) becomes

σdφ = −σ sinφ/x+ 2σ/Rt + ∆ρgz + (pi)t − (pa)t (7)

with dimensionless form

dφ

dS
= − sinφ

X
+

2
C

+ Z +
1
σb

[(pa)t − (pa)] (8)

Following [4], the aerodynamic pressure is based on measured
distribution around sphere where θ = 0 at the lower pole, so

pa =
1
2
ρU2

0κ(θ) (9)

where κ(θ) is the dimensionless pressure distribution. The
κ(θ) distribution is obtained from a cubic spline interpolation
of data from experiments by Fage [5].

Since (pa)t = (1/2)ρaU
2
0κt and κt = κ(π), Eq (5) be-

comes

dφ

dS
= − sinφ

X
+

2
C

+ Z − We

Q
[κ(θ)− κ(π)] (10)

where We = aρU2
0 /2σ is the Weber number, Q = bq is

the dimensionless drop radius, q is the radius of an equivalent
volumn sphere

Eq (10) can be solved by forward integration from the up-
per to lower poles, using the initial condition that its initial
curvature is dφ/dS = 1/C (since Z = 0, κ(θ) = κ(π),
and dφ/dS = sinφ/X), and the boundary condition that the
curve must be closed. This latter condition should be satisfied
when the pressure support equals the weight of the drop.

C. Raindrop shape using pa for a

At a given Reynolds number,

Re =
ρaU0d

µa
, (11)

the pressure drag can be calculated from the following integral
of the pressure drag coefficient [1, 5]

Cdp =
∫ θ=π

θ=0

p− p0
1
2ρU

2
0

d(sin2 θ)

= 2
∫ π

0

κ(θ) cos θ sin θdθ (12a)

and substituted into the drag equation from [6]

D =
1
2
CdρaU

2A (13)

To calculate the pressure drag at other Reynolds numbers, it
is convenient to use an empirically defined analytical formula.
Achenbach [7] proposed the formula, for a sphere,

Cdf/Cd = BRe−m (14)

with B = 5.48, m = 0.50, and Cd = Cdf + Cdp. How-
ever, this is only valid for critical Reynolds numbers (see Fig
3), Re ∼ 105, but raindrops have Re values in the range
(1500-5000). Beard and Chuang [1] also referred to data from
LeClair [8] which provides drag coefficients at low Reynolds
numbers. Since there are no experimental values in the desired
range of Re, Beard and Chuang did a linear interpolation be-
tween Achenbach’s and LeClair’s data.

Fig 4 shows the points selected from [7], and Fig 5 shows
the region ofRe between data provided by [7] and [8]. Rather
than use the linear interpolation method used in [1], a possi-
bly more accurate 4th-order polynomial fit was used. Only
this and the 5th-order fits were suitable for moderate power
polynomials, but the 4th order is lower.

Since the graph in Fig 5 is ln-ln, the empirical formula for
the pressure drag coefficient is

Cdp = Cd

(
1− eP (x)

)
(15)
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FIG. 2: Experimental data of the dimensionless pressure distribution,
around a sphere, for Re = 157200, from [5] and its cubic spline
interpolation. The Reynolds number is in the critical regime (see Fig
3).
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FIG. 3: Drag coefficient of a sphere explaining the four flow regimes.
So Fage’s results are only for the narrow range.

FIG. 4: Since no tabulated data was provided in [7], this graph was
scanned and necessary points extracted from the raster image after
some callibration.
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FIG. 5: Frictional drag within the region of interest (shaded in blue).

where

P (x) = P0 + P1 lnx+ P2(lnx)2 + P3(lnx)3 + P4(lnx)4

(16)
and P0 = 5.7, P1 = −3.7, P2 = 0.8, P3 = −0.078, and
P4 = 0.0025.

It is appropriate to calculate Re from a sphere of equiva-
lent volume rather than directly from the shape of the rain-
drop of its oblate spheroid approximation, since the resulting
fractional error is only 0.01.

III. CALCULATIONS ADJUSTED FOR SHAPE

1. Pressure distribution around a spheroid.

Since the raindrop gets flattened from a sphere, the equa-
tions that apply to spheres should be adjusted to an oblate
spheroid. The pressure distribution around a spheroid can be
first investigated using potential flow to determine the velocity
at the surface. Using the techniques of complex potentials as
in [9], the potential, in the z-plane, for streaming flow past a
sphere can be determined to be

w = −U0

(
z +

q2

z

)
(17)

Even though, strictly, the complex potential applies to two-
dimensional flow, since this problem is axisymmetric, it is
possible to extend this to a sphere [10]. The stream function
and velocity potential for a sphere are thus

ψ =
1
2
U0r

2 sin2 θ

(
1− q3

r3

)
(18a)

φ = U0

(
r cos θ +

a3 cos θ
2r2

)
(18b)

This potential can then be subjected to a conformal trans-
formation to the oblate spheroidal coordinates (see Appendix
A 4), giving the surface velocity as

Uη = U0 sin η[(λ2 +1)− sin2 η]−1/2[(λ2 +1)cot−1λ−λ]−1

(19)
where λ is the ratio of the axis ratio to the eccentricity λ =
α/ε, ε = (1− α2)−1/2.

