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ABSTRACT
This paper presents the NV-Tree (Nearest Vector Tree). It
addresses the specific, yet important, problem of efficiently
and effectively finding the approximate k-nearest neighbors
within a collection of a few billion high-dimensional data
points. The NV-Tree is a very compact index, as only six
bytes are kept in the index for each high-dimensional de-
scriptor. It thus scales extremely well when indexing large
collections of high-dimensional descriptors. The NV-Tree
efficiently produces results of good quality, even at such a
large scale that the indices cannot be kept entirely in main
memory any more. We demonstrate this with extensive ex-
periments using a collection of 2.5 billion SIFT (Scale In-
variant Feature Transform) descriptors.

1. INTRODUCTION
Finding the k-nearest neighbors (k-nn) of a single query

point in an extremely large collection of high-dimensional
vectors is a core problem at the root of many applications,
such as content-based image retrieval tasks or fine-grained
object recognition. Over the years, it has been observed
and demonstrated [15] that only approximate indexing and
search strategies are viable when the data collections are
very large and/or sufficiently high-dimensional, as approx-
imate high-dimensional approaches are able to trade accu-
racy against dramatic response time improvements. Fol-
lowing that trend, this paper presents an enhanced version
of the NV-Tree [7], which can return the approximate, yet
quite accurate, k-nn of individual query points found in a
collection of few billions of data items stored on disks.

1.1 Large Scale High-Dimensional Data Sets
Recently, various approaches for k-nn retrieval at large

scale were proposed, some even termed as addressing “web-
scale problems” [1, 17, 3]. These approaches, however, are
considering at most several million high-dimensional descrip-
tors. This is in part because they use standard global de-
scription schemes (e.g., MPEG-7, Gist) creating indexed sets
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made of millions of items. While this is already quite im-
pressive, the problem that is tackled in this paper is finding
indexing solutions when the data collections hit the billion
scale. In this case, there is no other choice than using more
advanced description schemes producing much larger data
sets. Note that at that scale it is mandatory to store such
data collections on disks, and the indexing algorithms must
be able to deal with secondary storage accesses.

Sophisticated description schemes involving local descrip-
tion techniques can generate billions of descriptors from mil-
lions of images. This is for example the case with the well-
known SIFT description technique [10], which typically cre-
ates about one thousand 128-dimensional descriptors for a
384×512 pixel image. With SIFT, collections containing a
few million images typically generate high-dimensional data
sets containing a few billion points—such collections are typ-
ical of what real world photo agencies deal with. In this
paper, for example, we use a collection of 2.5 billion SIFT
descriptors from 2.5 million images randomly downloaded
from Flickr. Using local description techniques thus results
in huge collections of high dimensional vectors.

Knowing whether an approximate indexing technique re-
turns high-quality neighbors requires the computation of a
meaningful ground truth. This requires (i) a definition of
a set of meaningful query descriptors, and (ii) the compu-
tation of the exact k-nearest neighbors of each individual
query descriptor, for example using a costly and exhaustive
sequential scan of the whole collection. From that ground
truth, it is possible to evaluate how good a specific approx-
imate technique is, by observing the recall at the level of
each individual query descriptor.

It is imperative to design approximate techniques with
good recall; the result must contain most of what would be
returned in an exact answer. Achieving good recall is often
possible, at a cost of lower precision, by accepting false pos-
itive as part of the result. For some applications, false posi-
tives are acceptable; for other applications, they can simply
be removed after-the-fact. In [7], e.g., the method of me-
dian rank aggregation [4] from additional indices has shown
to work well as a false-positive filter.

1.2 Large Scale Approximate Indexing
The literature contains several very interesting approxi-

mate high-dimensional indexing schemes. One very popular
approximate method is Locality Sensitive Hashing (LSH) [2].
It is based on random projections to segmented lines acting
as hash functions. Multiple hash tables enforce some redun-
dant coverage of the feature space. LSH, however, is by its
nature solving a slightly different problem, as it essentially



answers a range search, gathering points within a predefined
ǫ-distance from the query point. In order to adapt LSH for
nearest neighbor retrieval it has to be configured with a sig-
nificantly large ǫ threshold, which occasionally leads to a
very large number of false positives.

