
Chapter 2

Propositional Logic

The goal of this chapter is to develop the two principal notions of logic, namely
propositions and proofs. There is no universal agreement about the proper
foundations for these notions. One approach, which has been particularly suc-
cessful for applications in computer science, is to understand the meaning of
a proposition by understanding its proofs. In the words of Martin-Löf [ML96,
Page 27]:

The meaning of a proposition is determined by [. . . ] what counts as
a verification of it.

In this chapter we apply Martin-Löf’s approach, which follows a rich philo-
sophical tradition, to explain the basic propositional connectives. We will see
later that universal and existential quantifiers and types such as natural num-
bers, lists, or trees naturally fit into the same framework.

2.1 Judgments and Propositions

The cornerstone of Martin-Löf’s foundation of logic is a clear separation of the
notions of judgment and proposition. A judgment is something we may know,
that is, an object of knowledge. A judgment is evident if we in fact know it.

We make a judgment such as “it is raining”, because we have evidence for it.
In everyday life, such evidence is often immediate: we may look out the window
and see that it is raining. In logic, we are concerned with situation where the
evidence is indirect: we deduce the judgment by making correct inferences from
other evident judgments. In other words: a judgment is evident if we have a
proof for it.

The most important judgment form in logic is “A is true”, where A is a
proposition. In order to reason correctly, we therefore need a second judgment
form “A is a proposition”. But there are many others that have been studied
extensively. For example, “A is false”, “A is true at time t” (from temporal
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6 Propositional Logic

logic), “A is necessarily true” (from modal logic), “program M has type τ” (from
programming languages), etc.

Returning to the first two judgments, let us try to explain the meaning of
conjunction. We write A prop for the judgment “A is a proposition” and A true
for the judgment “A is true” (presupposing that A prop). Given propositions
A and B, we want to form the compound proposition “A and B”, written more
formally as A ∧B. We express this in the following inference rule:

A prop B prop
∧F

A ∧B prop

This rule allows us to conclude that A ∧ B prop if we already know that
A prop and B prop. In this inference rule, A and B are schematic variables, and
∧F is the name of the rule (which is short for “conjunction formation”). The
general form of an inference rule is

J1 . . . Jn
name

J

where the judgments J1, . . . , Jn are called the premises, the judgment J is called
the conclusion. In general, we will use letters J to stand for judgments, while
A, B, and C are reserved for propositions.

Once the rule of conjunction formation (∧F ) has been specified, we know
that A∧B is a proposition, if A and B are. But we have not yet specified what
it means, that is, what counts as a verification of A ∧B. This is accomplished
by the following inference rule:

A true B true
∧I

A ∧B true

Here the name ∧I stands for “conjunction introduction”, since the conjunction
is introduced in the conclusion. We take this as specifying the meaning of A∧B
completely. So what can be deduce if we know that A∧B is true? By the above
rule, to have a verification for A ∧ B means to have verifications for A and B.
Hence the following two rules are justified:

A ∧B true ∧EL
A true

A ∧B true ∧ER
B true

The name ∧EL stands for “left conjunction elimination”, since the conjunction
in the premise has been eliminated in the conclusion. Similarly ∧ER stands for
“right conjunction elimination”.

We will later see what precisely is required in order to guarantee that the
formation, introduction, and elimination rules for a connective fit together cor-
rectly. For now, we will informally argue the correctness of the elimination
rules.
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2.2 Hypothetical Judgments 7

As a second example we consider the proposition “truth” written as >.

>F
> prop

Truth should always be true, which means its introduction rule has no premises.

>I
> true

Consequently, we have no information if we know > true, so there is no elimi-
nation rule.

A conjunction of two propositions is characterized by one introduction rule
with two premises, and two corresponding elimination rules. We may think of
truth as a conjunction of zero propositions. By analogy it should then have one
introduction rule with zero premises, and zero corresponding elimination rules.
This is precisely what we wrote out above.

2.2 Hypothetical Judgments

Consider the following derivation, for some arbitrary propositions A, B, and C:

A ∧ (B ∧ C) true
∧ER

B ∧C true
∧EL

B true

Have we actually proved anything here? At first glance it seems that cannot be
the case: B is an arbitrary proposition; clearly we should not be able to prove
that it is true. Upon closer inspection we see that all inferences are correct,
but the first judgment A ∧ (B ∧ C) has not been justified. We can extract the
following knowledge:

From the assumption that A ∧ (B ∧ C) is true, we deduce that B
must be true.

