3.5 Primitive Recursion 45

3.5 Primitive Recursion

In the preceding sections we have developed an interpretation of propositions
as types. This interpretation yields function types (from implication), product
types (from conjunction), unit type (from truth), sum types (from disjunction)
and the empty type (from falsehood). What is missing for a reasonable pro-
gramming language are basic data types such as natural numbers, integers, lists,
trees, etc. There are several approaches to incorporating such types into our
framework. One is to add a general definition mechanism for recursive types or
inductive types. We return to this option later. Another one is to specify each
type in a way which is analogous to the definitions of the logical connectives via
introduction and elimination rules. This is the option we pursue in this section.
A third way is to use the constructs we already have to define data. This was
Church’s original approach culminating in the so-called Church numerals. We
will not discuss this idea in these notes.

After spending some time to illustrate the interpretation of propositions as
types, we now introduce types as a first-class notion. This is not strictly nec-
essary, but it avoids the question what, for example, nat (the type of natural
numbers) means as a proposition. Accordingly, we have a new judgment 7 type
meaning “7 is a type”. To understand the meaning of a type means to under-
stand what elements it has. We therefore need a second judgment ¢ € 7 (read:
“t is an element of type 7”) that is defined by introduction rules with their cor-
responding elimination rules. As in the case of logical connectives, computation
arises from the meeting of elimination and introduction rules. Needless to say,
we will continue to use our mechanisms of hypothetical judgments.

Before introducing any actual data types, we look ahead at their use in logic.
We will introduce new propositions of the form Va € 7. A(x) (A is true for every
element © of type 7) and Jx € 7. A(x) (A is true some some element © of type
7). This will be the step from propositional logic to first-order logic. This logic
is called first-order because we can quantify (via V and 3) only over elements of
data types, but not propositions themselves.

We begin our presentation of data types with the natural numbers. The
formation rule is trivial: nat is a type.

— natF
nat type

Now we state two of Peano’s famous axioms in judgmental form as intro-
duction rules: (1) 0 is a natural numbers, and (2) if n is a natural number then
its successor, s(n), is a natural number. We write s(n) instead of n + 1, since
addition and the number 1 have yet to be defined.

nat], n € nat

————nat/
0 € nat s(n) € nat ’

The elimination rule is a bit more difficult to construct. Assume have a
natural number n. Now we cannot directly take its predecessor, for example,

Draft of September 26, 2000

46 Proofs as Programs

because we do not know if n was constructed using natly or natl;. This is
similar to the case of disjunction, and our solution is also similar: we distinguish
cases. In general, it turns out this is not sufficient, but our first approximation
for an elimination rule is

xr € nat

n € nat toeT ts €T

x

casenof 0 =ty |s(z) =>t; €7

Note that x is introduced in the third premise; its scope is ts. First, we rewrite
this using our more concise notation for hypothetical judgments. For now, I"
contains assumptions of the form x € 7. Later, we will add logical assumptions
of the form wu:A.

I'Fn € nat F'kHtoer I'renat-t; e
x

I'Fcasenof 0=ty |s(z)=t; €7

This elimination rule is sound, and under the computational interpretation
of terms, type preservation holds. The reductions rules are

(case0of 0 =ty |s(z) = t;) = +to
(cases(n) of 0 =t | s(z) = t;) = [n/x]ts

Clearly, this is the intended reading of the case construct in programs.

In order to use this in writing programs independently of the logic devel-
oped earlier, we now introduce function types in a way that is isomorphic to
implication.

T type o type

—F
T — 0 type
NNzeokter I'kFser—o I'Fter
Ny —F
I'FXxecoteo—T I'kFsteo

Az €o.s)t = [t/x]s

Now we can write a function for truncated predecessor: the predecessor of
0 is defined to be 0; otherwise the predecessor of n + 1 is simply n. We phrase
this as a notational definition.

pred = Ar € nat.casezof0=0]s(y) =y
Then + pred € nat — nat and we can formally calculate the predecessor of 2.

pred(s(s(0))) (Ax € nat. casex of 0 = 0 | s(y) = y) (s(s(0)))

; cases(s(0)) of 0 = 0|s(y) =y
= s(0)

Draft of September 26, 2000

3.5 Primitive Recursion 47

As a next example, we consider a function which doubles its argument. The
behavior of the double function on an argument can be specified as follows:

double(0) = 0
double(s(n)) = s(s(double(n)))

Unfortunately, there is no way to transcribe this definition into an application
of the case-construct for natural numbers, since it is recursive: the right-hand
side contains an occurrence of double, the function we are trying to define.

