
4.9 Data Structure Invariants 103

latter, the proof objects either have to be expressed directly in the program or
extracted as obligations and verified separately.

We now briefly reexamine the Curry-Howard isomorphism, when extended
to the first-order level. We have the following correspondence:

Propositions ∧ ⊃ > ∨ ⊥ ∀ ∃
Types × → 1 + 0 Π Σ

Note that under erasure, ∀ is related to→ and ∃ is related to ×. The analogous
property holds for Π and Σ: Πx:τ. σ corresponds to τ→ σ if x does not occur
in σ, and Σx:τ. σ simplifies to τ ×σ if x does not occur in σ.

In view of this strong correspondence, one wonders if propositions are really
necessary as a primitive concept. In some systems, they are introduced in order
to distinguish those elements with computational contents from those without.
However, we have introduced the bracket annotation to serve this purpose, so
one can streamline and simplify type theory by eliminating the distinction be-
tween propositions and types. Similarly, there is no need to distinguish between
terms and proof terms. In fact, we have already used identical notations for
them. Propositional constructs such as n =N m are then considered as types
(namely: the types of their proof terms).

Because of the central importance of types and their properties in the design
and theory of programming languages, there are many other constructions that
are considered both in the literature and in practical languages. Just to name
some of them, we have polymorphic types, singleton types, intersection types,
union types, subtypes, record types, quotient types, equality types, inductive
types, recursive types, linear types, strict types, modal types, temporal types,
etc. Because of the essentially open-ended nature of type theory, all of these
could be considered in the context of the machinery we have built up so far.
We have seen most of the principles which underly the design of type systems
(or corresponding logics), thereby providing a foundation for understanding the
vast literature on the subject.

Instead of discussing these (which could be subject of another course) we
consider one further application of dependent types and then consider theorem
proving in various fragments of the full type theory.

4.9 Data Structure Invariants

An important application of dependent types is capturing representation in-
variants of data structures. An invariant on a data structure restricts valid
elements of a type. Dependent types can capture such invariants, so that only
valid elements are well-typed.

Our example will be an efficient implementation of finite sets of natural
numbers. We start with a required lemma and auxiliary function.

∀x∈nat. ∀y∈nat. [x < y] ∨ [x =
N
y] ∨ [x > y]

Draft of November 6, 2000



104 First-Order Logic and Type Theory

From the straightforward proof we can extract a function

compare ∈ nat→nat→1 + 1 + 1.

For obvious reasons we use the abbreviations

less = inl 〈 〉
equal = inr (inl 〈 〉)

greater = inr (inr 〈 〉)

and

case r
of less ⇒ t<
| equal ⇒ t=
| greater ⇒ t>

= case r
of inl ⇒ t<
| inr r′ ⇒ (case r′

of inl ⇒ t=
| inr ⇒ t>)

We give an interface for which we want to supply an implementation.

set type
empty ∈ set
insert ∈ nat→ set→ set

member ∈ nat→ set→bool

We do not give interfaces a first-class status in our development of type theory,
but it is nonetheless a useful conceptual device. We would like to given an
implementation via definitions of the form

set = . . .
empty = . . .
insert = . . .

member = . . .

that satisfy the types specified in the interface.

The idea is to implement a set as a red-black tree. Red-black trees are an
efficient data structure for representing dictionaries whose keys are ordered.
Here we follow the presentation by Chris Okasaki [Oka99]. The underlying data
structure is a binary tree whose nodes are labelled with the members of the set.
If we can ensure that the tree is sufficiently balanced, the height of such a tree
will be logarithmic in the number of elements of the set. If we also maintain
that the tree is ordered, lookup and insertion of an element can be performed
in time proportional to the logarithm of the size of the set. The mechanism for
ensuring that the tree remains balanced is the coloring of the nodes and the
invariants maintained in the representation.

A tree is either empty or consists of a black or red node labelled with a
natural number x and two subtrees a and b

Draft of November 6, 2000



4.9 Data Structure Invariants 105

Empty Tree Black Node

a
�
�

b
B
B

igx

Red Node

a
�
�

b
B
B

ix

We maintain the following representation invariants:

1. The tree is ordered : all elements in the left subtree a are smaller than x,
while all elements in the right subtree b are larger than x.

2. The tree is uniform: every path from the root to a leaf contains the same
number of black nodes. This defines the black height of a tree, where the
black height of the empty tree is taken to be zero.

