Supplementary Notes on
Continuations

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 10
September 30, 2004

In this lecture we first introduce exceptions [Ch. 13] and then continua-
tions [Ch. 12], two advanced control construct available in some functional
languages.

Exceptions are a standard construct in ML and other languages such as
Java. We give here only a particularly simple form; a more elaborate form
is pursued in Assignment 4. It is particularly easy to describe now that our
abstract machines makes a control stack explicit.

We introduce a new form of state

k < fail

which signals that we are propagating an exception upwards in the con-
trol stack k, looking for a handler or stopping at the empty stack. This
“uncaught exception” is a particularly common form of implementing run-
time errors. We do not distinguish different exceptions, only failure.

We have two new forms of expressions fail ! and try (e, es) (with
concrete syntax try e; OwWeg). Informally, try (e;,e2) evaluates e; and re-
turns its value. If the evaluation of e; fails, that is, an exception is raised,
then we evaluate e, instead and returns its value (or propagate its excep-
tion). These rules are formalized in the C-machine as follows.

k>try (e1,e2) e kotry (O,e2) > e

Evtry (Oex) <vr e k<

k > fail —c k< falil

kv f < fail —e k< fail for f #try (O,.)

Extry (O,e) < fail —¢ k> es

' A type should be included here in order to preserve the property that every well-typed
expression has a unique type, but we prefer not to complicate the syntax at this point.

LECTURE NOTES SEPTEMBER 30, 2004



L10.2 Continuations

In order to verify that these rules are sensible, we should prove appro-
priate progress and preservation theorems. In order to do this, we need to
introduce some typing judgments for machine states and the new forms of
expressions. First, expressions:

I'teir:7m T'key: 7
I' + fail T Fl—try (61,61):7’

We can now state (without proof) the preservation and progress prop-
erties. The proofs follow previous patterns (see [Ch. 13]).

1. (Preservation) If s : 0 and s — s’ then s’ : 0.
2. (Progress) If s : o then either

(i) s+~ s for some s', or
(ii) s = @ < v with v value, or

(ili) s = o < fail.

The manner in which the C-machine operates with respect to exceptions
may seem a bit unrealistic, since the stack is unwound frame by frame.
However, in languages like Java this is not an unusual implementation
method. In ML, there is more frequently a second stack containing only
handlers for exceptions. The handler at the top of the stack is innermost
and a fail  expression can jump to it directly.

Overall, such a machine should be equivalent to the specification of
exceptions above, but potentially more efficient. Often, we want to describe
several aspects of execution behavior of a language constructs in several
different machines, keeping the first as high-level as possible. However, we
will not pursue this further, but move on to the discussion of continuations.
Continuations are more flexible, but also more dangerous than exceptions.

Continuations are part of the definition of Scheme and are implemented
as a library in Standard ML of New Jersey, even though they are not part of
the definition of Standard ML. Continuations have been described as the
goto of functional languages, since they allow non-local transfer of control.
While they are powerful, programs that exploit continuations can difficult
to reason about and their gratuitous use should therefore be avoided.

There are two basic constructs, given here with concrete and abstract
syntax. We ignore issues of type-checking in the concrete syntax.?

2See Assignment 4 for details on concrete syntax.

LECTURE NOTES SEPTEMBER 30, 2004



Continuations L10.3

callcc xz=>e callcc (x.e)
throw ejto e throw (eq,e2)

In brief, callcc  z => e captures the stack (= continuation) k in effect at
the time the callcc  is executed and substitutes cont (k) for x in e. we can
later transfer control to k by throwing a value v to k£ withthrow vto cont (k).
Note that the stack k£ we capture can be returned past the point in which it
was in effect. As a result, throw can effect a kind of “time travel”. While
this can lead to programs that are very difficult to understand, it has multi-
ple legitimate uses. One pattern of usage is as an alternative to exceptions,
another is to implement co-routines or threads. Another use is to achieve
backtracking.

As a starting example we consider simple arithmetic expressions.

(a) 1 + callcc x => 2 + (throw 3 to Xx) =4

(b) 1 + callcc x =>2 I3

(¢) 1 + callcc x => if (throw 2 to x) then 3 else 4 fi
=3

Example (a) shows an upward use of continuations similar to excep-
tions, where the addition of 2 + [ is bypassed and discarded when we
throw to .

Example (b) illustrates that captured continuations need not be used in
which case the normal control flow remains in effect.

Example (¢) demonstrates that a throw expression can occur anywhere;
its type does not need to be tied to the type of the surrounding expres-
sion. This is because a throw expression never returns normally—it al-
ways passes control to its continuation argument.

With this intuition we can describe the operational semantics, followed
by the typing rules.

k> callcc (xz.e) —c k> {cont (k)/xz}e

k > throw (eq,e2) —c  k>throw (O,e3) > e
k>throw (O, ez) < v1 e k>throw (vy,0) > ey
kw>throw (v,0) <cont (k2) +—c ke <y

k > cont (k) —c k <cont (k)

The typing rules can be derived from the need to make sure both preser-
vation and progress to hold. First, the constructs that can appear in the
source.