Once the velocity at the surface is known, the pressure can
be determined by Bernoulli’s principal

B = p0 +
1
2
ρaU

2
0 = p(θ) +

1
2
ρaU(θ)2

= p(η) +
1
2
ρaU

2
η (20a)

where the last part of the equation represents pressure and
velocity in oblate spheriodal coordinates. The dimensionless
pressure is thus

χα(η) = 1−
U2

η

U2
0

(21)

To use this to get a correction for the pressure distribu-
tion, we assume that the fractional deviation of the corrected
pressure from Fage’s measurements for a sphere are the same
as the fractional deviation in potential flow around an oblate
spheroid from a sphere. Using the stagnation point as ref-
erence, this is defined as [1 − K(ψ)]/[1 − κ(ψ)] = [1 −
χα(ψ)]/[1−χ(ψ)], whereK(ψ) is the corrected pressure and
χ(ψ) = 1 − 9

4 sin2 ψ is the pressure distribution around a
sphere. So the corrected pressure is

K(ψ) = 1− Γα[1− κ(ψ)] (22)
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where, from potential flow

Γα = [1−χα(ψ)][1−χ(ψ)]−1 = [Uη(ψ)/V ]2
[
9
4

sin2 ψ

]−1

(23)
Starting with tan η = α−1 tanψ, and using tanη = yη/xη

such that sin η = y/(x2
η + y2

η)−1/2, we have

sin2 η =
y2

η

x2
η + y2

η

(24a)

=
1

cot2η + 1
(24b)

=
1

(α cotψ)2 + 1
(24c)

=
sin2 ψ

α2 cosψ + sin2 ψ
(24d)

which can be substituted into Eq (23) to give the adjustment
factor of

Γα =
4
9
λ−2[(λ2 + 1) cot−1 λ− λ]−2 (25)

since λ = α[1− α2]−1/2.
It is important to note that separation of flow occurs around

a raindrop after a certain angle, just like it does for a sphere.
So the potential flow solution is valid only for the unseparated
flow region, which is from 0o to 72o. In the wake region, 88o

to 180o, the adjustment is taken to be a constant Γ = Γd,
which is determined by balancing the drag in Eq (12a) with
the drag from the empirical relation, Eq (15). The transition
region in between is just assumed to be a linear transition from
Γα to Γd.

To summarize, the value of Γ depends on the angles as

• 0 to 72o: unseparated flow, Γα given by (25)

• 72o to 88o: simple linear transition

• 88o to 180o: wake, constant adjustment Γ = Γd

2. Raindrop shape using an intermediate force method

Finally, it remains for the weight of raindrop to equal the
drag force. This is accomplished by using the intermediate
forcing method introduced in [1], composed of both the in-
creased drag and ”reduced-weight” methods. This involves
changing b from Eq (8) to

b = [c′∆ρg/σ]1/2 (26)

where c′ = 0.5(1 + Cdp/Cd), and multiplying the cor-
rected pressure distribution with an amplitude factor to be-
come ΛK(ψ), to satisfy the lower boundary condition.

IV. PROCEDURE

A. Initialization

To test the implementation of the model, certain parameters
should be initialized. There were two ways that were em-
ployed

• From tables in Beard and Chuang’s paper [1]

• From a photo of a raindrop from Magono’s paper [2]

From the tables, diameters, d, can be chosen, and fall veloc-
ities, U0 can be determined to provide the appropriate Re
values. The axis ratio, α, pressure amplitude, Λ, and wake
adjustment, Γd can be initialized using values the same row
as d. From the photo, the boundary of the raindrop is de-
termined via edge-detection techniques and a curve plot de-
termined. From this vector plot, the width, w, and axis ra-
tio of the drop can be measured. Also, the diameter of the
equivalent volume sphere can be calculated from the relation
V = π/6d3 = απ/6w3 to give

d = α1/3w (27)

The remaining parameters, Λ, and Γd can be estimated from
the appropriate rows in tables of [1].

B. Requirements

The solution of the shape of the raindrop by integrating Eq
(10) involves quite a number of iterations and repetitions be-
fore a final steady solution is reached. Basically, this has been
broken down into three actions:

• Balance volume,

• Balance drag, and

• Balance weight

Balancing the volume requires the raindrop, corresponding to
a sphere of diameter d, has the same volume as the latter. This
is accomplished by iterating values of Rt under a bracketing
root finding scheme. Balancing the drag force requires that
Cd is adjusted in Eq (12a) until the drag coefficient is equal to
that in the empirical formula Eq (15). Balancing the weight
requires that the amplitude factor Λ for the pressure distribu-
tion κ(ψ) is moderated until the drag force (Eq (13) is equal
to the weight, W = V ρg of the raindrop. All methods have to
utilize bracketing root finding schemes, since the derivatives
of their functions are unknown.