Another approach is the Spill-Tree, proposed in 2004 by
Liu et al. [9], which is a tree-structure based on splitting di-
mensions in a round-robin manner, and introducing (some-
times very significant) overlap in the split dimension to im-
prove retrieval quality. Finally, in 2009, Lejsek et al. pro-
posed the NV-Tree, which is a tree structure based on re-
peated applications of projections to random lines and parti-
tioning of the projected data. The NV-Tree also introduced
overlap between partitions to improve retrieval quality, but
in a much more controlled manner [7].

Overall, all these method are using some form of space
partitioning. They are approximate because they search in
only one or few partitions for efficiency reasons. Therefore,
due to the curse of dimensionality, it is likely that many co-
located points in the high-dimensional space get separated
by partition boundaries. This, in turn, badly impacts recall.
For that reason, these techniques introduce overlap between
partitions in order to compensate for boundary problems
which tend to break the neighborhood in space.

In terms of scale, LSH suffers from the required postpro-
cessing step of filtering out false positives, that requires ei-
ther access to the actual descriptor information, or alterna-
tively a large number of LSH hash tables for aggregation
filtering, as shown in [7]. On the other hand, Spill-Tree
and NV-Tree introduce such a large amount of additional
redundancy, that the size of their index grows exponentially
with the collection size, making their practical use difficult.
The Spill-Tree has the additional constraint of requiring very
many (thousands) processing cores for efficiency. None of
these schemes can therefore work seamlessly with millions
of images or billions of descriptors.

There is another line of work that is specifically dedicated
to indexing local descriptor-based data sets. All those ap-
proaches are able to index a million images because they
rely on some smart form of descriptor aggregation. A semi-
nal approach is Video Google by Sivic et al. [16], where the
many local descriptors of each image are transformed into a
unique vector of higher dimensionality. Then, when process-
ing one million images described with SIFT, only one million
aggregated descriptors are in fact indexed, instead of about
one billion. It is therefore quite easy for all the approaches
along this line to cope with extremely large scales. For ex-
ample, Jégou et al. [5] can index 10 million images in main
memory, partly because local descriptors are aggregated per
image. Other such approaches include [17, 13]. Overall,
these schemes mostly work in main memory settings.

It is absolutely key to note, however, that these approaches
are not tackling the same problem as the one addressed in
this paper. These schemes do image recognition where the
many local descriptors for each image are all used during the
matching process, even once aggregated. Therefore, these
schemes can fully benefit from the high redundancy of the
descriptions to facilitate matching. Furthermore, the elegant
aggregation schemes used are such that the resulting data
collections fit in main memory and do not require accessing
disks. Therefore, the search strategies they use can, with
very little cost, analyze large amounts of data to produce
high quality results (e.g., using multi-probe approaches [14,

6]). In contrast, this is not possible in practice when data is
kept on disks, since analyzing large amount of data triggers
costly I/Os which severely impact response time.

As we are interested in designing an indexing solution that
returns the k-nn of single query points with good recall, we
use SIFT to produce extremely large datasets. We do not
query the index at the image level, with multiple descriptors
returning neighbors that eventually vote for the most similar
image. There is no redundancy in the retrieval process.

1.3 Contributions of this Paper
We are not aware of any previous high-dimensional in-

dexing schemes that adequately address the very specific
problem of finding efficiently and effectively, in a collection
of few billion data points stored on disk, the approximate
k-nearest neighbors of individual query points.

The main contribution of this paper is the presentation of
an enhanced version of the NV-Tree, that precisely addresses
the problem stated above. It is enhanced because previous
versions of the NV-Tree included significant overlap in the
index to compensate for partitioning problems in the high-
dimensional space, while the version presented in this paper
is entirely free of overlap. In [11], simulation results strongly
indicated that the overlap could be removed by using more
than one index and merging the results from the individual
indices. As each non-overlapping index is much smaller, the
overall performance is improved. This paper extends that
work and makes the following major contributions:

• First, we analyze the performance implications of the
redundancy caused by overlapping partitions and show
that it is simply necessary to remove the overlap.

• Second, while removing the overlap does reduce result
quality, we propose to use three different strategies to
“re-capture” the result quality, which more than com-
pensate for the losses due to lack of redundancy.

