
4.6 Reasoning about Data Representations 91

is outside of our language. In fact, quantification over arbitrary propositions
or predicates can not be explained satisfactorily using our approach, since the
domain of quantification (such at nat→prop in the example), includes the new
kind of proposition we are just defining. This is an instance of impredicativity
which is rejected in constructive type theory in the style of Martin-Löf. The
rules for quantification over propositions would be something like

Γ, p prop ` A(p) prop
∀2F

p

Γ ` ∀2p:prop. A(p) prop

Γ, p prop ` A(p) true
∀2I

p

Γ ` ∀2p:prop. A(p) true

Γ ` ∀2p:prop. A(p) true Γ ` B prop
∀2E

Γ ` A(B) true

The problem is that A(p) is not really a subformula of ∀2p:prop. A(p). For
example, we can instantiate a proposition with itself!

Γ ` ∀2p:prop. p⊃ p true Γ ` ∀2p:prop. p⊃ p prop
∀2E

Γ ` (∀2p:prop. p⊃ p)⊃(∀2p:prop. p⊃ p) true

Nonetheless, it is possible to allow this kind of quantification in constructive
or classical logic, in which case we obtain higher-order logic. Another solution
is to introduce universes. In essence, we do not just have one kind of propo-
sition, by a whole hierarchy of propositions, where higher levels may include
quantification over propositions at a lower level. We will not take this extra
step here and instead simply use admissible rules of inference, as in the case of
substitutivity above.

Returning to data representation, some functions are easy to implement. For
example,

shiftl ∈ bin→bin
shiftl b = b0

implements the double function.

∀b∈bin. tonat(shiftl b) =N double(tonat b)

Proof: By computation.

tonat(shiftl b) =⇒ tonat(b0) =⇒ double(tonat b)

2

This trival example illustrates why it is convenient to allow multiple rep-
resentations of natural numbers. According to the definition above, we have
shiftl ε =⇒ ε0. The result has leading zeroes. If we wanted to keep representa-
tions in a standard form without leading zeroes, doubling would have to have
a more complicated definition. The alternative approach to work only with
standard forms in the representation is related to the issue of data structure
invariants, which will be discussed in the next section.

Draft of October 31, 2000



92 First-Order Logic and Type Theory

In general, proving the representation theorem for some functions may re-
quire significant knowledge in the theory under consideration. As an example,
we consider addition on binary numbers.

add ∈ bin→bin→bin

add ε c = c
add (b0) ε = b0
add (b0) (c0) = (add b c)0
add (b0) (c1) = (add b c)1
add (b1) ε = b1
add (b1) (c0) = (add b c)1
add (b1) (c1) = (inc (add b c))0

This specification is primitive recursive: all recursive calls to add are on b.
The representation theorem states

∀b∈bin. ∀c∈bin. tonat (add b c) =
N

plus (tonat b) (tonat c)

The proof by induction on b of this property is left as an exercise to the reader.
One should be careful to extract the needed properties of the natural numbers
and addition and prove them separately as lemmas.

4.7 Complete Induction

In the previous section we have seen an example of a correct rule of inference
which was not derivable, only admissible. This was because our logic was not
expressive enough to capture this inference rule as a proposition. In this section
we investigate a related question: is the logic expressive enough so we can derive
different induction principles?

The example we pick is the principle of complete induction also known as
course-of-values induction. On natural numbers, this allows us to use the induc-
tion hypothesis on any number smaller than the induction induction variable.
The principle of mathematical induction considered so far allows only the im-
mediate predecessor. Corresponding principles exist for structural inductions.
For examples, complete induction for lists allows us to apply the induction hy-
pothesis on any tail of the original list.