Idealy, repeated application of these steps should allow the
shape to converge to a steady state with closure at the bottom
pole. However, this was not found to be for the program im-
plemented. Therefore, an alternative to the balancing of the
weigh has been introduced. As it is more important for the
shape to be closed, a fourth action performs the following

• Close shape

This is done by increasing Λ from a small value until just be-
fore the shape is open at the bottom pole.
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C. Executable stages

With the preceding requirements, the program has been
broken down into 6 executable stages. Having performed the
initializations, these are the steps to obtain the shape of a rain-
drop

1. Run to iterate Rt, to balance volume

• produces values for Rt, cross-sectional area, A,
and α

• which should be set to prepare for Stage 2

2. Run to iterate Γd, to balance drag

• produces value for Γd

• which should be set to prepare for Stage 4

3. Run to iterate Λ, to balance weight (NOT USED)

4. Run to increment Λ, to close shape

• produces value for Λ

• which should be set to prepare for Stage 5

5. Run to print summary result

6. Run to print coordinate points to be used for plotting

Note that, unfortunately, the drag force would not equal the
weight.

D. Issues

Due to anomalies in the program, one major issue was the
inability to have convergent drag forces and weights. Even
though this currently provides strictly non-physical answers,
this problem can be resolved given time such that the require-
ments as in [1] can be satisfied.

Another issue was the error margins used in the program.
Due to the lack of time and computing resources, larger er-
ror margins were used in calculations than in [1]. An artifact
of this leniency is the jaggedness in the change in shape with
respect to the parameters when observed at high resolutions.
This leads to root finders occasionally complaining that the
functions are discontinuous. The error bounds used are as fol-
lows

TABLE I: Error constraints set in the C program

Name Value
RES DEG 1
BRACKET ERR 1.0e-6
NEWTON ERR 1.0e-5
INTEGRATION ERR 1.0e-5
ERR PHI 1.0e-4
ERR PHI FACTOR 10

Also, the stages were run only once per result, so the re-
sults would contain some significant error. If there was more
time, a scheme for running the stages multiple times could be
developed to allow for more stable solutions.

E. Physical constants

The following are the physical constants used in the pro-
gram, from [11].

TABLE II: Error constraints set in the C program

Physical constant Value
Water-air surface tension, σ 72.75 dynes/cm
Water density (at 20oC), ρw 0.99821 gm/cm3

Air density (at 300K, 1 bar), ρa 1.161 kg/m3

Air viscosity (at 300K, 1 bar), µa 18.6 µPa-s
Standard gravity, g 9.80665 m/s2

V. RESULTS

A. d = 1, 2, 3, 4, 5, and 6 mm

After calculating a few million points and selecting only
those at integer degree tangent angle increments, the raindrop
shapes are plotted and shown in Fig 6. Notice that larger rain-
drops have smaller axis ratios and all shapes have the points
of largest curvature below the center horizontal line.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x[mm]

z[
m

m
]

FIG. 6: Drop shape for d = 1, 2, 3, 4, 5, and 6 mm with origin
at center of volume. Shown for comparison are dashed circles of
diameter d.
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TABLE III: Raindrop size parameters (Re), model axis ratios α, volume V and cross-sectional area A, with the pressure distribution adjusted
for drag and distortion (Γd, Λ), and drag force and weight (D, W ).

d (mm) Re α V (mm3) A (mm2) Rt (m) Γd Λ D (N) W (N)
1.0 263 0.958 0.510 0.791 0.507 0.731 3.102 0.0021 0.0050
2.0 863 0.916 4.238 3.339 1.067 0.869 0.992 0.0283 0.0414
3.0 1593 0.868 14.956 8.022 1.721 1.044 0.591 0.1136 0.1462
4.0 2267 0.811 36.822 15.295 2.518 1.233 0.455 0.2777 0.3600
5.0 3012 0.744 73.805 25.716 3.534 1.381 0.418 0.5157 0.7217
6.0 3625 0.695 129.603 39.165 4.793 1.615 0.374 0.8103 1.2672
7.0 4230 0.636 204.228 56.116 6.425 1.708 0.372 1.1840 1.9969
8.0 4834 0.572 315.783 80.270 8.924 1.928 0.343 1.7210 3.0877
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FIG. 7: Graphs illustrating the relationships of the axis ratio, program parameters, and physical properties with respect to sphere diameter. The
nth-order polynomial (Pn) fits are: α ∼ P1(d), Vs ∼ P3(d), V ∼ P3(d), A ∼ P2(d), Rt ∼ P2(d), Γd ∼ P1(d), Λ ∼ P6(d), D ∼ P3(d),
W ∼ P3(d).
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FIG. 8: Deviations from circle lines in polar r-θ (left) tangential s-φ
(right) and coordinates mapped in the cartesian plane, for d = 1, 2, 3,
4, 5, 6, 7, and 8 mm.

