
Chapter 5

Decidable Fragments

In previous chapters we have concentrated on the basic laws of reasoning and
their relationship to types and programming languages. The logics and type
theories we considered are very expressive. This is important in many applica-
tions, but it has the disadvantage that the question if a given proposition is true
is undecidable in general. That is, there is no terminating mechanical procedure
which, given a proposition, will tell us whether it is true or not. This is true
for first-order logic, arithmetic, and more complex theories such as the theory
of lists. Furthermore, the proof (which we do not have time to consider in this
course), does not depend on whether we allow the law of excluded middle or
not.

In programming language application, we can sometimes work around this
limitation, because we are often not interested in theorem proving, but in type-
checking. That is, we are given a program (which corresponds to a proof) and
a type (which corresponds to a proposition) and we have to check its validity.
This is a substantially easier problem than deciding the truth of a proposition—
essentially we have to verify the correctness of the applications of inference rules,
rather than to guess which rules might have been applied.

However, there are a number of important applications where we would like
to solve the theorem proving problem: given a proposition, is it true. This can
come about either directly (verify a logic property of a program or system) or
indirectly (take a general problem and translate it into logic).

In this chapter we consider such applications of logic, mostly to problems in
computer science. We limit ourselves to fragments of logic that can be mechan-
ically decided, that is, there is a terminating algorithm which decides whether
a given proposition is true or not. This restricts the set of problems we can
solve, but it means that in practice we can often obtain answers quickly and
reliably. It also means that in principle these developments can be carried out
within type theory itself. We demonstrate this for our first application, based
on quantified Boolean formulas.

The material here is not intended as an independent introduction, but com-
plements the treatment by Huth and Ryan [HR00].

Draft of December 13, 2000



112 Decidable Fragments

5.1 Quantified Boolean Formulas

In Section 3.6 we have seen the data type bool of Booleans with two elements,
true and false. We have seen how to define such operations as boolean nega-
tion, conjunction, and disjunction using the elimination rule for this type which
corresponds to an if-then-else construct. We briefly review these constructs and
also the corresponding principle of proof by cases. In accordance with the nota-
tion in the literature on this particular subject (and the treatment in Huth and
Ryan [HR00]), we write 0 for false, 1 for true, b · c for and , b+ c for or , and b
for not .

The Boolean type, bool, is defined by two introduction rules.

boolF
bool type

boolI0
Γ ` 0 ∈ bool

boolI1
Γ ` 1 ∈ bool

The elimination rule follows distinguishes the two cases for a given Boolean
value.

Γ ` b ∈ bool Γ ` s1 ∈ τ Γ ` s0 ∈ τ
boolE

Γ ` if b then s1 else s0 ∈ τ
The reduction rules just distinguish the two cases for the subject of the if-
expression.

if 0 then s1 else s0 =⇒ s0

if 1 then s1 else s0 =⇒ s1

Now we can define typical functions on booleans, such as and , or , and
not , transcribing their truth tables. We make no attempt here to optimize the
definitions, but simply distinguish all possible cases for the inputs.

x · y = if x then (if y then 1 else 0) else (if y then 0 else 0)

x+ y = if x then (if y then 1 else 1) else (if y then 1 else 0)

x = if x then 0 else 1

Following this line of thought, it is quite easy to define universal and existential
quantification over Booleans. The idea is that ∀x∈bool. f(x) where f is a
Boolean term dependent on x is representated by forall(λx∈bool. f(x)) so that

forall ∈ (bool→bool)→bool
forall = λf∈bool→bool. f 0 · f 1

Somewhat more informally, we write

∀x. f(x) = f(0) · f(1)

but this should only be considered a shorthand for the above definition. The
existential quantifier works out similarly, replacing conjunction by disjunction.
We have

exists ∈ (bool→bool)→bool
exists = λf∈bool→bool. f 0 + f 1

Draft of December 13, 2000



5.1 Quantified Boolean Formulas 113

or, in alternate notation,

∃x. f(x) = f(0) + f(1)

The resulting language is that of quantified Boolean formulas. As the defi-
nitions above show, the value of each quantified Boolean formula (without free
variables) can simply be computed, using the definitions of the operations in
type theory.

Unfortunately, such an implementation is extremely inefficient, taking expo-
nential time in the number of quantified variables, not only in the worst, but the
typical case. Depending on the operational semantics we employ in type theory,
the situation could be even worse, require exponential time in every case.

There are two ways out of this dilemma. One is to leave type theory and
give an efficient imperative implementation using, for example, ordered binary
decision diagrams as shown in Huth and Ryan. While this does not improve
worst-case complexity, it is practical for a large class of examples.

Another possibility is to replace computation by reasoning. Rather than
computing the value of an expression, we prove that it is equal to 1 or 0. For
example, it is easy to prove that (∀x1 . . .∀xn. x1 · · ·xn · 0) =B 0 even though
it may take exponential time to compute the value of the left-hand side of
the equation. In order to model such reasoning, we need the propositional
counterpart of the elimination rule for bool.