LECTURE NOTES SEPTEMBER 30, 2004



L10.4 Continuations

I'z:tcontbe: 7
I'tcallcc (z.e):7

I'tei:mm T'keg:m cont
I'Fthrow (ej,e2): 7

Finally, the rules for continuation values that can only arise during com-
putation. They are needed to check the machine state, even though they are
not needed to type-check the input.

k:T=0
I'+cont (k) : 7 cont

It looks like there could be a problem here, because o, the final answer
type of the continuation, does not appear in the conclusion. Fortunately, it
works, but only because the final answer type o of all continuations that
may occur in a computation will be equal. To be precise, if we want to be
talk about typing intermediate states of the computation, we would need
to pass along the final answer type o through the typing judgments.

As a more advanced example, consider the problem of composing a
function with a continuation. This can also be viewed as explicitly pushing
a frame onto a stack, represented by a continuation. Even though we have
not yet discussed polymorphism, we will phrase it as a generic problem:

Write a function

compose : (a -> 'b) -> 'b cont -> 'a cont

so that compose F' K returns a continuation K. Throwing
a value v to K; should first compute F'v and then throw the
resulting value v’ to K.

To understand the solution, we analyze the intended behavior of K.
When given a value v, it first applies F' to v. So

K, = Ky apply (F,0)
for some K. Then, it needs to throw the result to K. So

Ky = K3 >throw (D,K)

LECTURE NOTES SEPTEMBER 30, 2004



Continuations L10.5

and therefore
K, = Ksp>throw (O, K)>apply (F,0O)

for some K3.
How can we create such a continuation? The expression

throw ( F ..) to K

will create a continuation of the form above. This continuation will be the
stack precisely when the hole “...” is reached. So we need to capture it
there:

throw ( F (callcc k1 => L)) to K

The next conundrum is how to return k1 as the result of the compose func-
tion, now that we have captured it. Certainly, we can not just replace . .. by
k1, because the F' would be applied (which is not only wrong, but also not
type-correct). Instead we have to throw k1 out of the local context! In or-
der to throw it to the right place, we have to name the continuation in effect
when the compose is called.

callcc r =>
throw ( F (callcc k1 => throw k1 to r)) to K

Now it only remains to abstract over F' and K, where we take the liberty of
writing a curried function directly in our language.

fun compose (f’a -> 'b) (ki’'b cont) : 'a cont is
callcc r =>
throw (f (callcc k1 => throw k1 to r)) to k
end

In order to verify the correctness of this function, we can just calculate,
using the operational semantics, what happens when compose is applied
to two values F' and K under some stack K. This is a very useful exercise,
because the correctness of many opaque functions can be verified in this
way (and many incorrect functions discovered).

LECTURE NOTES SEPTEMBER 30, 2004



L10.6 Continuations

Ky > apply (apply (compose, F'), K)
—s Ko >callcc (rthrow (_,apply (F,callcc (ki.throw (., k1,7))), K))
—c Ko >throw (_,apply (F,callcc (ki.throw (, ki,cont (Kj)))), K)
—c Korthrow (_,0,K) > apply (F,callcc (k;.throw (-, k,cont (Kjy))))
—i Ko>throw (,0,K)>apply (F,0) > callcc (k;.throw (_, &, cont (Kjp)))

At this point, we define
K, = Ko>throw (_,0, K)apply (F,0)

and continue
—c K >throw (., Kp,cont (Kj))

c Ko< Ky

—

By looking at K; we can see hat it exactly satisfies our specification.
Interestingly, K3 from our earlier motivation turns out to be K, the con-
tinuation in effect at the evaluation of compose. Note that if F' terminates
normally, then that part of the continuation is discarded because K is in-
stalled instead as specified. However, if F raises an exception, control is
returned back to the point where the compose was called, rather than to
the place where the resulting continuation was invoked (at least in our se-
mantics). This is an example of the rather unpleasant interactions that can
take place between exceptions and continuations.

See the code® for a rendering of this in Standard ML of New Jersey,
where we have slightly different primitives. The translations are as given
below. Note that, in particular, the arguments to throw are reversed which
may be significant in some circumstances because of the left-to-right eval-
uation order.

Concrete MinML  Abstract MinML  SML of NJ

callcc z=>e callcc (x.e) callcc (fn x => e)
throw ejto e;  throw (eg,es) throw e2 el

For a simpler and quite practical example for the use of continuation
refer to the implementation of threads given in the textbook [Ch. 12.3]. A
runnable version of this code can be found at the same location as the ex-
ample above.

3http://ww.cs.cmu.edu/ fp/courses/312/code/10-continuations/

LECTURE NOTES SEPTEMBER 30, 2004



