
15-411 Compiler Design: Lab 3

Fall 2009

Instructor: Frank Pfenning
TAs: Ruy Ley-Wild and Miguel Silva

Test Programs Due: 11:59pm, Thursday, October 8, 2009
Compilers Due: 11:59pm, Thursday, October 15, 2009

Revision 1, October 13, 2009 (see last page)

1 Introduction

The goal of the lab is to implement a complete compiler for the language L3 . This language extends
L2 by functions. This means you will have to change all phases of the compiler from the second
lab. One can write some interesting recursive and iterative functions over integers in this language.
Correctness is still paramount, but performance starts to become a bit more of an issue as we may
slightly tighten the time-bounds for the compiler.

2 Requirements

As for Lab 2, you are required to hand in test programs as well as a complete working compiler that
translates L3 source programs into correct target programs written in x86-64 assembly language.
When encountering an error in the input program (which can be a lexical, grammatical, or static
semantics error) the compiler should terminate with a non-zero exit code and print a helpful error
message. To test the target programs, we will assemble and link them using gcc on the lab machines
and run them under fixed but generous time limits.

3 L3 Syntax

The syntax of L3 is defined by the context-free grammar in Figure 1. Ambiguities in this grammar
are resolved according to the operator precedence table in Figure 2 and the rule that an else
provides the alternative for the most recent eligible if. Whitespace and comments are as in L2.

4 L3 Static Semantics

The L3 language has two kinds of identifiers: those standing for functions and those standing
for integers. These are in separate name spaces, so a function and a variable may have the same
name without conflict. Reserved words of the grammar (extern, var, int, if, else, while, for,
continue, break, return) cannot be used as function or variable names.

1

〈program〉 ::= 〈gdecl〉∗ 〈function〉∗

〈gdecl〉 ::= extern 〈type〉 〈ident〉 (〈paramlist〉) ;

〈function〉 ::= 〈type〉 〈ident〉 (〈paramlist〉) 〈body〉

〈paramlist〉 ::= ε | 〈ident〉 : 〈type〉 [, 〈ident〉 : 〈type〉]∗

〈body〉 ::= { 〈decl〉∗ 〈stmt〉∗ }

〈decl〉 ::= var 〈ident〉 [, 〈ident〉]∗ : 〈type〉 ;

〈type〉 ::= int

〈stmt〉 ::= 〈simp〉 ; | 〈control〉 | ;

〈simp〉 ::= 〈ident〉 〈asop〉 〈exp〉

〈control〉 ::= if (〈exp〉) 〈block〉 [else 〈block〉] |

while (〈exp〉) 〈block〉 | for ([〈simp〉] ; 〈exp〉 ; [〈simp〉]) 〈block〉 |

continue ; | break ; | return 〈exp〉 ;

〈block〉 ::= 〈stmt〉 | { 〈stmt〉∗ }

〈exp〉 ::= (〈exp〉) | 〈intconst〉 | 〈ident〉 | 〈unop〉 〈exp〉 | 〈exp〉 〈binop〉 〈exp〉 |

〈ident〉 ([〈exp〉 [, 〈exp〉]∗])

〈ident〉 ::= [A-Z a-z][0-9A-Z a-z]∗

〈intconst〉 ::= [0-9][0-9]∗ (in the range 0 ≤ intconst < 232)

〈asop〉 ::= = | += | -= | *= | /= | %= | &= | ^= | |= | <<= | >>=

〈binop〉 ::= + | - | * | / | % | < | <= | > | >= | == | !=

| && | || | & | ^ | | | << | >>

〈unop〉 ::= ! | ~ | -

The precedence of unary and binary operators is given in Figure 2.
Non-terminals are in 〈angle brackets〉, optional constituents in [brackets].
Terminals are in bold.

Figure 1: Grammar of L3

2

Operator Associates Meaning

() n/a function call, explicit parentheses

! ~ - right logical not, bitwise not, unary minus

* / % left integer times, divide, modulo

+ - left integer plus, minus

<< >> left (arithmetic) shift left, right

< <= > >= left integer comparison

== != left integer equality, disequality

& left bitwise and

^ left bitwise exclusive or

| left bitwise or

&& left logical and

|| left logical or

= += -= *= /= %= &= ^= |= <<= >>= right assignment operators

Figure 2: Precedence of operators, from highest to lowest

Regarding functions, several properties must be checked.

• Every function that is called must be declared somewhere in the file, either using extern or
with a definition. The order of the defined functions in the file is irrelevant, but a function
may not be declared more than once. There is a further restriction in that internal names
_l3_g of functions g in the generated assembly file may not conflict with names declared with
extern. See the section on “Naming in Functions in Generated Code” below.

• Functions must be called with the correct number of arguments. Since there is only one basic
type in the language, namely int, this is the extent of type-checking required.