Γ ` b ∈ bool Γ `M1 : A(1) Γ `M0 : A(0)
boolE

Γ ` case b of 1⇒M1 | 0⇒M0 : A(t)

The rules for propositional equality between Booleans follow the pattern estab-
lished by equality on natural numbers and lists.

Γ ` b ∈ nat Γ ` c ∈ nat
=B F

Γ ` b =B c prop

=B I0
Γ ` 0 =B 0 true

=B I1
Γ ` 1 =B 1 true

no =B E00 elimination rule no =B E11 elimination rule

Γ ` 0 =B 1 true
=B E01

Γ ` C true

Γ ` 1 =B 0 true
=B E10

Γ ` C true

As a simple example, we prove that for every b∈bool we have b · 0 =B 0.
The proof proceeds by cases on b.

Case: b = 0. Then we compute 0 · 0 =B 0 so by conversion we have 0 · 0 =
N

0.

Case: b = 1. Then we compute 1 · 0 =B 0 so by conversion we have 1 · 0 =
N

1

Draft of December 13, 2000



114 Decidable Fragments

Note that we can use this theorem for arbitrarily complex terms b. Its transcrip-
tion into a formal proof using the rules above is straightforward and omitted.

An interesting proposal regarding the combination of efficient computation
(using OBDDs) and proof has been made by Harrison [Har95]. From a trace of
the operation of the OBDD implementation we can feasibly extract a proof in
terms of the primitive inference rules and some other derived rules. This means
what we can have a complex, optimizing implementation without giving up the
safety of proof by generating a proof object rather than just a yes-or-no answer.

5.2 Boolean Satisfiability

A particularly important problem is Boolean satisfiability (SAT):

Given a Boolean formula ∃x1 . . .∃xn. f(x1, . . . , xn) without free vari-
ables where f(x1, . . . , xn) does not contain quantifiers. Is the for-
mula equal to 1?

Alternatively, we can express this as follows:

Given a quantifier-free Boolean formula f(x1, . . . , xn), is there an
assignment of 0 and 1 to each of the variables xi which makes f
equal to 1?

SAT is an example of an NP-complete problem: it can be solved in non-
deterministic polynomial time (by guessing and then checking the satisfying
assignment), and every other problem in NP can be translated to SAT in poly-
nomial time. What is perhaps surprising is that this can be practical in many
cases. The dual problem of validity (deciding if ∀x1 . . .∀xn. f(x1, . . . , xn) is
equal to 1) is also often of interest and is co-NP complete.

There are many graph-based and related problems which can be translated
into SAT. As a simple example we consider the question of deciding whether
the nodes of a graph can be colored with k colors such that no two nodes that
are connected by an edge have the same color.

Assume we are given a graph with nodes numbered 1, . . . , n and colors
1, . . . , k. We introduce Boolean variables cij with the intent that

cij = 1 iff node i has color j

We now have to express that constraints on the colorings by Boolean formulas.
First, each node as exactly one color. For each node 1 ≤ i ≤ n we obtain a
formula

ui = ci1 · ci2 · · · cik
+ ci1 · ci2 · · · cik
+ · · ·
+ ci1 · ci2 · · · cik

There are n such formulas, each of size O(n× k). Secondly we want to express
that two nodes connected by an edge do not have the same color. For any two

Draft of December 13, 2000



5.3 Constructive Temporal Logic 115

nodes i and m we have

wim = ci1 · cm1 · · · cik · cmk if there is an edge between i and m
wim = 1 otherwise

There are n × n such formulas, each of size O(k) or O(1). The graph can be
colored with k colors if each of the ui and wim are satisfied simultaneously. Thus
the satisfiability problem associated with a graph is

(u1 · · ·un) · (w11 · · ·w1n) · · · (wn1 · · ·wnn)

The total size of the resulting formula is O(n2× k) and contains n× k Boolean
variables. Thus the translation is clearly polynomial.

5.3 Constructive Temporal Logic

An important application of logic is model-checking, as explained in Huth and
Ryan. Another excellent source on this topic is the book by Clarke, Grumberg
and Peled [CGP99].

Here we give a constructive development of a small fragment of CTL. I am
not aware of any satisfactory constructive account for all of CTL. For linear
time temporal logic, Davies [Dav96] gives an extension of the Curry-Howard
isomorphism with an interesting application to partial evaluation.

In order to model temporal logic we need to relativize our main judgment
A true to particular states. We have the following judgments:

s state s is a state
s→ s′ we can transition from state s to s′ in one step
A @ s proposition A is true in state s

We presuppose that s and s′ are states when we write s → s′ and that A is a
proposition and s a state when writing A @ s.