Input parametric values and results for integer mm values
of the equivalent-volume sphere diameter d and are shown in
Table III, and represented in Fig 7. As can be seen from the
graphs, the axis ratio, α, decreases linearly with increasing
d, and the radius of curvature at the top. In accordance with
dimensionality, the raindrop volume, V , increases as a cubic
function in d, and the cross-sectional area, A, increases as a
quadratic function in d. One can see that because of the non-
conservation of weight in the failure of Stage 3 of the pro-
gram procedure, the calculated raindrop shape grows faster
than the volume of the sphere. This can also be observed for
the divergence between the weight of the raindrop, W , and
the drag force on it, D. It is interesting to note that the con-
figuration parameters, Rt, and Γd, are quadratic, and linear
functions of d, respectively. However, Λ requires a 6th-order
polynomial fit for its values, given the excessively high value
for d = 1.0mm.

Fig 8 shows the polar and tangential coordinates for rain-
drops of varying sizes and their equivalent-volume spheres
in the cartesian representation. Deviations from the lines for
spheres increase for larger raindrops.

B. Raindrop of width 4.8mm

The case for a raindrop of width, w, 4.8mm and speed,
U , 8.3m/s is more thoroughly discussed in this section and
compared against photographic evidence provided in [2]. The
scanned photograph of the raindrop is analyzed and the con-
tour of the raindrop edge-detected to produced a vectorized
curve (see Fig 9). From the curve, and knowing that the width
of the raindrop is specified to be 4.8mm, the diameter of the
equivalent-volume sphere, d, is determined to be 4.36mm.
The model is then calculated for these d and U values.

The raindrop contour from the photograph has been sized
to the same scale as that of the model, by a w/xspan factor,
where, where xspan is the width of the contour curve in pixels.
The estimated center of volume of the raindrop contour has
also been shifted to the origin (though possibly slightly too
high) to compare appropriately with the model. Fig 10 shows
that the top portion of the model fits quite well with the photo,
while the bottom portion is too low. This lack of flatness at the
bottom was verified with the lower drag values to the weights
as shown in the last graph of Fig 7. Had the drag been raised to
balance the weight, the bottom portion should be flatter. Thus
the axis ratio the model predicts is a little too large.

A 3D model of the raindrop is shown in Fig 11 to provide a
better perspective of what the raindrop would look like physi-
cally, according to the model.

VI. COMPARISON AGAINST ORIGINAL PAPER, BEARD
AND CHUANG 1987

A. d = 5.0mm

Choosing d = 5.0mm, we can compare a particular result
of this implementation of the model with the original [1] (see
Table IV). As can be seen, the axis ratio for the current model
is a little too large, the Γd constant also too big, and the Λ am-
plitude too low, therefore giving higher weight than drag. Fig

FIG. 9: Photos from [2], with the left showing the original and the
right showing the edge-detected boundary of the raindrop used for
comparison with model.
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FIG. 10: Comparison of model with photograph of a raindrop of
width 4.8mm, U = 8.3m/s, from [2].
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FIG. 11: 3D rendering of a raindrop of d = 4.3755mm, U = 8.3m/s,
Re = 2267, corresponding to the photograph in Fig 9. A wireframe
of a sphere of diameter d is also overlayed.

12 and Fig 13 show graphically that the implemented model
is flatter than the original, but its width is just only slightly
larger.

TABLE IV: Comparison of models in this project with the original
[1] for d = 5.0mm, Re = 3021.

Source α Γd Λ

Lim 0.744 1.381 0.418
Beard and Chuang 0.694 1.050 0.778
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FIG. 12: Comparison of polar coordinates between implemented and
original models.

B. Shape coefficients, cn

A more rigorous method to compare the models would be
to Fourier analyze of each shape. The drop surface can be
represented by a cosine series distortion on a sphere

r = q

(
1 +

10∑
n=0

cn cosnθ

)
(28)
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FIG. 13: Comparison of shape between implemented and original
models.

where q = a0/2, is the sphere radius, and cn = an/q, with
an the Fourier cosine coefficients as in Appendix C 6, and cn
are the deformation or shape coefficients. Table VI lists the
coefficients for d =1, 2, 3, 4, 5, 6, 7, and 8mm. Diameters
d =1, 2, 3, 4, 5, and 6mm were compared against those of
[1], and the differences compiled in Table V. Fig 14 shows
a bar chart for d = 5.0mm. The discrepancy between the
models are not too big, and the differences converge for small
raindrops, as expected, since small raindrops approximate to
spheres.