Complete induction is quite useful in practice. As an example we consider
the integer logarithm function. First, recall the specification of half .

half ∈ nat→nat
half 0 = 0
half (s(0)) = 0
half (s(s(n))) = s(half (n))

This function is not immediately primitive recursive, but it follows the schema
of course-of-values recursion. This is because the recursive call to half (n +

Draft of October 31, 2000



4.7 Complete Induction 93

2) is on n and n < n + 2. We have seen how this can be transformed into
a primitive recursion using pairs. In a sense, we show in this section that
every function specified using course-of-values recursion can be implemented
by primitive recursion. Since we prove this constructively, we actually have an
effective method to implement course-of-values recursion by primitive recursion.

Next we specify the function lg(n) which calculates the number of bits in
the binary representation of n. Mathematically, we have lg(n) = blog2(n+ 1)c.

lg ∈ nat→nat
lg 0 = 0
lg (s(n)) = s(lg(half (s(n))))

This specifies a terminating function because half (s(n)) < s(n). We now intro-
duce the principal of complete induction and then verify the observation that
lg is a terminating function.

Principle of Complete Induction. In order to prove A(n), as-
sume ∀z∈nat. z < x⊃A(z) and prove A(x) for arbitrary x.

In order to simplify the discussion below, we say the property A is complete
if ∀x∈nat. (∀z∈nat. z < x⊃A(z))⊃A(x) is true.

Why is this induction principle valid? The idea is as follows: assume A is
complete. We want to show that ∀n∈nat. A(n) holds. Why does A(0) hold?
If A is complete, then A(0) must be true because there is no z < 0. Now,
inductively, if A(0), A(1), . . . , A(n) are all true, then A(s(n)) must also be true,
because A(z) for every z < s(n) and hence A(n) by completeness.

More explicitly, we can prove the principle of complete induction correct as
follows.

(∀x∈nat. (∀z∈nat. z < x⊃A(z))⊃A(x))⊃∀n∈nat. A(n)

However, a direct proof attempt of this theorem fails—the induction hypoth-
esis needs to be generalized. The structure of the brief informal argument tells
us what it must be.

Proof: Assume A is complete, that is

(∀x∈nat. (∀z∈nat. z < x⊃A(z))⊃A(x)).

We show that

∀n∈nat. ∀m∈nat. m < n⊃A(m)

by induction on n. From this the theorem follows immediately. Now
to the proof of the generalized theorem.

Case: n = 0. We have to show ∀m∈nat. m < 0. A(m). So let m
be given and assume m < 0. But this is contradictory, so we
conclude A(m) by rule <E0.

Draft of October 31, 2000



94 First-Order Logic and Type Theory

Case: n = s(n′). We assume the induction hypothesis:

∀m∈nat. m < n′. A(m).

We have to show:

∀m∈nat. m < s(n′). A(m).

So let m be given and assume m < s(n′). Then we distinguish
two cases: m =

N
n′ or m < n′. It is a straightforward lemma

(which have not proven), that m < s(n′)⊃(m =N n′∨m < n′).

Subcase: m =N n′. From the completeness of A, using n′ for
x, we get

(∀z∈nat. z < n′⊃A(z))⊃A(n′).

But, by renaming z to m the left-hand side of this impli-
cation is the induction hypothesis and we conclude A(n′)
and therefore A(m) by substitution from m =

N
n′.

Subcase: m < n′. Then A(m) follows directly from the in-
duction hypothesis.

2

Now we can use this, for example, to show that the lg function is total.
For this we formalize the specification from above as a proposition. So assume
lg ∈ nat→nat, and assume

(lg 0 =N 0)∧
(∀n∈nat. lg (s(n)) =N s(lg(half (s(n)))))

We prove
∀x∈nat. ∃y∈nat. lg(x) =

N
y

This expresses that lg describes a total function. In fact, from this constructive
proof we can eventually extract a primitive recursive implementation of lg!

Proof: By complete induction on x. Note that in this proof the
property

A(x) = (∃y. lg(x) =
N
y)

Assume the complete induction hypothesis:

∀z. z < x⊃∃y. lg(z) =
N
y

Following the structure of the specification, we distinguish two cases:
x = 0 and x = s(x′).