• Each function must explicitly return with a value. This is checked by verifying that every
finite control flow path originating at the top of a function ends in a return statement. A
precise specification of this condition is given in Lab 2.

• There must be a function main() which returns an integer as the result of the overall com-
putation (and not an exit status).

• Each break or continue statement must occur inside a for or while loop.

Regarding variables, we need to check two properties.

• Every variable must be declared, either as a function parameter or an explicit local variable
with a var declaration. Function parameters and local variables are local to a function and
have nothing to do with parameters or local variables in other functions. Variables may not

3

be redeclared, that is, names of parameters to a given function and its local variables must
all be pairwise distinct. There are no global variables.

• Each local variable must be defined by an assignment before it is used. This is checked by
verifying that along all control flow paths originating at the beginning of the function, each
local variable is assigned to before it is used. This ensures that there will be no references to
uninitialized variables. A precise specification of this condition is given in Lab 2.

The restriction on return statements and initializing variables guarantee that the meaning of
every valid program is deterministic: it will either return a unique value, raise a div exception, or
fail to terminate.

5 L3 Dynamic Semantics

In most cases, statements have the familiar operational semantics from C. Conditionals, for, and
while loops execute as in C. continue skips the rest of the statements in a loop body and break
jumps to the first statement after a loop. As in C, when encountering a continue inside a for
loop, we jump to the step statement.

The meanings of the special assignment operators are as in L2, where x op= e is the same as
x = x op e.

Integer Operators

Since expressions contain division and modulus operations and function calls, the order of evaluation
is important and specified to be from left to right. We recommend to make evaluation order
explicit for potentially effectful expressions in the translation to IR trees to give optimizations and
instruction selection more leeway on pure expressions.

The integers of this language are signed integers in two’s complement representation with a
word size of 32 bits. The semantics of the operations is given by modular arithmetic as in L2.
Recall that division by zero and division overflow must raise a runtime division exception. The
shift operations << and >> are logical shifts, where the shift quantity is masked to the lowest 5 bits.
The comparison operators <, <=, >, >=, ==, and != have their standard meaning on signed integers
as in the definition of C and always return either 0 or 1.

Logical Operators

The operators &&, || and ! are the so-called logical operators. The first two evaluate from left to
right and short-circit evaluation when appropriate. They interpret an argument of 0 as false and
non-zero as true, and always produce either 0 (for false) or 1 (for true).

Function Calls

Function calls f(e1, . . . , en) must evaluate their arguments from left to right before passing the
resulting values to f .

4

6 Project Requirements

For this project, you are required to hand in test cases and a complete working compiler for L2
that produces correct target programs written in Intel x86-64 assembly language. When we grade
your work, we will use the gcc compiler to assemble and link the code you generate into executables
using the provided runtime environment on the lab machines.

Test Files

Test files should have extension .l3 and start with one of the following lines

#test return i program must execute correctly and return i
#test exception n program must compile but raise the runtime exception n
#test error program must fail to compile due to a L3 source error

followed by the program text. If the exception number is omitted or 0, any exception is accepted
by the driver. Useful specific exceptions are 8 (SIGFPE) raised by a division by zero, 11 (SIGSEGV)
raised by a memory error (in L3 only when the stack space is exhausted), and 14 (SIGALRM) raised
by a timeout The default exception is 8 (SIGFPE) which is raised for division by zero. Infinitely
recursing programs might either raise 11 or 14, depending on whether they first run out of memory
or time. Test files should therefore only verify that some exception is raises.

All test files should be collected into a directory test/ (containing no other files) and submitted
via the Autolab server.

While your compiler must support arbitrary extern declarations, the test cases you submit can
only refer to the three functions printchar, printint, and printhex provided by the runtime
system and any other function explicitly defined in l3rt.c (see description below).

We would like some fraction of your test programs to compute “interesting” functions on specific
values; please briefly describe such examples in a comment in the file. Disallowed are programs
computing Fibonacci numbers, factorials, greatest common divisors, and minor variants thereof.
Please use your imagination!

Compiler Files

The files comprising the compiler itself should be collected in a directory compiler/ which should
contain a Makefile. Important: You should also update the README file and insert a description
of your code and algorithms used at the beginning of this file. Even though your code will not be
read for grading purposes, we may still read it to provide you feedback. The README file will be
crucial information for this purpose.

Issuing the shell command

% make l3c

should generate the appropriate files so that

% bin/l3c <args>

will run your L3 compiler. The command

% make clean

should remove all binaries, heaps, and other generated files.

5

Using the Subversion Repository

Handin and handout of material is via the course subversion repository.
The handout files for this course can be checked out from our subversion repository via

% svn checkout https://cvs.concert.cs.cmu.edu/15411-f09/<team>

where <team> is the name of your team. You will find materials for this lab in the lab3 subdirectory.
Or, if you have checked out 15411-f09/<team> directory before, you can issue the command
svn update in that directory.