Now all logical rules are viewed as rules for reasoning entirely within a given
state. For example:

A @ s B @ s
∧I

A ∧B @ s

A ∧B @ s ∧EL
A @ s

A ∧B @ s ∧ER
B @ s

For disjunction and falsehood elimination, there are two choices, depending on
whether we admit conclusions in an arbitrary state s′ or only in s, the state in
which we have derived the disjunction or falsehood. It would seem that both
choices are consistent and lead to slightly different logics.

Draft of December 13, 2000



116 Decidable Fragments

Next, we model the AX and EX connectives. AX A is true in state s if
A is true in every successor state s′. To express “in every successor state” we
introduce the assumption s→ S′ for a new parameter S′.

u
s→ S′

...

A @ S′

AXIS
′,u

AX A @ s

The elimination rule allows us to infer that A is true in state s′ if AX A is true
in s, and s′ is a successor state to s.

AX A @ s s→ s′
AXE

A @ s′

It is easy to see that this elimination rule is locally sound.
The rules for the EX connective follow from similar considerations.

s→ s′ A @ s′
EXI

EX A @ s

EX A @ s

u
s→ S′

w
A @ S′

...

C @ r
EXES

′,u,w

C @ r

We can now prove general laws, such as

AX (A ∧B) ≡ (AX A) ∧ (AX B)

Such proofs are carried out parametrically in the sense that we do not assume
any particular set of states or particular transition relations. Laws derived in
this manner will be true for any particular set of states and transitions.

If we want to reason about a particular system (which is done in model-
checking), we have to specify the atomic propositions, states, and transitions.
For example, the system on page 157 in Huth and Ryan is represented by the
assumptions

p prop, q prop, r prop,
s0 state, s1 state, s2 state,
s0 → s1, s0 → s2,
s1 → s0, s1 → s2,
s2 → s2

Draft of December 13, 2000



5.3 Constructive Temporal Logic 117

Unfortunately, this is not yet enough. We can think of the transition rules
above as introduction rules for the s → s′, but we also need elimination rules.
Because of the nature of the AX and EX connectives, it appears sufficient if we
can distinguish cases on the target of a transition.

s0 → s A @ s1 A @ s2
s0 →E

A @ s

s1 → s A @ s0 A @ s2
s1 →E

A @ s

s2 → s A @ s2
s2 →E

A @ s

In general, this would have to be augmented with additional rules, for example,
letting is infer anything from an assumption that s2 → s1 if there is in fact no
such transition.1 Now we can prove, for example, that AX r @ s0 as follows

u
s0 → S r @ s1 r @ s2

s1 →E
r @ S

AXIS,u
AX r @ s0

Despite the finiteness of the sets of states and the transition relations, this
logic is different from the classical logic usually used, because we do not assume
the law of excluded middle. Of course, this can be done which brings us back
to the usual interpretation of the logic.

It is not clear how to carry this constructive development forward to encom-
pass other connectives such as AG, AF, EG, etc. The difficulty here is that
paths are infinite, yet we need to reason about global or eventual truth along
such paths. In the classical development this is easily handled by introduc-
ing appropriate laws for negation and least and greatest fixpoint operations on
monotone state transformations. We are currently investigating type-theoretic
expressions of this kind of reasoning using inductive and co-inductive techniques.

1For the connectives given here, I do not believe that this is necessary.

Draft of December 13, 2000



118 Decidable Fragments

Draft of December 13, 2000



Bibliography

[CGP99] E.M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, Massachusetts, 1999.

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, May
1936.

[Dav96] Rowan Davies. A temporal logic approach to binding-time analysis.
In E. Clarke, editor, Proceedings of the Eleventh Annual Symposium
on Logic in Computer Science, pages 184–195, New Brunswick, New
Jersey, July 1996. IEEE Computer Society Press.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Math-
ematische Zeitschrift, 39:176–210, 405–431, 1935. English translation
in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
pages 68–131, North-Holland, 1969.

[Har95] John Harrison. Binary decision diagrams as a HOL derived rule. The
Computer Journal, 38:162–170, 1995.

[How80] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479–490.
Academic Press, 1980. Hitherto unpublished note of 1969, rearranged,
corrected, and annotated by Howard.

[HR00] Michael R.A. Huth and Mark D. Ryan. Logic in Computer Science:
Modelling and reasoning about systems. Cambridge University Press,
2000.

[ML80] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages
153–175. North-Holland, 1980.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

Draft of December 13, 2000



120 BIBLIOGRAPHY

[Oka99] Chris Okasaki. Red-black trees in a functional setting. Journal of
Functional Programming, 9(4):471–477, July 1999.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. In Keith D. Cooper, editor, Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI’98), pages 249–257, Montreal, Canada, June 1998. ACM Press.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-
gramming. In A. Aiken, editor, Conference Record of the 26th Sym-
posium on Principles of Programming Languages (POPL’99), pages
214–227. ACM Press, January 1999.

Draft of December 13, 2000


