Analysis of Algorithms: Solutions 9

	X					X		
	X	X		X		X		
X	X	X	X	X		X		X
X	X	X	X	X		X	X	X
X	X	X	X	X		X	X	X
2	3	4	5	6	7	8	9	10

Problem 1

Suppose that you need to compute a product of five matrices, and their dimensions are $p[0..5] = \langle 3, 8, 5, 2, 20, 4 \rangle$. Give the optimal parenthesization of this product and the corresponding value of m[0, 5].

5	312				
4	248	304			
3	128	400	200		
2	120	80	200	160	
1	0	0	0	0	0
	1	2	3	4	5

The optimal parenthesization is $(A_1 \cdot (A_2 \cdot A_3)) \cdot (A_4 \cdot A_5)$, and m[0, 5] is 312.

Problem 2

Determine a longest common subsequence of $\langle a, b, a, b, a, a, a \rangle$ and $\langle b, a, a, b, b, a, a, b \rangle$. Using Figure 16.3 in the book as a model, draw the table constructed by LCS-LENGTH.

_			-	_	_			
8	b	0	1	2	3	4	4	5
7	a	0	1	2	3	3	4	5
6	a	0	1	2	3	3	4	4
5	b	0	1	2	2	3	3	3
4	b	0	1	2	2	3	3	3
3	a	0	1	1	2	2	3	3
2	a	0	1	1	2	2	2	2
1	b	0	0	1	1	1	1	1
0		0	0	0	0	0	0	0
i			a	b	\overline{a}	b	\overline{a}	a
	j	0	1	2	3	4	5	6

The longest common subsequence is $\langle b, a, b, a, a \rangle$.

Problem 3

Give pseudocode for a modified version of LCS-LENGTH that uses only O(n) memory.

```
LINEAR-LCS(X, Y, m, n)

for j \leftarrow 0 to n

do c[j] \leftarrow 0

for i \leftarrow 1 to m

do old \leftarrow 0

for j \leftarrow 1 to n

do temp \leftarrow c[j]

if X[i] = Y[j]

then c[j] \leftarrow old + 1

else c[j] \leftarrow \max(temp, c[j-1])

old \leftarrow temp
```

return c[n]

Problem 4

Consider two recurrences:

$$A_0 = 0$$

$$A_n = A_{n-1} + n \text{ (where } n \ge 1)$$

$$B_0 = 0$$

$$B_n = B_{n-1} + A_n \text{ (where } n \ge 1)$$

Give a constant-time algorithm FIND-B(n) for computing B_n .

We can prove the following expressions by induction:

$$A_n = \frac{n \cdot (n+1)}{2}$$

$$B_n = \frac{n \cdot (n+1) \cdot (n+2)}{6}$$

The constant-time algorithm uses the resulting expression for computing B_n :

FIND-B
$$(n)$$

return $\frac{n(n+1)(n+2)}{6}$