• Third, we present a performance study which com-
pares the new “overlap-free” NV-Tree with previous
results, showing that although more non-overlapping
NV-Trees are required for retrieval quality, each index
is so much smaller that retrieval is actually faster.

• Fourth, we present a second performance study, which
shows that retrieval quality and performance are not
affected significantly when the collection size grows to
2.5 billion descriptors.

Overall, our results show that the NV-Tree is an extremely
scalable approximate indexing strategy, which yields results
of acceptable quality. When the indexed data can be entirely
kept in main memory, then the NV-Tree is extremely fast as
very little computation is performed to find the k-nn. When
the data collection to index is extremely large, then the NV-
Tree gracefully adapts to efficient disk-based processing as a
single disk access is required per query point. Note that the
NV-Tree also includes specific procedures for fast concurrent
insertions of new points to the index; these are not presented
here due to space constraints.

This paper is organized as follows. Section 2 gives a short
presentation of the NV-Tree, while Section 3 details the neg-
ative impact of the redundancy on the index size and cre-
ation time, as well as on the search process. Section 4 then
presents three strategies to improve the quality of the results



returned by the NV-Tree, which were degraded by the lack
of redundancy. Section 5 compares both versions of the NV-
Tree and shows the overlap-free one outperforms the version
with overlap. Then, Section 6 gives indications on the per-
formance of the NV-Tree when indexing a collection made of
2.5 billion SIFT descriptors. Section 7 concludes the paper
and discusses future work.

2. THE NV-TREE
The NV-Tree was originally proposed in [7]. It is a disk-

based data structure, which builds upon a combination of
projections of data points to lines and partitioning of the
projected space. By repeating the process of projecting and
partitioning, data is eventually separated into small par-
titions which can easily be fetched from disk with a single
disk read, and which are highly likely to contain all the close
neighbors in the collection. Since close descriptors may get
separated by a partition boundary, the NV-Tree originally
added redundancy by allowing the partitions to overlap. We
focus here on index creation and retrieval and then briefly
discuss the performance results from [7].

2.1 Index Creation
Overall, an NV-Tree is a tree index consisting of: a) a

hierarchy of small inner nodes, which are kept in memory
during query processing and guide the descriptor search to
the appropriate leaf node; and b) larger leaf nodes, which are
stored on disk and contain references to actual descriptors.

When the tree construction starts, all descriptors are con-
sidered to be part of a single temporary partition. Descrip-
tors belonging to the partition are first projected onto a
single projection line through the high-dimensional space.1

The projected values are then partitioned into disjunct sub-
partitions based on their position on the projection line.
For each pair of adjacent partitions, an overlapping parti-
tion, covering 50% of each partition, is created for redun-
dant coverage of partition borders. Information about all
the sub-partitions, such as the partition borders along the
projection line, forms the root of the NV-Tree.

To build subsequent levels of the NV-Tree, this process of
projecting and partitioning is repeated for all the new sub-
partitions using a new projection line at each level, creating
the hierarchy of inner nodes. The process stops when the
number of descriptors in a sub-partition falls below a limit
designed to be disk I/O friendly. A new projection line is
then used to order the descriptor identifiers in each final sub-
partition and the identifiers are written to the leaf node.

Two partitioning strategies co-exist inside the NV-Tree
and proved to work best. First, partitioning is such that the
distance between partition boundaries at each level of the
tree is equal. The normal distribution of high-dimensional
vectors gives partitions with very different cardinalities and
dense areas are partitioned deeper than sparse areas. The
partitioning strategy changes when reaching the lowest levels
of the tree: when a sub-partition fits into six leaf nodes, then
data is partitioned one more time according to an equal
cardinality criterion (instead of being based on distances).
This results in better leaf node utilization and a shallower
tree, both of which lead to smaller space requirements.

1See [7] for details about projection line selection strategies.

2.2 Nearest Neighbor Retrieval
During query processing, the search first traverses the hi-

erarchy of inner nodes of the NV-Tree. At each level of the
tree, the query descriptor is projected to the projection line
associated with the current node. The search is then di-
rected to the sub-partition with center-point closest to the
projection of the query descriptor. This process of projec-
tion and choosing the right sub-partition is repeated until
the search reaches a leaf node.