−2 0 2 4 6 8 10 12
−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

n

c n

Beard and Chuang 1987
Current model

FIG. 14: Comparison of shape coefficients between implemented and
original models.

TABLE V: Comparison of shape coefficients from the implemented
model (c′n) with Beard and Chuang (cn). Deviations in percentage
are computed from ∆cn = cn − c′n.

d (mm)
P
|∆cn|

P
|cn|

P
|∆cn| /

P
|cn| × 100%

2.0 0.017 0.075 22.3
3.0 0.047 0.151 31.2
4.0 0.094 0.246 38.1
5.0 0.141 0.333 42.3
6.0 0.197 0.421 46.7
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TABLE VI: Coefficients from the cosine series fit to the computed shapes.

Shape coefficients [cn × 104]
d (mm) n = 0 1 2 3 4 5 6 7 8 9 10

1.0 -164 83 -216 -80 -13 10 6 0 -2 -1 1
2.0 -119 -103 -446 -128 -12 19 2 -4 -10 -4 -4
3.0 -66 -81 -712 -157 12 39 8 -2 -6 1 1
4.0 -69 -88 -1049 -186 49 57 3 -11 -12 -1 -2
5.0 -209 -178 -1175 -187 73 70 1 -13 -12 3 -1
6.0 -153 -168 -1462 -202 124 90 -4 -22 -14 6 0
7.0 -242 -206 -1783 -172 199 95 -24 -34 1 8 -4
8.0 -451 -223 -2157 -151 315 117 -45 -47 -10 22 0

VII. NOMENCLATURE

A cross-sectional area of raindrop
b inverse length intrinsic to Laplace’s equation [=

p
∆ρg/σ]

B Bernoulli constant along a streamline
C dimensionless radius of curvature at the top pole [=bRt]
c′ adjustment constant on b for mean forcing method
Cd total drag coefficient
Cdf friction drag coefficient
Cdp pressure drag coefficient
d diameter of equivalent volume sphere
D drag force on raindrop
g acceleration due to gravity (standard gravity)
pe external pressure
pi internal pressure
q radius of equivalent volume sphere [=d/2]
Q dimensionless radius of equivalent volume sphere [=bq]
Re Reynolds number
R1, R2 orthogonal radii of curvature
Rt radius of curvature at the top pole
s arc length measured from the top pole
S dimensionless arc length measured from top pole [=bs]
SA surface area of raindrop
U0 raindrop fall velocity
V volume of raindrop
w width of raindrop
W weight of raindrop
We Weber number
X dimensionless x-coordinate [=bx]
Z dimensionless z-coordinate [=bz]
α axis ratio of raindrop
Γ flow adjustment for distortion around oblate spheroid
Γα potential flow adjustment around oblate spheroid
Γd pressure drag adjustment around oblate spheroid
η elliptic hyperbola coordinate
φ tangent angle measured from the horizontal at the top pole
κ(ψ) dimensionless pressure distribution around a sphere

K(ψ) dimensionless corrected pressure distribution adjusted for
distortion around oblate spheroid

µa dynamic viscosity of air
∆p pressure difference across drop surface [=i − pe]
∆ρ density difference between water and air [=ρw − ρa]
θ polar angle measured from bottom pole
σ water-air surface tension
ξ elliptic ellipse coordinate
ψ tangent angle measured from the horizontal from the

bottom pole
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APPENDIX A: COORDINATE GEOMETRY

1. Curvature

Of interest in this paper is the basic extrinsic curvature, with
particular attention to the radius of curvature. The radius of
curvature, analogous to the radius of a circle, is defined by the
differential relation ds = rdθ where s is the arc length and θ
the angle between two subtended radii to the arc, as shown in
Fig 15. The curvature is simply defined as ρ = 1/r, so

FIG. 15: A curvilinear rectangular element of a surface separating
two fluids (adapted from [12]

ρ = 1/r =
dθ

ds
(A1)

In 3D, there would be two radii of curvature defined by any
two orthogonal arcs at each point on the surface. See Fig 22.

2. Tangential Coordinate System

Following the explanations in [13], this section describes
the tangential coordinate system used to calculate the shape
of a raindrop.

For an arbitrarily curved surface, there would be two princi-
pal curvatures at every point due to arcs on the surface orthog-
onal to each other. Considering only axisymmetric surfaces,
it is convenient to take one curvature in the meridional cross
section, so that ds = r1dφ, where s is the arc length from
the origin, defined as the ‘top’ pole, and θ the angle between
the tangent at the surface to the horizontal. See Fig 16. The
curvature is then

1
r1

=
dφ

ds
(A2)

Fig 17 demonstrates the tangential coordinate system with
a circle in cartesian coordinates, with tangential parameters,
and maps them to a cartesian representation. Notice that the
φ(s) function is always monotonic since both φ and s can only
increase.