3. The tree is well-colored : the children of red node are always black, where
empty trees count as black.

Uniform and well-colored trees are sufficiently balanced to ensure worst-case
logarithmic membership test for elements in the set. Other operations can be
implemented with similar efficiency, but we concentrate on membership test and
insertion.

The ordering invariant is difficult to enforce by dependent types, since it
requires propositional reasoning about the less-than relation. We will capture
the uniformity invariant via dependent types. It is also possible to capture the
coloring invariant via dependencies, but this is more complicated, and we do
not attempt it here.

We index a red-black tree by its black height.

Γ ` n ∈ nat
treeF

Γ ` tree(n) type

There are three introduction rules, incorporating the three types of nodes (empty,
black, red).

treeIE
Γ ` E ∈ tree(0)

Γ ` a ∈ tree(n) Γ ` x ∈ nat Γ ` b ∈ tree(n)
treeIB

Γ ` B a x b ∈ tree(s(n))

Γ ` a ∈ tree(n) Γ ` x ∈ nat Γ ` b ∈ tree(n)
treeIR

Γ ` R a x b ∈ tree(n)

The index is increased by one for a black node B, but not for a red node R. Note
that in either case, both subtrees a and b must have the same black height. This

Draft of November 6, 2000



106 First-Order Logic and Type Theory

use of indices is different from their use for lists. Any list formed from nil and
cons (::) without the length index will in fact have a valid length. Here, there
are many trees that are ruled out as invalid because of the dependent types.
In other words, the dependent types guarantee a data structure invariant by
type-checking alone.

Now we can begin filling in the implementation, according to the given in-
terface.

set = Σn∈nat. tree(n)
empty = 〈0,E〉
insert = . . .

member = . . .

Our intent is not to carry the black height n at run-time. If we wanted to make
this explicit, we would write Σ[n]∈[nat]. tree[n].

Before we program the insert and member functions, we write out the elim-
ination form as a schema of primitive recursion.

f(0,E) = tE
f(s(n′),B a x b) = tB(n′, a, x, b, f(n′, a), f(n′, b))

f(n,R a x b) = tR(n, a, x, b, f(n, a), f(n, b))

Using this schema, we can define the set membership function.

mem : nat→Πn∈nat. tree(n)→bool

mem x 0 E = false
mem x (s(n′)) (B a y b) = case compare x y

of less ⇒ mem x n′ a
| equal ⇒ true
| greater ⇒ mem x n′ b

mem x n (R a y b) = case compare x y
of less ⇒ mem x n a
| equal ⇒ true
| greater ⇒ mem x n b

Note that the cases for black and red nodes are identical, except for their treat-
ment of the indices. This is the price we have to pay for our representation.
However, in practice this can be avoided by allowing some type inference rather
than just type checking.

From mem we can define the member function:

member ∈ nat→ set→bool

member = λx∈nat. λs∈set. let 〈n, t〉 = s in mem x n t

Insertion is a much trickier operation. We have to temporarily violate our
color invariant and then restore it by a re-balancing operation. Moreover, we
sometimes need to increase the black height of the tree (essentially, when we
run out of room at the current level). We need an auxiliary function

ins ∈ nat→Πn∈nat. tree(n)→ tree(n)

Draft of November 6, 2000



4.9 Data Structure Invariants 107

which preserves the black height n, but may violate the red-black invariant at
the root. That is, the resulting tree must be a valid red-black tree, except that
the root might be red and either the left or the right subtree could also have a
red root. At the top-level, we re-establish the color invariant by re-coloring the
root black. We first show this step, assuming a function ins according to our
specification above. Recall that set = Σn∈nat. tree(n)

recolor ∈ Πn∈nat. tree(n)→ set

recolor 0 E = 〈0,E〉
recolor (s(n′)) (B a x b) = 〈s(n′),B a x b〉
recolor n (R a x b) = 〈s(n),B a x b〉

insert ∈ nat→ set→ set

insert = λx ∈ nat. λs ∈ set .
let 〈n, t〉 = s in recolor n (ins x t)

Note that recolor returns a tree of black height n if the root node is black,
and s(n) if the root node is red. This is how the black height can grow after
successive insertion operations.