Fortunately, we can generalize the elimination construct for natural numbers
to permit this kind of recursion which is called primitive recursion. Note that
we can define the value of a function on s(n) only in terms of n and the value
of the function on n. We write

't e nat I'ttoer Iz €nat, f(r)eTht; €T
IFkFrectof f(0)=ty| f(s(z)) = ts: 7

natE5H*

Here, f may not occur in to and can only occur in the form f(z) in ¢, to denote
the result of the recursive call. Essentially, f(z) is just the mnemonic name of
a new variable for the result of the recursive call. Moreover, = is bound with
scope ts. The reduction rules are now recursive:

(rec 0 of f(0) = to | f(s(x)) = ts)
(rec s(n) of f(0) = to | f(s(x)) = ts)
[(rec nof f(0) = to | f(s(z)) = ts)/ f(z)] [n/z]ts

As an example we revisit the double function and give it as a notational defini-
tion.

= 1y
—

double = MAx € nat.rec x
of d(0) =0
| d(s(z")) = s(s(d(z)))

Now double (s(0)) can be computed as follows

(Ax € nat. rec z
of d(0) =0
| d(s(2')) = s(s(d(a")))
(s(0))
= rec (s(0))
of d(0) =0

As some other examples, we consider the functions for addition and mul-
tiplication. These definitions are by no means uniquely determined. In each

Draft of September 26, 2000

48 Proofs as Programs

case we first give an implicit definition, describing the intended behavior of the
function, and then the realization in our language.

plus0y = y
plus (s(z'))y = s(plusz’y)
plus = Ax € nat. \y € nat. rec x
of p(0) =y
| p(s(z')) = s(p(z') y)
timesO0y = 0
times (s(z'))y = plusy (timesx'y)
times = Ar € nat. \y € nat. rec z
of t(0) =0

| t(s(z')) = plusy (t(z) y)

The next example requires pairs in the language. We therefore introduce
pairs which are isomorphic to the proof terms for conjunction from before.

I'kseo 'kter

X
'k {(s,t)yeoxT
I'Hterxo I'Fterxo
— xEj —— xFp
I'Hfstter I'tsndteo

fst (t,s) =t
snd (¢, s) = s

Next the function half, rounding down if necessary. This is slightly trickier
then the examples above, since we would like to count down by two as the
following specification indicates.

half0 = 0
half (s(0)) = 0
half (s(s(z'))) = s(half(z'))

The first step is to break this function into two, each of which steps down by
one.

half,0 = 0
half, (s(z')) = half,(2')
half40 = 0

half, (s(z')) = s(half,(z"))

Draft of September 26, 2000

3.5 Primitive Recursion 49

Note that half, calls half, and vice versa. This is an example of so-called mutual
recursion. This can be modeled by one function half,, returning a pair such

that half 5(x) = (half | (x), half5(x)).

half1,0 = (0,0)

half 15 (s(z)) = (snd (half5(2)),s(fst (half 15(z)))
half x = fst (half x)

In our notation this becomes

half5, = Axr € nat.recz
of 1(0) = (0, 0)
| h(s(a")) = (snd (h(x)), s(fst (h(z)))
half = Mz € nat. fst (half,5)

As a last example in the section, consider the subtraction function which
cuts off at zero.

minus0y = 0
minus (s(z'))0 = s(a’)
minus (s(z')) (s(y)) = minusz’y

To be presented in the schema of primitive recursion, this requires two nested
case distinctions: the outermost one on the first argument z, the innermost one
on the second argument y.

minus = Az € nat. \y € nat. rec x
of m(0) =y
| m(s(z')) = rec y
of p(0) = s(a’)
| p(s(y)) = (m (")) y/

Note that m is correctly applied only to z’, while p is not used at all. So the
inner recursion could have been written as a case-expression instead.