The other principal curvature is determined from the zonal
cross section, noting from Fig 17 that x = r2 sinφ, such that
the curvature is

1
r2

=
sinθ

x
(A3)

Referring to the differential relation illustrated in the insert

FIG. 16: 3D diagram showing curvatures

FIG. 17: Diagram showing a circle in cartesian coordinates with tan-
gential parameters and in tangential coordinates. Note that φ(S) is
monotonic.

of Fig 17, it follows that

dx

ds
= cos θ (A4a)

dy

ds
= sin θ (A4b)

dy

dx
= tan θ (A4c)

3. Elliptic Coordinate System

Starting with elliptical coordinates[14], the oblate
spheroidal coodinates can be derived. This system defines
coordinates in terms of confocal ellipses and hyperbolas. The
ellipse coordinate, ξ, is defined with the semi-major axis of
the ellipse, ae = (d1 + d2)/2, while the hyperbola coordinate
system is defined with distance between x-intercepts of the
hyperbola, ah = (d1 − d2)/2. Thus the coordinates are

ξ =
ae

f
=
d1 + d2

2f
(A5a)

η =
ah

f
=
d1 − d2

2f
(A5b)

where d1 and d2 are the distances from the foci to the point of
interest, and f is the distance from the center to each focus.
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FIG. 18: Elliptic coordinate system with coordinates ξ and η repre-
senting ellipses and hyperbolas.

We thus have, for the ellipse

ae = fξ (A6a)

be = a2
e − f2 = f

√
ξ2 − 1 (A6b)

and for the hyperbola

ah = fη (A7a)

bh = f2 − a2
h = f

√
1− ξ2 (A7b)

a. Elliptic to Cartesian Coordinates

Substituting ξ and η into the cartesian equations for ellipse,
and hyperbola

(x/ae)2 + (z/be)2 = 1 (A8a)
(x/ah)2 − (z/bh)2 = 1 (A8b)

we get

x2

ξ2
+

z2

ξ2 − 1
= f2 (1 < ξ <∞) (A9a)

x2

η2
+

z2

1− η2
= f2 (−1 < η < 1) (A9b)

FIG. 19: Parameters associated with ellipses and hyperbolas.

Solving Eqs A9a and A9b for x and z produce the Cartesian-
Elliptical coordinates relations

x = fξη (A10a)

z = f
√

(ξ2 − 1)(1− η2) (A10b)

b. Elliptic to Polar Coordinates

To map the elliptic coordinates to polar coordinates, con-
sider the asymptotes of the hyperbolas. The angle the asymp-
tote in the first quadrant makes with the x-axis for the hyper-
bola, (x/ah)2 − (z/bh)2 = 1 is defined as tanϕ = bh/ah.
From Eq A9b, this means

tanϕ =
η√

1− η2
(A11a)

cosϕ = η (A11b)

From Fig 20, the polar angle to the point of interest is de-

FIG. 20: Relating elliptic coordinates to polar coordinates.

fined as tan θ = xe/ze, while the angle for the asmyptote is
tanϕ = xe/zc. Dividing the two tangents, we get

tanϕ
tan θ

=
ze

zc
=
be
bc

=
ae

be
= α (A12)

So we have the relation to be used, tanϕ = α tan θ.

c. Elliptic to Tangential Coordinates

To relate the elliptic coordinates to tangential coordinates
referenced to the lower pole, consider the cartesian equation
of the ellipse, (x/ae)2 + (z/be)2 = 1, and taking a derivative
with respect to z

2x
a2

e

+
2z
b2e
z′ = 0 (A13)

Where z′ = dz/dx. Rearranging and substituting for the point
of interest, as shown in Fig 21

z′ = − b
2
e

a2
e

xe

ze
= −α2 tan θ (A14)
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Since, z′ is the gradient of the tangent line, making an angle
psi′ with the x-axis, we have z′ = − tanψ, which gives

tanψ = α2 tan θ (A15)

FIG. 21: Relating elliptic coordinates to tangential coordinates refer-
enced to the lower pole.

4. Oblate Spheroidal Coordinate System

This is just the revolving of the elliptic coordinate system
about the z-axis and leads to the following expressions

x = fξη sin θ (A16a)
y = fξη cos θ (A16b)

z = f
√

(ξ2 − 1)(1− η2) (A16c)

where θ is the polar angle.

APPENDIX B: EXTENDED DERIVATIONS

1. The Laplace-Young equation

The following is an adaptation from the derivation given in
[12].