The leaf node is fetched into memory and the query de-
scriptor is projected onto the projection line of the leaf node.
The search then starts at the position of the query descrip-
tor projection. The two descriptor identifiers on either side
of the projected query descriptor are returned as the near-
est neighbors, then the second two descriptor identifiers, etc.
Thus, the k/2 descriptor identifiers found on either side of
the query descriptor projection are alternated to form the
ranked k approximate neighbors of the query descriptor.

2.3 Properties of NV-Trees
The NV-Tree indexing scheme has several key properties:
Single disk read: Since leaf nodes have a fixed size, the

NV-Tree guarantees query processing time of a single disk
read regardless of the size of the descriptor collection. Larger
collections need deeper NV-Trees but the intermediate nodes
fit easily in memory and tree traversal cost is negligible.

Ranking and no distance calculations: The NV-Tree re-
turns approximate results in a ranked order. Returning a
ranked result list has three major consequences. First, the
descriptors themselves need not be stored within the leaf
nodes, making it possible to store many descriptor identi-
fiers in a single leaf node, which increases the likelihood of
having actual neighbors in that leaf. The redundancy intro-
duced with overlapping partitions further increases that like-
lihood. Second, since no distance calculations are required,
little CPU cost is incurred (scanning lists both directions),
even for large collections. Third, as results are based on a
projection to a single line, false positives do arise when pro-
cessing a leaf node. Since distances cannot be calculated,
other means of removing false positives are required.

Consolidated result: False positives can largely be elim-
inated by aggregating multiple NV-Trees, which are built
independently over the same collection. Since each NV-Tree
is based on an independent pool of random lines, the con-
tents of the ranked results are very likely to differ, except
for the descriptors that are actual near neighbors.

2.4 Performance Summary
The performance analysis of [7] revealed some fundamen-

tal differences between the NV-Tree and its competitors.
Since LSH is the most commonly cited method, and the
strongest competitor in terms of performance, we now briefly
outline the key differences between LSH and the NV-Tree.

For fairness reasons, we considered a version of LSH that,
like the NV-Tree, only contains descriptor identifiers, but
not the descriptors themselves. Note that without that mod-
ification, LSH does not cope at all with disk-based process-
ing. The experimental settings were those used in Section 5;
they are omitted here due to space considerations. The key
observation, however, is that the ground-truth answers, that
were used to measure quality, were composed of descriptors
that are significantly closer to the query descriptors than
their neighbors, regardless of their actual distance.



Using a single NV-Tree index, recall of about 66% was
reported, with many false positives. When employing three
NV-Trees, and returning only descriptors found in two in-
dices out of three, most of the false positives were eliminated,
while recall was improved slightly. In order to return results
of the same quality, eight and twenty-four LSH indices were
required, respectively, or three times more indices. Since
each index requires one disk read at retrieval time, LSH re-
quired at least eight times more processing time than the
NV-Tree. With LSH, however, the total disk requirements
per index were about 2GB, compared to 50GB for each NV-
Tree, due to the overlapping of partitions.

A detailed analysis of the results of individual descriptors
revealed the underlying reason for the differences in effec-
tiveness. Essentially, since LSH is based on an ǫ-distance
query model, it cannot handle the variability in distances
to the nearest neighbors; either ǫ is small and recall suffers,
or ǫ is large and the number of false positives explodes.

3. THE CASE AGAINST REDUNDANCY
The NV-Tree uses overlapping partitions to achieve re-

sult quality despite the curse of dimensionality problems.
Beside this positive impact on the quality of results, redun-
dant storage impacts negatively the size of the index and
its construction time, as well as the ability to use several
trees to consolidate the results returned to the users. This
section discusses these two negatives impacts and thus mo-
tivates the need to remove all redundancy from the NV-Tree
as the only viable way to hit the billion scale.

3.1 Index Size and Construction Time
It is possible to roughly estimate the size of an NV-Tree in-

dex with redundancy using the following model. The depth
of the tree can be computed by d = logf (

n
l
), where n is

the number of descriptors in the collection, l is the number
of descriptors per leaf node,2 and f is the fan-out at each
level. Due to the overlap between partitions, each descriptor
is represented in multiple leaf nodes in the tree, yielding a
redundancy factor of r = ( 2f−1

f
)d.