Case: x = 0. Then y = 0 satisfies the specification since lg(0) =
N

0.

Draft of October 31, 2000



4.7 Complete Induction 95

Case: x = s(x′). Then half (s(x′)) < s(x′) (by an unproven lemma)
and we can use the induction hypothesis to obtain a y′ such
that lg(half (s(x′))) =

N
y′. Then y = s(y′) satisfies

lg(s(x′)) =N s(lg(half (s(x′)))) =N s(y′)

by the specification of lg and transitivity of equality.

2

Next we examine the computational contents of these proofs. First, the
correctness of the principle of complete induction. For simplicity, we assume
an error element error ∈ 0. Then we hide information in the statement of
completeness in the following manner:

∀x∈nat. (∀z∈nat. [z < x]⊃A(z))⊃A(x)

If we assume that a type τ represents the computational contents of A, then
this corresponds to

c ∈ nat→(nat→ τ)→ τ

In the proof of complete induction, we assume that A is complete. Computa-
tionally, this means we assume a function c of this type. In the inductive part
of the proof we show

∀n∈nat. ∀m∈nat. [m < n]⊃A(m)

The the function h extracted from this proof satisfies

h ∈ nat→nat→ τ
h 0 m = abort(error)
h (s(n′)) m = c m (λm′. h(n′) m′) for m =N n′

h (s(n′)) m = h(n′) m for m < n′

Note that h is clearly primitive recursive in its first argument. In this specifica-
tion the nature of the proof and the cases it distinguishes are clearly reflected.
The overall specification

∀n∈nat. A(n)

is contracted to a function f where

f : nat→ τ
f n = h (s(n)) n

which is not itself recursive, but just calls h.
Assume a function f is defined by the schema of complete recursion and we

want to compute f(n). We compute it by primitive recursion on h, starting
with h (s(n)) n. The first argument to h is merely a counter. We start at s(n)
and count it down all the way to s(0). This is what makes the definition of h
primitive recursive.

Draft of October 31, 2000



96 First-Order Logic and Type Theory

Meanwhile, in the second argument to h (which is always smaller than the
first), we compute as prescribed by f . Assume f(n′) calls itself recursively on
g(n′) < n′. Then we compute h (s(n′)) n′ by computing h n′ (g(n′)), which is a
legal recursive call for h. The situation is complicated by the fact that f might
call itself recursively several times on different arguments, so we may need to
call h recursively several times. Each time, however, the first argument will be
decreased, making the recursion legal.

As an example, consider the specification of lg that satisfies the schema of
complete recursion since half (s(n)) < s(n).

(lg 0 =N 0)∧
(∀n∈nat. lg (s(n)) =N s(lg(half (s(n)))))

The function c that is extracted from the proof of

∀x∈nat. ∃y∈nat. [lg(x) =N y]

assuming completeness is

c ∈ nat→(nat→nat)→nat
c 0 r = 0
c (s(n′)) r = s(r (half (s(n′))))

Note that the second argument to c called r represents the induction hypothesis.
c itself is not recursive since we only assumed the principle of complete induction.
To obtain an implementation of lg we must use the proof of the principle of
complete induction. Next, the helper function h is

h ∈ nat→nat→nat
h 0 m = abort(error)
h (s(n′)) m = c m (λm′. h(n′) m′) for m =N n′

h (s(n′)) m = h(n′) m for m < n′

We can expand the definition of c on the right-hand side for the special case of
the logarithm and obtain:

h 0 m = abort(error)
h (s(0)) 0 = 0
h (s(s(n′′))) (s(n′′)) = s(h(s(n′′)) (half (s(n′))))
h (s(n′)) m = h(n′) m for m < n′

and
lg : nat→nat

lg n : h (s(n)) n

which can easily be seen as a primitive recursive definition of lg since equality
and less-than are decidable and we can eliminate the dependency on error by
returning an arbitrary number in the (impossible) first case in the definition of
h.

Draft of October 31, 2000