Functions defined by primitive recursion terminate. This is because the be-
havior of the function on s(n) is defined in terms of the behavior on n. We can
therefore count down to 0, in which case no recursive call is allowed. An alterna-
tive approach is to take case as primitive and allow arbitrary recursion. In such
a language it is much easier to program, but not every function terminates. We
will see that for our purpose about integrating constructive reasoning and func-
tional programming it is simpler if all functions one can write down are total,
that is, are defined on all arguments. This is because total functions can be used
to provide witnesses for propositions of the form Vz € nat. Jy € nat. P(z,y)
by showing how to compute y from z. Functions that may not return an appro-
priate y cannot be used in this capacity and are generally much more difficult
to reason about.

Draft of September 26, 2000

50 Proofs as Programs

3.6 Booleans

Another simple example of a data type is provided by the Boolean type with
two elements true and false. This should not be confused with the propositions
T and L. In fact, they correspond to the unit type 1 and the empty type 0.
We recall their definitions first, in analogy with the propositions.

1F
1 type
T limination rul
T+ () € type no 1 elimination rule
0F
0 type
I'Hteo
no 0 introduction rule 0F

I'abort"ter

There are no reduction rules at these types.
The Boolean type, bool, is instead defined by two introduction rules.

boolF
bool type

booll; booll
I' F true € bool I' I false € bool

The elimination rule follows the now familiar pattern: since there are two
introduction rules, we have to distinguish two cases for a given Boolean value.
This could be written as

caset of true = s | false = s

but we typically express the same program as an if ¢t then s; else sg.

I't € bool I'ksier I'ksyper
boolE

I'ift then sy else sy € T

The reduction rules just distinguish the two cases for the subject of the if-
expression.

if true then s; else sy — s

if false then sy else sy — s

Now we can define typical functions on booleans, such as and, or, and not.

and = Az € bool. A\y € bool.
if z then y else false

or = Az € bool. \y € bool.
if z then true else y

not = Az € bool.
if z then false else true

Draft of September 26, 2000

3.7 Lists 51

3.7 Lists

Another more interesting data type is that of lists. Lists can be created with
elements from any type whatsoever, which means that 7 list is a type for any

type 7.
T type
— listF
7 list type
Lists are built up from the empty list (nil) with the operation :: (pronounced
“cons”), written in infix notation.

list], 'kter I'serlist
['Fnil” € 7list I'kt:serlist

list 1,

The elimination rule implements the schema of primitive recursion over lists. It
can be specified as follows:

f(mil) = s,
f(ml) - Sc(m7l7f(l))

where we have indicated that s, may mention z, I, and f(I), but no other
occurrences of f. Again this guarantees termination.

I'kterlist I'ks,€co Nyzerlerlist, f(l) eclists. €c
listE

I'Frectof f(nil) = s, | f(x:l)=>s. €0

We have overloaded the rec constructor here—from the type of ¢ we can always
tell if it should recurse over natural numbers or lists. The reduction rules are
once again recursive, as in the case for natural numbers.

(recnil of f(nil) = s, | f(x ::1) = s.) = s
(rec(h::t) of f(nil) = s, | f(z:]) = s.) =
[(rect of f(nil) = s, | f(z 1) = sc)/f(D)] [h/x] [t/1] sc

Now we can define typical operations on lists via primitive recursion. A
simple example is the append function to concatenate two lists.

append nilk = k
append (x 'Yk = x:: (appendl' k)

In the notation of primitive recursion:

append = A € tlist. Ak € Tlist. rec [
of a(nil) =k
| a(z)=z ((al')k)
F append € 7list — 7list — 7 list

Note that the last judgment is parametric in 7, a situation referred to as
parametric polymorphism.

Draft of September 26, 2000

52

Proofs as Programs

Draft of September 26, 2000

