
15-399 Constructive Logic

Midterm II

Model Solution

November 9, 2000

Name:
Andrew ID:

• This is a closed-book exam; only 1 two-sided sheet of notes is permitted.

• Write your answer legibly in the space provided.

• There are 12 pages in this exam, including 3 worksheets.

• It consists of 4 questions worth a total of 200 points, plus one question for 40 points
extra credit.

• Extra credit is recorded separately, so make sure your answers to question 1–4 are
correct before attempting to solve the extra credit question.

• You have 80 minutes for this exam.

• Unless otherwise indicated, proofs should be informal, but rigorous and
detailed. Clearly state the induction principle you use, the cases you dis-
tinguish, and the reasoning in each case.

Problem 1 Problem 2 Problem 3 Problem 4 Total EC

60 30 60 50 200 40
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1. First-Order Logic (60 pts)

For each of the following, give a formal constructive proof in natural deduction and a proof
term. You may use a proof tree representation, or a linear form. If you choose the latter,
you need to justify each line by the name of an inference rule so we can easily verify your
reasoning.

1. (15 pts) Formal proof of ((∃x. A(x))⊃B)⊃∀x. (A(x)⊃B)

u
(∃x. A(x))⊃B

c
c ∈ τ

w
A(c)

∃I
∃x. A(x)

⊃E
B

⊃Iw
A(c)⊃B

∀Ic
∀x. (A(x)⊃B)

⊃Iu
((∃x. A(x))⊃B)⊃∀x. (A(x)⊃B)

2. (15 pts) Proof term for ((∃x. A(x))⊃B)⊃∀x. (A(x)⊃B)

λu. λc. λw. u 〈c, w〉
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3. (15 pts) Formal proof of (∀x. (A(x)⊃B))⊃((∃x. A(x))⊃B)

v
∃x. A(x)

u
∀x. (A(x)⊃B)

c
c ∈ τ

∀E
A(c)⊃B

w
A(c)

⊃E
B
∃Ec,w

B
⊃Iv

(∃x. A(x))⊃B
⊃Iu

(∀x. (A(x)⊃B))⊃((∃x. A(x))⊃B)

4. (15 pts) Proof term for (∀x. (A(x)⊃B))⊃((∃x. A(x))⊃B)

λu. λv. let 〈c, w〉 = v in (u c) w
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2. Arithmetic (30 pts)

1. (30 pts) Prove that

∀x∈nat. ∀y∈nat. x < y ∨ x =
N
y ∨ y < x.

The proof is by induction on x, considering subcases on y. We explicitly show
which disjunct is true in each case, but elide the disjunction introductions.

Case: x = 0. Then we distinguish cases on y.

Case: y = 0. Then x =
N
y by rule =

N
I0.

Case: y = s(y′). Then x < y by rule <I0.

Case: x = s(x′). Then we distinguish cases on y.

Case: y = 0. Then y < x by rule <I0.

Case: y = s(y′). Then, by induction hypothesis,

x′ < y′ ∨ x′ =
N
y′ ∨ y′ < x′.

We distinguish the three cases.

Subcase: x′ < y′. Then x < y by rule <Is.

Subcase: x′ =
N
y′. Then x =

N
y by rule =

N
Is.

Subcase: y′ < x′. Then y < x by rule <Is.
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3. Computational Contents (60 pts)

Below is a proof term verifying the following decomposition lemma.

∀l∈τ list. ∃k∈τ list. l =L nil ∨ ∃y∈τ. l =L y :: k

In this proof term we use refl for the reflexivity lemma on lists.

dec = λl∈τ list. rec l
of f(nil)⇒ 〈nil, inl (refl nil)〉
| f(x :: l′)⇒ 〈l′, inr 〈x, refl (x :: l′)〉〉

1. (5 pts) Clearly annotate the proposition

∀ l ∈ τ list. ∃ k ∈ τ list. l =L nil ∨ ∃ y ∈ τ. l =L y :: k

so that the extracted function returns the tail of a non-empty list.