Work done by excess pressure

δW = ∆pSδr (B1)

Increase in surface energy

δU = σδS (B2)

Subst. x and y

δU = σ[(x+ δx)(y + δy)− xy] (B3)

Using similarity of triangles O1A
′B′ and O1AB

x+ δx

r1 + δr
=

x

r1
(B4)

FIG. 22: A curvilinear rectangular element of a surface separating
two fluids (adapted from [12]

Thus

x+ δx = x

(
1 +

δr

r1

)
(B5)

Similarly for O2B
′C ′ and O2BC

y + δy = y

(
1 +

δr

r2

)
(B6)

Subst. into Eq (B3)

δU = σ

[
xy

(
1 +

δr

r1

)(
1 +

δr

r2

)
− xy

]
= σxyδr

(
1
r1

+
1
r2

)
+O(δr2)

= σSδr

(
1
r1

+
1
r2

)
+O(δr2) (B7a)

where S = xy.
Equating (B1) to (B7a), neglecting quadratic terms in

change

∆pSδr = σSδr

(
1
r1

+
1
r2

)
(B8)

∆p = σ

(
1
r1

+
1
r2

)
(B9)

APPENDIX C: NUMERICAL METHODS

1. 4th-Order Runge-Kutta Method

The differential equations governing the drop shape are in-
tegrated using a 4th-order Runge-Kutta scheme.
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a. Classical Runge-Kutta Method

The classical method [18] is summarized as

k1 = hf(xn, yn), (C1a)

k2 = hf(xn +
h

2
, yn +

h

2
k1), (C1b)

k3 = hf(xn +
h

2
, yn +

h

2
k2), (C1c)

k4 = hf(xn +
h

2
, yn + k3), (C1d)

∆yn =
1
6

(k1 + 2k2 + 2k3 + k4) (C2)

yn+1 = yn + ∆yn (C3)

where y′ = f(x, y) is the function derivative of y, h, is the
step size, which should be small, andy(x0) = y0 is the initial
condition.

b. Modified Runge-Kutta Scheme

However, due to the combination of variables from carte-
sian and tangential coordinate systems in Eq (10), the Runge-
Kutta method has to be modified, as done by Hartland and
Hartley (1976).

The system of differential equations are repeated here

dφ

dS
=

2
C

+ Z − sinφ
X

− We

Q
[κ(π − φ)− κ(π)] (C4)

dX

dS
= cosφ (C5)

dZ

dS
= sinφ (C6)

with boundary conditions

dφ

dS
=

sinφ
X

=
1
C

(C7)

where X = Z = φ = 0.

dV

dS
= πX2 sinφ (C8)

dA

dS
= 2πX (C9)

For a step length h = ∆S, increments in φ, x, z, V , and A

are given by

∆φ =
1
6
(∆φ1 + 2∆φ2 + 2∆φ3 + ∆φ4) (C10a)

∆X =
1
6
(∆X1 + 2∆X2 + 2∆X3 + ∆X4) (C10b)

∆Z =
1
6
(∆Z1 + 2∆Z2 + 2∆Z3 + ∆Z4) (C10c)

∆V =
1
6
(∆V1 + 2∆V2 + 2∆V3 + ∆V4) (C10d)

∆A =
1
6
(∆A1 + 2∆A2 + 2∆A3 + ∆A4) (C10e)

where

∆φ1 = {2/C + Z − sinφ/X
−We[κ(π − φ)− κ(π)]/Q}∆S

∆X1 = cosφ∆S
∆Z1 = sinφ∆S
∆V1 = πX2 sinφ∆S
∆A1 = 2πX∆S

∆φ2 = {2/C + (Z + ∆Z1/2)
− sin(φ+ ∆φ1/2)/X}∆S
−We[κ(π − φ−∆φ1/2)− κ(π)]/Q}∆S

∆X2 = cos(φ+ ∆φ1/2)∆S
∆Z2 = sin(φ+ ∆φ1/2)∆S
∆V2 = π(X + ∆X1/2)2 sin(φ+ ∆φ1/2)∆S
∆A2 = 2π(X + ∆X1/2)∆S

∆φ3 = {2/C + (Z + ∆Z2/2)
− sin(φ+ ∆φ2/2)/X]∆S
−We[κ(π − φ−∆φ2/2)− κ(π)]/Q}∆S

∆X3 = cos(φ+ ∆φ2/2)∆S
∆Z3 = sin(φ+ ∆φ2/2)∆S
∆V3 = π(X + ∆X2/2)2 sin(φ+ ∆φ2/2)∆S
∆A3 = 2π(X + ∆X2/2)∆S

∆φ4 = {2/C + (Z + ∆Z3)
− sin(φ+ ∆φ3)/X]∆S
−We[κ(π − φ−∆φ3)− κ(π)]/Q}∆S

∆X4 = cos(φ+ ∆φ3)∆S
∆Z4 = sin(φ+ ∆φ3)∆S
∆V4 = π(X + ∆X3)2 sin(φ+ ∆φ3)∆S
∆A4 = 2π(X + ∆X3)∆S