For the experiments in [7], a collection of n = 180 million
descriptors (22.2GB) was indexed with a fixed fan-out of
f = 5 and an approximate node filling rate of 70% leading
to approximately l = 4036 descriptors on average per leaf

node. Then d = log5(
180×10

6

4036
) = 6.65 and the redundancy

factor is therefore r = ( 2×5−1

5
)6.65 = 49.9, which leads to a

total storage requirement of 180 million × 6 Bytes × 49.9 =
50.2GB, which is quite consistent with the reported storage
requirements of about 50GB.

For a collection of 2.5 billion descriptors, however, the
depth would increase to d = 8.28 and the redundancy factor
to r = 130.4, which yields a final index size of 2.5 billion × 6
Bytes × 130.4 = 1.8TB. While such space requirements are
still feasible with today’s hard drive capacities (despite the
fact that the index has grown 6 times larger than the actual
descriptor data), the factor that makes such a setup intol-
erable is the index creation time. Given that index creation
takes 15 hours for 180 million descriptors, an estimate of 24
days can be given for a 2.5 billion descriptor collection.

Completely removing the redundancy of overlapping par-
titions from the NV-Tree creates an index of 13GB for a 2.5
billion descriptor collection in about 15 hours, which is 38

2Recall that leaf nodes only store descriptor identifiers.
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Figure 1: Comparison of overlapping and non-over-

lapping NV-Trees that fit within 64GB.

times less than the estimated construction time for a single
overlapping NV-Tree.

3.2 Searching in Multiple Trees
While the NV-Tree is designed to adapt well to disk-based

processing, its performance is best when the entire index
is cached in main memory. Since results with good recall
and a reduced number of false positives are returned when
several NV-Trees are used simultaneously, it is interesting
to determine how many NV-Trees can be cached in a given
amount of RAM.

It is quite clear that the redundancy in the NV-Tree is
in this case a serious problem as each index is very big.
For example, each index used in the experimental results
of [7] was about 50GB; no index could therefore be entirely
cached, and a disk read was invariably needed per index to
answer each query. In contrast, without redundancy, that
same index would be about 1.1GB. It would easily fit in main
memory, as well as a few additional NV-Trees, all together
returning high quality results very efficiently since no disk
reads would be involved.

Figure 1 illustrates these tradeoffs between the overlap-
ping NV-Tree and the version without redundancy. The
x-axis varies the collection size, while the y-axis shows the
number of overlapping and non-overlapping indices that fit
within 64GB of main memory. The figure clearly shows
the exorbitant difference in index size between the two NV-
Tree types, due to the exponential growth of the overlap-
ping NV-Tree. While an overlapping NV-Tree for a ten mil-
lion descriptor collection is only 15 times as large the non-
overlapping version, the ratio rises up to 53:1 for a 215 mil-
lion descriptor collection (the largest overlapping NV-Tree
to fit in memory).

Removing redundancy from the NV-Tree is therefore also
useful at search time, as it allows to use more indices simul-
taneously.

4. OVERLAP-FREE NV-TREE
Removing overlapping from the NV-Tree is the key to scal-

ing up the indexed collections. Not surprisingly, the quality
of the results drops with removal of the overlapping; it de-



creases from about 66% (see [7]) to about 48% reported in
the experiments below (see Figure 3).

This loss in quality does not affect neighbors that are close
to the query point in the high-dimensional space (within
a small ǫ threshold) and well contrasted, i.e., significantly
closer than other data points. It does, however, affect neigh-
bors that are well contrasted, but not close in terms of dis-
tance [7]. As we wish to preserve the key advantage of the
NV-Tree over index structures based on ǫ thresholds, of be-
ing much less affected by the actual distance, we therefore
propose to use the following three strategies to address this
reduction in the result quality: (i) Creating additional NV-
Trees; (ii) Creating deeper NV-Trees with smaller leaf nodes;
and (iii) Reading additional leaf nodes.

