
15-399 Constructive Logic

Midterm I

Model Solution

October 5, 2000

Name:
Andrew ID:

• This is a closed-book exam; only 1 two-sided sheet of notes is permitted.

• Write your answer legibly in the space provided.

• There are 12 pages in this exam, including 3 worksheets.

• It consists of 4 questions worth a total of 200 points, plus one question for 40 points
extra credit.

• Extra credit is recorded separately, so make sure your answers to question 1–4 are
correct before attempting to solve the extra credit question.

• You have 80 minutes for this exam.

Problem 1 Problem 2 Problem 3 Problem 4 Total EC

60 50 40 50 200 40

1



1. Proofs and Proof Terms (60 pts)

For each of the following, give a constructive proof in natural deduction and a proof term.
You may use a proof tree representation, or a linear form. If you choose the latter, you need
to justify each line by the name of an inference rule so we can easily verify your reasoning.

1. (15 pts) Proof of (A⊃B)⊃(A⊃(B ∧A))

u
A⊃B

w
A
⊃E

B
w

A
∧I

B ∧A
⊃Iw

A⊃(B ∧ A)
⊃Iu

(A⊃B)⊃(A⊃(B ∧A))

2. (15 pts) Proof term of (A⊃B)⊃(A⊃(B ∧A))

λu:A⊃B. λw:A. 〈uw,w〉

2



3. (15 pts) Proof of ((A ∨B) ∧ ¬B)⊃A

u
(A ∨ B)∧ ¬B

∧EL
A ∨B

v
A

u
(A ∨B) ∧ ¬B

∧EL
¬B

w
B
⊃E

⊥
⊥E

A
∨Ev,w

A
⊃Iu

((A ∨B)∧ ¬B)⊃A

4. (15 pts) Proof term of ((A ∨B)∧ ¬B)⊃A

λu:(A ∨B) ∧ ¬B. case fstu
of inl(v)⇒ v

| inr(w)⇒ abort((sndu)w)

3



2. Derived Rules (50 pts)

1. (10 pts) What is a derived rule of inference? Explain the concept in 1–3 sentences.

A derived rule of inference is an evident hypothetical judgment. The evidence
is given by a hypothetical derivation of the conclusion of the derived rule from
its premises.

2. (20 pts) Show that
A⊃(B⊃C) true A⊃B true

A⊃C true

is a valid derived rule of inference.

A⊃(B⊃C)
u

A
⊃E

B⊃C
A⊃B

u
A
⊃E

B
⊃E

C
⊃Iu

A⊃C

4



3. (20 pts) Prove that
A ∨ B true

A true

is not a valid derived rule of inference.

Assume the rule above were a valid derived rule of inference. Then

>I
> true

∨IR⊥ ∨> true

⊥ true

would be a correct derivation of ⊥ true. But this is impossible, since we
know that ⊥ true does not have a normal proof and therefore cannot have a
proof.

5



3. Primitive Recursion over Natural Numbers (40 pts)

In this problem we consider a function

upto ∈ nat→nat list

such that upto(0) = nil and upto(s(n)) = 0 :: s(0) :: · · · :: n :: nil.

1. (20 pts) Give a specification of upto suitable for implementation by primitive recursion.
[Hint: use an auxiliary function with an accumulator argument.]

upto ′ : nat→nat list→nat list

upto ′ 0 l = l
upto ′ (s(n)) l = upto ′ n (n :: l)

upto n = upto ′ n nil

2. (20 pts) Give the implementation of upto as a primitive recursion.

upto ′ = λn∈nat. rec n
of f(0)⇒ λl. l
| f(s(n))⇒ λl. f(n) (n :: l)

upto = λn∈nat. upto ′ n nil

6



4. Data Types (50 pts)

In this problem we explore the representation of integers according to the following scheme:

• Any positive integer i is represented by pos(i).

• Zero is represented by pos(0).

• Any negative integer i is represented by neg(−i− 1).

So the type int has two constructors pos and neg, both taking a natural number as an
argument. For example, the integer 3 is represented by pos(s(s(s(0)))), the integer −1
by neg(0). The reason for the subtracting 1 is to ensure that every integer has a unique
representation (without it, pos(0) and neg(0) would both represent zero).

1. (10 pts) Show the formation rule for type int.

intF
int type

2. (10 pts) Give the two introduction rules for elements of type int.

Γ ` n ∈ nat
intIp

Γ ` pos(n) ∈ int

Γ ` m ∈ nat
intIn

Γ ` neg(m) ∈ int

3. (10 pts) Give the elimination rule for elements of type int. This should take the form
of a primitive recursion or case operator on integers.

Γ ` i ∈ int Γ, n∈nat ` t ∈ τ Γ,m∈nat ` s ∈ τ
intE

Γ ` (case i of pos(n)⇒ t | neg(m)⇒ s) ∈ τ

7



4. (10 pts) We define the increment function on integers as inc(i) = i + 1. Give a
specification of inc using the representation above.

inc(pos(n)) = pos(s(n))
inc(neg(0)) = pos(0)

inc(neg(s(n))) = neg(n)

5. (10 pts) Define the inc function using your primitive recursion or case operator over
integers. You may freely use primitive recursion over natural numbers (type nat) and
standard functions on natural numbers such as predecessor or addition.

inc = λi∈nat. case i
of pos(n)⇒ pos(s(n))
| neg(m)⇒ rec m

of f(0)⇒ pos(0)
| f(s(m′))⇒ neg(m′)

8



5. Primitive Recursion over Lists (40 pts extra credit)

Consider the following specification:

mapc f nil = nil
mapc f (x :: l) = (f x) :: (mapc (λx ∈ nat. f (f x)) l)

1. (10 pts) What is the normal form of mapc (λx∈nat. s(x)) (0 :: 0 :: nil)?

s(0) :: s(s(0)) :: nil

2. (10 pts) Give the type of mapc.

mapc : (nat→nat)→nat list→nat list

3. (20 pts) Give the implementation of mapc as a primitive recursion function.

mapc′ = λl. rec l
of r(nil)⇒ λf. nil
| r(x :: l′)⇒ λf. f(x) :: r(l′) (λx∈nat. f(f(x)))

mapc = λf. λl. mapc′ l f

9