∀ l ∈ τ list. ∃ k ∈ τ list. [l =L nil ∨ ∃ y ∈ τ. l =L y :: k]

2. (10 pts) Annotate the proof term correspondingly

dec = λ l ∈ τ list. rec l

of f (nil) ⇒ 〈 nil , inl (refl nil) 〉
| f (x :: l′) ⇒ 〈 l′ , inr 〈 x , refl (x :: l′) 〉 〉

dec = λ l ∈ τ list. rec l

of f (nil) ⇒ 〈 nil , [inl (refl nil)] 〉
| f (x :: l′) ⇒ 〈 l′ , [inr 〈 x , refl (x :: l′) 〉] 〉

3. (5 pts) Give the type of the simplified extracted function.

dec′ : τ list→ τ list

4. (10 pts) Give the definition of the simplified extracted function.

dec′ = λ l ∈ τ list. rec l

of f (nil) ⇒ nil

| f (x :: l′) ⇒ l′
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5. (5 pts) Clearly annotate the proposition

∀ l ∈ τ list. ∃ k ∈ τ list. l =L nil ∨ ∃ y ∈ τ. l =L y :: k

so that the extracted function returns either the head of l or an indication that the
input list l is empty.

∀ l ∈ τ list. ∃ [k ∈ τ list]. [l =L nil] ∨ ∃ y ∈ τ. [l =L y :: k]

6. (10 pts) Annotate the proof term correspondingly

dec = λ l ∈ τ list. rec l

of f (nil) ⇒ 〈 nil , inl (refl nil) 〉
| f (x :: l′) ⇒ 〈 l′ , inr 〈 x , refl (x :: l′) 〉 〉

dec = λ l ∈ τ list. rec l

of f (nil) ⇒ 〈 [nil] , inl [(refl nil)] 〉
| f (x :: l′) ⇒ 〈 [l′] , inr 〈 x , [refl (x :: l′) 〉] 〉

7. (5 pts) Give the type of the simplified extracted function.

dec ′ : τ list→ 1 + τ

8. (10 pts) Give the definition of the simplified extracted function.

dec = λ l ∈ τ list. rec l

of f (nil) ⇒ inl 〈 〉
| f (x :: l′) ⇒ inr x
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4. Induction (50 points)

We specify
sq ∈ nat→nat→nat

sq 0 a = a
sq (s(n′)) a = sq n′ (s(a+ n′ + n′))

square ∈ nat→nat

square n = sq n 0

We do not write out the corresponding straightforward implementations using primitive
recursion.

We would like to prove that

∀n∈nat. square n =
N
n× n

where x× y is ordinary multiplication. For this problem, you may assume any properties of
addition x+y and multiplication x×y such as commutativity, associativity, and distributivity
as needed.

1. (20 pts) Generalize the induction hypothesis to a property of sq .

∀n∈nat. ∀a∈nat. sq n a =
N
n× n+ a

2. (10 pts) Prove that your generalized property of sq implies the desired property of
square

The proof is direct. Let n∈nat. Then

square n
= sq n 0
=
N
n× n+ 0 By generalized property

=
N
n× n By property of addition
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3. (20 pts) Prove your generalized property of sq by an induction argument. As mentioned
in the problem statement, you may freely use properties of addition and multiplication,
but you must make your steps explicit.

The proof is by induction on n.

Case: n = 0. Then
sq 0 a =⇒ a =

N
0× 0 + a

Case: n = s(n′). Then

sq (s(n′)) a
=⇒ sq n′ (s(a+ n′ + n′))
=
N

(n′ × n′ + (s(a+ n′ + n′))) By ind. hyp.
=
N

s(n′)× s(n′) + a By properties of +, ×
= n× n+ a.
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5. More Induction (40 points extra credit)

We specify the new primitive recursive helper function sq2

sq2 ∈ nat→nat→nat→nat

sq2 0 d a = a
sq2 (s(n′)) d a = sq2 n

′ (s(s(d))) (s(a+ d))

1. (10 pts) Define a (non-recursive) function square that calls sq2 with appropriate argu-
ments.

2. (15 pts) Generalize the induction hypothesis by giving a property of sq2 that implies
the correctness of your implementation of square.

3. (15 pts) Prove inductively that sq2 satisfies your property.
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