Now to the auxiliary function ins. Recall:

ins ∈ nat→Πn∈nat. tree(n)→ tree(n)

It is critical that the black height of the output tree is the same as the input tree,
so that the overall balance of the tree is not compromised during the recursion.
This forces, for example, the case of insertion into an empty tree to color the
new node red.

ins x 0 E = R E x E
ins x (s(n′)) (B a y b) = case compare x y

of less ⇒ balanceL n
′ (ins x n′ a) y b

| equal ⇒ B a y b
| greater ⇒ balanceR n

′ a y (ins x n′ a)
ins x n (R a y b) = case compare x y

of less ⇒ R (ins x n a) y b
| equal ⇒ R a y b
| greater ⇒ R a y (ins x n a)

We need two auxiliary functions balanceL and balanceR to repair any possible
violation of the color invariant in either the left or right subtree, in case the root

Draft of November 6, 2000



108 First-Order Logic and Type Theory

node is black.

balanceL ∈ Πn′∈nat. tree(n′)→nat→ tree(n′)→ tree(s(n′))

balanceL n
′ (R (R a x b) y c) z d = B (R a x b) y (R c z d)

balanceL n
′ (R a x (R b y c)) z d = B (R a x b) y (R c z d)

balanceL n
′ a x b = B a x b in all other cases

balanceR ∈ Πn′∈nat. tree(n′)→nat→ tree(n′)→ tree(s(n′))

balanceR n
′ a x (R (R b y c) z d) = B (R a x b) y (R c z d)

balanceR n
′ a x (R b y (R c z d)) = B (R a x b) y (R c z d)

balanceR n
′ a x b = B a x b in all other cases

We have taken the liberty of combining some cases to significantly simplify the
specification. It should be clear that this can indeed be implemented. In fact,
there is no recursion, only several nested case distinctions.

The following picture illustrates the operation performed by balanceL. Note
that the tree input trees to the left and the right are never actually built, but
that balanceL directly receives the left subtree, z and d as arguments.

a
�
�

b
B
B

ix
�
�

iy
�
�

c
B
B

igz

d
B
B

=⇒

b
�
�

c
B
B

iy
B
B

ix
�
�

a
�
�

igz

d
B
B

⇐=

a
�
�

b
B
B

igx






c
�
�

d
B
B

igz
J

JJ

iy

Type-checking will verify that the black-height remains invariant under the
balancing operation: initially, it is n′ for each subtree a, b, c, and d and s(n′)
for the whole tree, which is still the case after re-balancing.

Similarly, the order is preserved. Writing t < x to mean that every element
in tree t is less than x, we extract the order

a < x < b < y < c < z < d

from all three trees by traversing it in a “smallest first” fashion.
Finally, we can see that the tree resulting from balancing always satisfies the

red-black invariant, if the pictures on the left and right indicate the only place
where the invariant is violated before we start.

All these proofs can be formalized, using an appropriate formalization of
these color and ordering invariants. The only important consideration we have
not mentioned is that in the case of insertion into a tree with a red root, we
do not to apply the re-balancing operation to the result. This is because (a)

Draft of November 6, 2000



4.9 Data Structure Invariants 109

the two immediate subtrees must be black, and (b) inserting into a black tree
always yields a valid red-black tree (with no possible violation at the root).

This example illustrates how dependent types can be used to enforce a con-
tinuum of properties via type-checking, while others are left to explicit proof.
From the software engineering point of view, any additional invariants that can
be enforced statically without an explosion in the size of the program is likely
to be beneficial by catching programming errors early.

Draft of November 6, 2000



110 First-Order Logic and Type Theory

Draft of November 6, 2000



Bibliography

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, May
1936.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39:176–210, 405–431, 1935. English translation in
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages
68–131, North-Holland, 1969.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, 1980. Hitherto unpublished note of 1969, rearranged, corrected,
and annotated by Howard.

[ML80] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages 153–
175. North-Holland, 1980.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

[Oka99] Chris Okasaki. Red-black trees in a functional setting. Journal of
Functional Programming, 9(4):471–477, July 1999.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. In Keith D. Cooper, editor, Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI’98), pages 249–257, Montreal, Canada, June 1998. ACM Press.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-
gramming. In A. Aiken, editor, Conference Record of the 26th Sym-
posium on Principles of Programming Languages (POPL’99), pages
214–227. ACM Press, January 1999.

Draft of November 6, 2000


