
Lecture Notes on
Compiler Design: Overview

15-411: Compiler Design
Frank Pfenning

Lecture 1
August 24, 2009

1 Introduction

This course is a thorough introduction to compiler design, focusing on
more low-level and systems aspects rather than high-level questions such
as polymorphic type inference or separate compilation. You will be build-
ing several complete end-to-end compilers for successively more complex
languages, culminating in a mildly optimizing compiler for a safe variant
of the C programming language to x86-64 assembly language. For the last
project you will have the opportunity to optimize more aggressively, to im-
plement a garbage collector, or retarget the compiler to an abstract machine.

In this overview we review the goals for this class and give a general
description of the structure of a compiler. Additional material can be found
in the optional textbook [App98, Chapter 1].

2 Goals

After this course you should know how a compiler works in some depth. In
particular, you should understand the structure of a compiler, and how the
source and target languages influence various choices in its design. It will
give you a new appreciation for programming language features and the
implementation challenges they pose, as well as for the actual hardware ar-
chitecture and the runtime system in which your generated code executes.
Understanding the details of typical compilation models will also make
you a more discerning programmer.

LECTURE NOTES AUGUST 24, 2009



L1.2 Compiler Design: Overview

You will also understand some specific components of compiler tech-
nology, such as lexical analysis, grammars and parsing, type-checking, in-
termediate representations, static analysis, common optimizations, instruc-
tion selection, register allocation, code generation, and runtime organiza-
tion. The knowledge gained should be broad enough that if you are con-
fronted with the task of contributing to the implementation of a real com-
piler in the field, you should be able to do so confidently and quickly.

For many of you, this will be the first time you have to write, main-
tain, and evolve a complex piece of software. You will have to program
for correctness, while keeping an eye on efficiency, both for the compiler
itself and for the code it generates. Because you will have to rewrite the
compiler from lab to lab, and also because you will be collaborating with a
partner, you will have to pay close attention to issues of modularity and in-
terfaces. Developing these software engineering and system building skills
are an important goal of this class, although we will rarely talk about them
explicitly.

3 Compiler Requirements

As we will be implementing several compilers, it is important to under-
stand which requirement compilers should satisfy. We discuss in each case
to what extent it is relevant to this course.

Correctness. Correctness is absolutely paramount. A buggy compiler is
next to useless in practice. Since we cannot formally prove the correctness
of your compilers, we use extensive testing. This testing is end-to-end, ver-
ifying the correctness of the generated code on sample inputs. We also ver-
ify that your compiler rejects programs as expected when the input is not
well-formed (lexically, syntactically, or with respect to the static semantics),
and that the generated code raises an exception as expected if the language
specification prescribes this. We go so far as to test that your generated
code fails to terminate (with a time-out) when the source program should
diverge.

Emphasis on correctness means that we very carefully define the se-
mantics of the source language. The semantics of the target language is
given by the GNU assembler on the lab machines together with the seman-
tics of the actualy machine. Unlike C, we try to make sure that as little
as possible about the source language remains undefined. This is not just
for testability, but also good language design practice since an unambigu-

LECTURE NOTES AUGUST 24, 2009



Compiler Design: Overview L1.3

ously defined language is portable. The only part we do not fully define
are precise resource constraints regarding the generated code (for example,
the amount of memory available).

Efficiency. In a production compiler, efficiency of the generated code and
also efficiency of the compiler itself are important considerations. In this
course, we set very lax targets for both, emphasizing correctness instead. In
one of the later labs in the course, you will have the opportunity to optimize
the generated code.

The early emphasis on correctness has consequences for your approach
to the design of the implementation. Modularity and simplicity of the code
are important for two reasons: first, your code is much more likely to be
correct, and, second, you will be able to respond to changes in the source
language specification from lab to lab much more easily.

Interoperability. Programs do not run in isolation, but are linked with
library code before they are executed, or will be called as a library from
other code. This puts some additional requirements on the compiler, which
must respect certain interface specifications.

Your generated code will be required to execute correctly in the environ-
ment on the lab machines. This means that you will have to respect calling
conventions early on (for example, properly save callee-save registers) and
data layout conventions later, when your code will be calling library func-
tions. You will have to carefully study the ABI specification [MHJM09] as
it applies to C and our target architecture.

Usability. A compiler interacts with the programmer primarily when there
are errors in the program. As such, it should give helpful error messages.
Also, compilers may be instructed to generate debug information together
with executable code in order help users debug runtime errors in their pro-
gram.

In this course, we will not formally evaluate the quality or detail of your
error messages, although you should strive to achieve at least a minimum
standard so that you can use your own compiler effectively.

Retargetability. At the outset, we think of a compiler of going from one
source language to one target language. In practice, compilers may be re-
quired to generate more than one target from a given source (for example,

LECTURE NOTES AUGUST 24, 2009



L1.4 Compiler Design: Overview

x86-64 and ARM code), sometimes at very different levels of abstraction
(for example, x86-64 assembly or LLVM intermediate code).

In this course we will deemphasize retargetability, although if you struc-
ture your compiler following the general outline presented in the next sec-
tion, it should not be too difficult to retrofit another code generator. One of
the options for the last lab in this course is to retarget your compiler to pro-
duce code in a low-level virtual machine (LLVM). Using LLVM tools this
means you will be able to produce efficient binaries for a variety of concrete
machine architectures.

4 The Structure of a Compiler

Certain general common structures have arisen over decades of develop-
ment of compilers. Many of these are based on experience and sound en-
gineering principles rather than any formal theory, although some parts,
such as parsers, are very well understood from the theoretical side. The
overall structure of a typical compiler is shown in Figure 1.

In this course, we will begin by giving you the front and middle ends
of a simple compiler for a very small language, and you have to write the
back end, that is, perform instruction selection and register allocation. Con-
sequently, Lectures 2 and 3 will be concerned with instruction selection and
register allocation, respectively, so that you can write your own.

We then turn to the front end and follow through the phases of a com-
piler in order to complete the picture, while incrementally complicating
the language features you have to compile. Roughly, we will proceed as
follows, subject to adjustment throughout the course:

1. A simple expression language

2. Loops and conditionals

3. Functions

4. Structs and arrays

5. Memory safety and basic optimizations

The last lab is somewhat open-ended and allows either to implement fur-
ther optimizations, a garbage collector, or a new back end which uses the
low-level virtual machine (LLVM)1.

1See http://llvm.org

LECTURE NOTES AUGUST 24, 2009

http://llvm.org


Compiler Design: Overview L1.5

Figure 1: Structure of a typical compiler2

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML.
Cambridge University Press, Cambridge, England, 1998.

[MHJM09] Michael Matz, Jan Hubic̆ka, Andreas Jaeger, and Mark
Mitchell. System V application binary interface, AMD64 ar-
chitecture processor supplement. Available at http://www.
x86-64.org/documentation/abi.pdf, May 2009. Draft
0.99.

2Thanks to David Koes for this diagram.

LECTURE NOTES AUGUST 24, 2009

http://www.x86-64.org/documentation/abi.pdf
http://www.x86-64.org/documentation/abi.pdf

	Introduction
	Goals
	Compiler Requirements
	The Structure of a Compiler