This is an example of a hypothetical judgment, and the figure above is an
hypothetical derivation. In general, we may have more than one assumption, so
a hypothetical derivation has the form

J1 · · · Jn
...
J

where the judgments J1, . . . , Jn are unproven assumptions, and the judgment J
is the conclusion. Note that we can always substitute a proof for any hypoth-
esis Ji to eliminate the assumption. We call this the substitution principle for
hypotheses.
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8 Propositional Logic

Many mistakes in reasoning arise because dependencies on some hidden as-
sumptions are ignored. When we need to be explicit, we write J1, . . . , Jn ` J for
the hypothetical judgment which is established by the hypothetical derivation
above. We may refer to J1, . . . , Jn as the antecedents and J as the succedent of
the hypothetical judgment.

One has to keep in mind that hypotheses may be used more than once, or
not at all. For example, for arbitrary propositions A and B,

A ∧B true ∧ER
B true

A ∧B true ∧EL
A true

∧I
B ∧A true

can be seen a hypothetical derivation of A ∧B true ` B ∧A true.
With hypothetical judgments, we can now explain the meaning of implication

“A implies B” or “if A then B” (more formally: A⊃B). First the formation
rule:

A prop B prop
⊃F

A⊃B prop

Next, the introduction rule: A⊃B is true, if B is true under the assumption
that A is true.

u
A true

...

B true
⊃Iu

A⊃B true

The tricky part of this rule is the label u. If we omit this annotation, the rule
would read

A true
...

B true
⊃I

A⊃B true

which would be incorrect: it looks like a derivation of A⊃B true from the
hypothesis A true. But the assumption A true is introduced in the process of
proving A⊃B true; the conclusion should not depend on it! Therefore we label
uses of the assumption with a new name u, and the corresponding inference
which introduced this assumption into the derivation with the same label u.

As a concrete example, consider the following proof of A⊃(B⊃(A ∧B)).

u
A true

w
B true

∧I
A ∧B true

⊃Iw
B⊃(A ∧B) true

⊃Iu
A⊃(B⊃(A ∧B)) true
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2.2 Hypothetical Judgments 9

Note that this derivation is not hypothetical (it does not depend on any assump-
tions). The assumption A true labeled u is discharged in the last inference, and
the assumption B true labeled w is discharged in the second-to-last inference.
It is critical that a discharged hypothesis is no longer available for reasoning,
and that all labels introduced in a derivation are distinct.

Finally, we consider what the elimination rule for implication should say. By
the only introduction rule, having a proof of A⊃B true means that we have a
hypothetical proof of B true from A true. By the substitution principle, if we
also have a proof of A true then we get a proof of B true.

A⊃B true A true
⊃E

B true

This completes the rule concerning implication.

With the rules so far, we can write out proofs of simple properties con-
cerning conjunction and implication. The first expresses that conjunction is
commutative—intuitively, an obvious property.

u
A ∧B true

∧ER
B true

u
A ∧B true

∧EL
A true

∧Iu
B ∧A true

⊃I
(A ∧B)⊃(B ∧A) true

When we construct such a derivation, we generally proceed by a combination
of bottom-up and top-down reasoning. The next example is a distributivity
law, allowing us to move implications over conjunctions. This time, we show
the partial proofs in each step. Of course, other sequences of steps in proof
constructions are also possible.

...
(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

First, we use the implication introduction rule bottom-up.

u
A⊃(B ∧C) true

...

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
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10 Propositional Logic

Next, we use the conjunction introduction rule bottom-up.

u
A⊃(B ∧ C) true

...

A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

We now pursue the left branch, again using implication introduction bottom-
up.

u
A⊃(B ∧ C) true

w
A true

...

B true
⊃Iw

A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

Note that the hypothesis A true is available only in the left branch, but
not in the right one: it is discharged at the inference ⊃Iw. We now switch to
top-down reasoning, taking advantage of implication elimination.

u
A⊃(B ∧ C) true

w
A true

⊃E
B ∧ C true

...

B true
⊃Iw

A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

Now we can close the gap in the left-hand side by conjunction elimination.
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u
A⊃(B ∧ C) true

w
A true

⊃E
B ∧ C true

∧EL
B true

⊃Iw
A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.

u
A⊃(B ∧ C) true

w
A true

⊃E
B ∧ C true

∧EL
B true

⊃Iw
A⊃B true

u
A⊃(B ∧ C) true

v
A true

⊃E
B ∧ C true

∧ER
C true

⊃Iv
A⊃C true

∧I
(A⊃B) ∧ (A⊃C) true

⊃Iu
(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

2.3 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implication.
The disjunction “A or B” (written as A ∨ B) is more difficult, but does not
require any new judgment forms.