Note that none of these strategies is particularly novel.
It is their combined effect that is the novelty of this paper,
however, as they make the NV-Tree truly scalable to very
large collections. In fact, we show in Section 5 that the com-
bined strategies improve recall beyond the original results.

4.1 Creating Additional Indices
Creating many indices built over the same data collection,

querying them in parallel, and aggregating their results im-
proves quality. Due to their reduced sizes, several overlap-
free NV-Tree are also likely to fit in main memory. When
the collections are really big, however, then disk accesses
are mandatory and the cost of retrievals will be linear with
the number of indices. An appropriate operating point can
thus be determined when trading quality against I/Os for
applications with specific performance requirements.

4.2 Deeper Trees with Smaller Leaf Nodes
We ran extensive experiments to determine the best size

for leaf nodes. We found that one page leaf nodes (i.e., 4KB)
provided the best recall and the least false positives. This
can be explained by the additional projections and parti-
tioning steps required to reduce the number of descriptors
in such small leaf nodes, compared to leaf nodes of a larger
size. These additional steps help to better capture the true
neighborhood on the points in space. Creating trees with
such small leaf nodes was not an option with overlapping
NV-Trees, however, since each additional level of the tree
almost doubled its size.

4.3 Reading Additional Leaf Nodes
For many index structures, the approach taken to increase

(or even guarantee) result quality is to descend to multiple
leaf nodes and merge the results. A natural extension of that
approach for the NV-Tree would be to choose the two adja-
cent sub-partitions at each level in the tree, and to retrieve
neighbors from all leaf nodes found in this manner. This
approach, however, is not feasible for two reasons. First, it
would violate the design criterion of having at most a single
I/O per index; each additional leaf node would require ac-
cessing disks. Second, since there would be very many leaves
and each leaf only contains ranking information, merging the
results into a meaningful order would be difficult.

It is therefore infeasible to descend into the tree along
multiple paths starting from the root of the tree. Instead,
it is possible to consider multiple leaf nodes once the second
lowest level of the tree is reached. At that level, 6 parent
nodes define 36 leaf nodes of 4KB each, filling the Linux
128KB I/O granule. When the search reaches that penulti-

mate level, then it reads adjacent partitions in the two most
relevant parent nodes to eventually fetch from disk up to
four leaf nodes (among those 36) that can be read (with
high likelihood) within a single I/O. In order to merge de-
scriptors from different leaf nodes, we propose to assign a
priority to each of the four leaf nodes. The priority is based
on the distance from the projected value of the query de-
scriptor to the center point of the partition.

5. COMPARATIVE EXPERIMENTS
We have implemented and evaluated all three adaptations

to the NV-Tree data structure proposed above, and com-
pared them to the performance results of the overlapping
NV-Tree. Note that since the overlapping NV-Tree has al-
ready been shown to significantly outperform its competi-
tors [7], this comparison is sufficient. First, Section 5.1 gives
an overview of the experimental setup. Then, Section 5.2
presents performance measurements of the index construc-
tion and query performance, while Section 5.3 analyses the
result quality.

5.1 Experimental Setup
We used a set of 179,443,881 128-dimensional SIFT de-

scriptors that was obtained by extracting local features from
an archive of about 150,000 high-quality press photos. In
order to reduce the number of descriptors, each image was
resized so that its larger edge was 512 pixels.

In order to evaluate the query performance of the NV-
Tree, we extracted 500,000 query descriptors from trans-
formed versions of images from our collection. These trans-
formations are created using the Stirmark benchmarking
tool [12] and consist, among others, of rotation, rescaling,
cropping, affine distortions and convolution filters. It has
been shown that SIFT descriptors cope very well with most
of these distortions, meaning that a high percentage of corre-
sponding descriptors are close in the high-dimensional space.

As ground-truth, we used the contrast-based ground truth
defined in [7]. We used a sequential scan to calculate the
1,000 nearest neighbors for all 500,000 query descriptors.
Then a neighbor ni was included in the ground truth set
when d(n100, q)/d(ni, q) > 1.8. This ground truth definition
was shown to be the most meaningful method to measure
high-dimensional nearest neighbor structures.3 The result-
ing ground truth set contained 248,852 descriptors.

