Analysis of Algorithms: Solutions 7

					X	
		X			X	
		X			X	
		X			X	X
		X			X	X
	X	X			X	X
	X	X	X		X	X
X	X	X	X		X	X
X	X	X	X	X	X	X
4	 5	6	7	8	9	 10
		g	rad	es		

Problem 1

(a) Illustrate the steps of Kruskal's algorithm on the above undirected graph.

Kruskal's algorithm may add edges in any of the following six ways:

(1)
$$(a,b), (c,f), (e,f), (b,c), (d,e)$$

(2)
$$(a,b)$$
, (e,f) , (c,f) , (b,c) , (d,e)

(3)
$$(c, f)$$
, (a, b) , (e, f) , (b, c) , (d, e)

(4)
$$(c, f), (e, f), (a, b), (b, c), (d, e)$$

(5)
$$(e, f), (a, b), (c, f), (b, c), (d, e)$$

(6)
$$(e, f), (c, f), (a, b), (b, c), (d, e)$$

(b) Show the steps of Prim's algorithm on the same graph, with vertex d as the source.

Prim's algorithm adds edges in the following order:

Both algorithms construct the same spanning tree:

Problem 2

Give a BFS algorithm for the adjacency matrix, and determine its running time (O-notation).

```
MATRIX-BFS(G, s)
for each vertex u \in V[G]
     do color[u] \leftarrow \text{WHITE}
         d[u] \leftarrow \infty
         parent[u] \leftarrow \text{NIL}
color[s] \leftarrow GRAY
d[s] \leftarrow 0
Q \leftarrow \{s\}
while Q is not empty
     do u \leftarrow \text{Dequeue}(Q)
         for each vertex v \in V[G]
              do if Adj[u, v] = 1 and color[v] = WHITE
                     then color[v] \leftarrow GRAY
                             d[v] \leftarrow d[u] + 1
                             parent[v] \leftarrow u
                             Engueue(Q, v)
         color[u] \leftarrow \text{Black}
The running time is O(V^2).
Problem 3
Give a nonrecursive version of depth-first search.
ITERATIVE-DFS(G)
for each vertex u \in V[G]
     do color[u] \leftarrow \text{WHITE}
         parent[u] \leftarrow \text{NIL}
initialize an empty stack S
for each vertex u \in V[G]
```

do if color[u] = WHITE

then Push(S, u)

while S is not empty do $v \leftarrow POP(S)$

 $color[v] \leftarrow ext{BLACK}$

for each $w \in Adj[v]$

do if color[w] = WHITE

The running time is the same as the time of the recursive algorithm, $\Theta(V+E)$.

then $color[w] \leftarrow GRAY$ $parent[w] \leftarrow v$ PUSH(S, w)