A prop B prop
∨F

A ∨B prop

Disjunction is characterized by two introduction rules: A∨B is true, if either
A or B is true.

A true ∨IL
A ∨B true

B true ∨IR
A ∨B true

Now it would be incorrect to have an elimination rule such as

A ∨B true ∨EL?
A true

because even if we know that A∨B is true, we do not know whether the disjunct
A or the disjunct B is true. Concretely, with such a rule we could derive the
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truth of every proposition A as follows:

u
B true

⊃Iu
B⊃B true

w
B⊃B true

∨IR
A ∨ (B⊃B) true

∨EL?
A true

⊃Iw
(B⊃B)⊃A true

⊃E
A true

Thus we take a different approach. If we know that A ∨B is true, we must
consider two cases: A true and B true. If we can prove a conclusion C true in
both cases, then C must be true! Written as an inference rule:

A ∨B true

u
A true

...

C true

w
B true

...

C true
∨Eu,w

C true

Note that we use once again the mechanism of hypothetical judgments. In the
proof of the second premise we may use the assumption A true labeled u, in the
proof of the third premise we may use the assumption B true labeled w. Both
are discharged at the disjunction elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first premise
we know A ∨ B true. The premises of the two possible introduction rules are
A true and B true. In case A true we conclude C true by the substitution
principle and the second premise: we substitute the proof of A true for any use
of the assumption labeled u in the hypothetical derivation. The case for B true
is symmetric, using the hypothetical derivation in the third premise.

Because of the complex nature of the elimination rule, reasoning with dis-
junction is more difficult than with implication and conjunction. As a simple
example, we prove the commutativity of disjunction.

...
(A ∨B)⊃(B ∨A) true

We begin with an implication introduction.

u
A ∨B true

...

B ∨A true
⊃Iu

(A ∨B)⊃(B ∨A) true
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At this point we cannot use either of the two disjunction introduction rules.
The problem is that neither B nor A follow from our assumption A∨B! So first
we need to distinguish the two cases via the rule of disjunction elimination.

u
A ∨B true

v
A true

...

B ∨A true

w
B true

...

B ∨A true
∨Ev,w

B ∨A true
⊃Iu

(A ∨B)⊃(B ∨A) true

The assumption labeled u is still available for each of the two proof obligations,
but we have omitted it, since it is no longer needed.

Now each gap can be filled in directly by the two disjunction introduction
rules.

u
A ∨B true

v
A true

∨IR
B ∨A true

w
B true

∨IL
B ∨A true

∨Ev,w
B ∨A true

⊃Iu
(A ∨B)⊃(B ∨A) true

This concludes the discussion of disjunction. Falsehood (written as ⊥, some-
times called absurdity) is a proposition that should have no proof! Therefore
there are no introduction rules, although we of course have the standard forma-
tion rule.

⊥F
⊥ prop

Since there cannot be a proof of ⊥ true, it is sound to conclude the truth of any
arbitrary proposition if we know ⊥ true. This justifies the elimination rule

⊥ true
⊥E

C true

We can also think of falsehood as a disjunction between zero alternatives. By
analogy with the binary disjunction, we therefore have zero introduction rules,
and an elimination rule in which we have to consider zero cases. This is precisely
the ⊥E rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think of the
proposition “not A” (written ¬A) as A⊃⊥. In other words, ¬A is true precisely
if the assumption A true is contradictory because we could derive ⊥ true.
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2.4 Summary

Judgments.
A prop A is a proposition
A true Proposition A is true

Propositional Constants and Connectives. The following table summa-
rizes the introduction and elimination rules for the propositional constants (>,
⊥) and connectives (∧, ⊃, ∨). We omit the straightforward formation rules.

Introduction Rules Elimination Rules

A true B true
∧I

A ∧B true

A ∧B true ∧EL
A true

A ∧B true ∧ER
B true

>I
> true no >E rule

u
A true

...

B true
⊃Iu

A⊃B true

A⊃B true A true
⊃E

B true

A true ∨IL
A ∨B true

B true ∨IR
A ∨B true

A ∨B true

u
A true

...

C true

w
B true

...

C true
∨Eu,w

C true

no ⊥I rule
⊥ true

⊥E
C true
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