The experiments in this section were run on DELL Pow-
erEdge 1850 machines running Gentoo Linux (2.6.7 kernel),
each equipped with two 3GHz Intel Pentium 4 processors,
2GB of DDR2-memory, 1MB CPU cache, and two (or more)
140GB 10Krpm SCSI disks with the ReiserFS file system.

5.2 Indexing and Retrieval Performance
The major goal of the non-overlapping NV-Tree is to re-

duce the index creation time. The creation time for a sin-
gle non-overlapping NV-Tree is about 2 hours, compared to
more than 15 hours for the overlapping NV-Tree [7]. Fur-
thermore, each non-overlapping tree consumes about 1 GB
of disk space, compared to 50 GB for the overlapping NV-
Tree.

The retrieval time is also reduced significantly due to the
smaller index size. Figure 2 shows the retrieval time for
3For a detailed explanation of the contrast-based ground
truth set, we refer to [7], where the set is defined and un-
derpinned with a detailed analysis.
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Figure 2: Retrieval time of NV-Tree configurations

for a collection of 180 million descriptors.

different configurations of the overlap-free NV-Tree. The x-
axis shows the number of indices used, while the y-axis shows
the average time to retrieve the k nearest neighbors for each
query descriptor. Since the main memory is 2 GB, some of
which is used for the operating system, a single overlap-free
NV-Tree can be kept in memory, and the retrieval time is
only 1.6 ms per query descriptor. The search time increases,
however, when aggregating from more indices; it is 7.3 ms
per descriptor for two indices, up to 37 ms for 6 indices.

For our disks, a random disk read takes about 12.5 ms,
yielding an expected retrieval time of 75 ms for 6 indices.
The retrieval time is reduced, however, since the small size
of the indices facilitates both buffering and disk locality. In
contrast, the retrieval time of the much larger overlapping
NV-Tree does indeed grow by about 12.5 ms per index, re-
sulting in 37.5 ms for three indices [7].

Finally, Figure 2 shows that the overhead of reading addi-
tional leaf partitions is about 40% (with or without priority
assignment), despite the fact that all leaf partitions are de-
signed to fall within a single disk read. The first reason is
that one logical I/O may end up as two physical I/Os. The
second reason is due to disk buffering, as the likelihood of
finding a single leaf in buffers is significantly higher than
that of finding a whole range of subsequent pages.

5.3 Result Quality
We now study the impact of the proposed techniques on

result quality. Figure 3 shows the recall of the different NV-
Tree configurations. As before, the x-axis shows the number
of indices used to answer queries, but the y-axis now shows
the recall relative to the sequential scan.

Figure 3 shows that recall is relatively low for a single non-
overlapping NV-Tree in any configuration. With additional
indices, however, recall is improved significantly to the point
where it exceeds the 65.8% recall reported in [7]. Further-
more, the figure shows that while the major quality improve-
ments are caused by adding indices and a partitioning level,
further improvements are seen by reading additional parti-
tions, in particular with the priority-based scheme. Over-
all, we observe the best trade-off between performance and
quality with 3 indices (75.4% total recall). Adding further
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Figure 3: Recall of NV-Tree configurations for a col-

lection of 180 million descriptors.

indices yields up to 82.6% recall, but at a cost of higher
retrieval time (×3) and larger database size (×2).

Detailed analysis shows that with a single non-overlapping
index, many close neighbors are lost, which the overlapping
NV-Tree can find easily due to the redundancy in the leaf
partitions. By aggregating results from more than one non-
overlapping NV-Tree, however, results are improved across
all distance ranges; close neighbors are always found, and
more distant neighbors are more likely to be found than with
the overlapping NV-Tree. Note that, in contrast, the strat-
egy of adding additional trees did not show any additional
benefits in terms of recall for the overlapping NV-Tree [7].

6. LARGE-SCALE EXPERIMENTS
In this section we present our detailed experiments on a

collection of 2.5 billion SIFT descriptors. First, Section 6.1
gives an overview of the experimental setup. Then, Sec-
tion 6.2 presents query performance measurements, while
Section 6.3 analyses the result quality.

6.1 Experimental setup
This descriptor collection has been obtained from 2.5 mil-

lion images downloaded from the Flickr image sharing web-
site, plus the images used in Section 5. The images were
processed as before, resulting in a total of 2,485,568,191—
nearly 2.5 billion—128-dimensional SIFT descriptors.