The algoritm was implemented in Matlab, where ∆ is denoted
by D, and φ by phi.
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2. Search Methods for Solutions at Points of Interest

a. Solution at Given Angle

Using the definition of differentiation from first principles

dφ

dS
= lim

∆S→0

(φ)S+∆S − (φ)S

∆S
≈ ∆φ

∆S
, (C15)

we can find the next step size as

∆S∗ ≈ φ∗ − φn

(dφ/dS)n
(C16)

b. Point of Inflection

Other points of interest are points of inflection where
dφ/dS = 0, shown as stationary points on the φ-S graph,
like in Fig 17. Here, we also use derive from first principle,
for second order differentiation

d2φ

dS2
= lim

∆S→0

(dφ/dS)S+∆S − (dφ/dS)S

∆S
≈ ∆(dφ/dS)

∆S
,

(C17)
and since dφ/dS is zero here,

∆S∗ ≈ − (dφ/dS)n

(d2φ/dS2)n
(C18)

3. Newton-Raphson Method to estimate ∆S at exact φ∗, near
determined φ

The Newton-Raphson method is used to determine ∆S at
desired ∆φ values. This is required since it is a backward
process given that ∆S is actually the parameter in equation
C10a.

a. General Derivation of Newton-Raphson Method

Consider the Taylor expansion of a function y = f(x)

y = f(xα)+f ′(xα)(x−xα)+f ′′(xα)(x−xα)2+· · · (C19)

where f ′ is the first derivative of f , f ′′ the second, and so
on. Neglecting the nonlinear terms, for small (x − xα), and
rearranging to find the x-intercept when y = 0, we get

x = xα −
f(xα)
f ′(xα)

(C20)

Setting xα = xn to be the current iteration for the x-intercept
and x = xn+1 for the next iteration, we arrive at the recursive
relation

xn+1 = xn −
f(xn)
f ′(xn)

(C21)

FIG. 23: Graph showing the progression of the Newton-Rhaphson
method.

b. Procedure for Newton-Raphson Method

Since it is desired for φ to reach φ∗, we set f(S) = φ(S)−
φ∗ such that f(S∗) = 0, where S∗ is the value of S when
φ = φ∗. We then have f ′(S) = φ′(S) − 0. Substituting into
Eq (C21) gives

Sn+1 = Sn −
(φ)n − φ∗

(dφ/dS)n
(C22)

Repeat until (φ)n − φ∗ < εφ∗ .

c. Limitations of Newton-Raphson Method

4. Truncation Error in Numerical Solutions

Truncation error in the Runge-Kutta method contributes the
greatest to the overall error in the numerical method, and thus
other errors are neglected.

For the 4th-order Runge-Kutta method, the error is gener-
ally in the 5th order in the step length ∆S, which may be
written as

∆E ≈ k∆S5 (C23)

where k is some positive constant.
The error in ∆φ is determined by first evaluating the change

in φ, ∆φ1 from ∆S, and then repeating the evaluation from
the same point with two successive steps of ∆S/2, to obtain
∆φ2, as shown in Figure 24. The true change in φ for a step
∆S is

∆φ = ∆φ1 + ∆E1 = ∆φ2 + ∆E2 (C24)

where

∆E1 ≈ k∆S5 (C25a)
∆E2 ≈ 2k(∆S/2)2 = k∆S5/16 (C25b)

since ∆E21 + ∆E22 and ∆E21 = ∆E22 ≈ k(∆S/2)5.
Suppose a constraint for maximum error, ∆E2 < ε∆φ (≡

∆E1 < ε′∆φ) is imposed. Then

∆E2 < ε∆φ = ε(∆φ2 + ∆E2) (C26)
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FIG. 24: Graph showing the error in ∆φ

which after rearranging gives

∆E2 <
ε

1− ε
∆φ2 ≈ ε∆φ2 (C27)

if ε << 1. Rearranging Eq (C24) and substituting Eq (C25a)
and (C25b) gives

∆φ2 + ∆E2 = ∆φ1 + ∆E1

|∆φ2 −∆φ1| = |∆E1 −∆E2|
≤ |∆E1|+ |∆E2|
= 17 |∆E2|
< 17ε |∆φ2| (C28a)

When determining the values at critical angles, first apply
the error constraint, then apply the Newton-Rhapson method
to converge to the values.

Subject to the trunctation error requirement limit, ∆S is
programmed to grow at 10% each step to keep it as large as
possible (up to 2o), for program efficiency.

5. Cubic Splines

A popular interpolation method, cubic splines, determine
piece-wise cubic polynomials between every pair of points,
with the added benefit of smooth continuity. So the functional
value and first derivative at each point are equal also. More
can be read in [15].

6. Fourier Cosine Series

We desire to have an easily reproducible expression for the
shape of the raindrop, in polar coordinates with the center of
mass of the drop as the origin. A Fourier series would be suit-
able for this, and since this function would be an even function
due to the symmetry about the z-axis, the Fourier cosine series
would be appropriate. From [16] we have

f(t) =
a0

2
+

∞∑
n=1

an cos
nπt

L
(C29)

where

an =
2
L

∫ L

0

f(t) cos
nπt

L
(C30)
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