We used the same query workload as in the previous ex-
periment, consisting of 500,000 query descriptors. Although
the descriptor collection is an order of magnitude larger, we
assume the same ground truth set of 248,852 descriptors, as
running a sequential scan to determine a new ground truth
is much too time-consuming. This may artificially lower the
result quality, but as we shall see the effect is relatively small.

As the experimental setup used in the previous section
was quite dated, we obtained a moderate server computer
containing two Intel Xeon E5420 CPUs running at 2.50GHz,
12MB L2 Cache, and 32 GB of DDR 2 main memory, run-
ning at a clock speed of 667 Mhz. Due to the high storage
requirements for such a large descriptor collection, as well as
for performance, the server was equipped with 6 hard drives.
Three 1.5 TB hard drives are used for storing the NV-Tree
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Figure 4: Retrieval time of NV-Tree configurations

for a collection of 2.5 billion descriptors.

indices, one for the operating system and related tasks, and
two to store the descriptor collections and result files.

6.2 Indexing and Retrieval Performance
Each NV-Tree consumes about 13 GB of disk space, and

takes about 15 hours to construct. As the server has 32
GB of main memory, at most two indices can fit in memory,
while configurations with three or more NV-Trees can only
be partially loaded into memory. In order to get a better
understanding of the impact of buffering on NV-Tree per-
formance, we measure both a “cold start” where the buffers
are empty, and a “warm start” where leaf partitions from
the measured NV-Trees are loaded into memory in a round-
robin fashion until the memory is full. Filling the buffers
can take several minutes, depending on the number of in-
dices, but full buffers are clearly more representative of the
long-term performance of the system.

Figures 4 and 5 show the retrieval time and throughput,
respectively, for the two buffering approaches. Note that
only a single CPU core was used in each case. As the fig-
ures show, query processing is very efficient using one or
two indices when buffers are full; each query descriptor re-
quires only 0.3 ms of processing time, yielding a remarkable
throughput of 3,500 queries per second. Once the indices do
not fit into memory, however, retrieval time increases signif-
icantly, to 12 ms for three indices and up to 50 ms for six
indices, with a corresponding reduction in throughput.

Comparing to the “cold start” strategy, the preload time
clearly pays off when the indices fit as a whole into main
memory. When they do not, the heavy load of additional
I/O accesses soon dilutes the performance gains achieved by
preloading so the performance gains are only marginal. Nev-
ertheless, the throughput, using three indices in continuous
operation, is about 81 descriptors per second.

6.3 Result Quality
Figure 6 shows the recall for the large collection, compared

to the collection used in the previous section. As the figure
shows, recall is about 8% lower across the range of indices.
Nevertheless, the recall is still quite acceptable, and nearly
equivalent with the recall of a single overlapping NV-Tree
for the 180 million descriptor collection.
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Figure 5: Throughput of NV-Tree configurations for

a 2.5 billion descriptor collection.
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Figure 6: Recall of NV-Tree configurations for a col-
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7. CONCLUSION
In this paper, we have proposed the non-overlapping NV-

Tree and demonstrated that it works extremely well for pro-
viding approximate nearest neighbor search in very large
collections of high-dimensional descriptors. Using our pre-
ferred configuration of three NV-Trees, we achieve 66.0%
recall for a collection of 2.5 billion SIFT descriptors. Query
processing is also efficient, in particular when the indices can
be kept in main memory, as each CPU core can answer up
to 3,500 queries per second. As far as we know, we are the
first to tackle such a large-scale problem head-on.

There are many avenues for future work. As mentioned
in the introduction, due to space constraints, this paper has
focused solely on query processing. We are planning to show
that insertions are also very efficient, as each descriptor is
now only stored in one leaf partition. We are also preparing
experiments using an order of magnitude larger collection.
Finally, we have been exploring the application of the index
structure to video identification [8].
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[7] H. Lejsek, F. H. Ásmundsson, B. T. Jónsson, and
L. Amsaleg. NV-tree: An efficient disk-based index for
approximate search in very large high-dimensional
collections. IEEE TPAMI, 31(5), 2009.
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