After first adding (with svn add or svn copy from a previous lab) and committing your handin
directory (with svn commit) to the repository you can hand in your tests or compiler by selecting

S3 - Autograde your code in svn repository

from the Autolab server menu. It will perform one of

% svn checkout https://cvs.concert.cs.cmu.edu/15411-f09/<team>/lab3/tests
% svn checkout https://cvs.concert.cs.cmu.edu/15411-f09/<team>/lab3/compiler

to obtain the files directories to autograde, depending on whether you are handing in your test files
or your compiler.

If you are submitting multiple versions, please remember to commit your changes to the repos-
itory before asking the Autolab server to grade them! And please do not include an compiled files
or binaries in the repository!

What to Turn In

Hand in on the Autolab server:

• At least 20 test cases, at least two of which generate as error and at least two others raise a
runtime exception. The directory tests/ should only contain your test files and be submitted
via subversion or as a tar file as described above. The server will test your test files and
notify you if there is a discrepancy between your answer and the outcome of the reference
implementation. You may hand in as many times as you like before the deadline without
penalty. If you feel the reference implementation is in error, please notify the instructors.
The compiled binary for each test case should run in 2 seconds with the reference compiler
on the lab machines; we will use a 5 second limit for testing compilers.

Test cases are due 11:59pm on Thu Oct 8, 2009.

• The complete compiler. The directory compiler/ should contain only the sources for your
compiler and be submitted via subversion or as a tar file as described above. The Autolab
server will build your compiler, run it on all extant test files, link the resulting assembly files
against our runtime system (if compilation is successful), execute the binaries (each with a 5
second time limit), and finally compare the actual with the expected results. You may hand
in as many times as you like before the deadline without penalty.

Compilers are due 11:59pm on Thu Oct 15, 2009.

6

7 Notes and Hints

Static Checking

Checking that functions are declared and have the right number of arguments is relatively straight-
forward, but will require two passes: one to collect all functions and their number of arguments,
and one to check that function calls are correct.

Checking that function bodies explicitly return should follow the rules given in the handout
for Lab 2, which should be easy to implement on abstract syntax trees. Similarly, checking that
variables are initialized before they are used should follow the rules given in Lab 2. Some care
should be given to produce a useful error message if these checks are not satisfied.

Compiling Functions

It is not a strict requirement, but we recommend compiling functions completely independently
from each other, taking care to respect the calling conventions but making no other assumptions.
Interprocedural program analysis and optimization is difficult and, if you do it at all, is better left
to a later lab.

Calling Conventions

Your code must strictly adhere to the x86-64 calling conventions. This will make sure that it
links correctly with our runtime system. We recommend that you study the corresponding section
in the Application Binary Interface (ABI) available under Resources on the course home page.
Fortunately, all arguments and return values are of type int which greatly simplifies the most
general situation, as does the fact L3 does not have functions with variable numbers of arguments.
The first six arguments are passed in fixed registers, any further arguments are passed on the stack.
Note that each argument on the stack takes up 8 bytes, even if only a 32-bit integer is passed.
Another subtle point is the stack alignment requirement: before calling a function %rsp must be a
multiple of 16.

We will test your compiler with some programs that call C and assembly functions declared as
external in order to verify that your generated code obeys the calling conventions.

The use of the frame pointer %rbp is optional. Since the lab machines run Linus, you may not
use the red zone.

There are few functions with more than 6 arguments, so it may be a good strategy to implement
parameter passing in registers first (which would lose only a few points) and then add stack-based
passing of additional arguments later.

Naming of Functions in Generated Code

Functions declared as external (and therefore not defined in the file) should be referred to by their
given name.

Functions defined in the file must be systematically renamed from the source g to the assembly
label _l3_g. This prevents any conflict between a C standard library function and the L3 name
of a function. This also means that the function main has to be named _l3_main in the assmbly
language file.

7

The names of all functions g defined in a file should be exported as symbols _l3_g. This will
allow our test code to call internal functions and verify adherence to calling conventions. This
also means that no defined function g should conflict with an external function declared with
extern _l3_g; such a conflict should be a compile-time error.

Run-time Environment

The tests will be run in the standard Linux environment on the lab machines; the produced assembly
code must conform to those standards. We recommend the use of gcc -O2 -S to produce assembly
files from C sources which can provide template code and assembly language examples.

We will link your code against some library functions you can find in the files runtime/l3rt.h
and runtime/l3rt.c. This will allow us to test your adherence to the C calling conventions
on the x86-64 architecture, and it will allow you to call some standard library functions, say, to
print messages, painful though it may be in a language without strings. Three print functions we
explicitly define can be declared in L3 as

extern int printchar(c:int); /* print c as ASCII character */
extern int printint(n:int); /* print n in decimal */
extern int printhex(n:int); /* print n in hexadecimal */

If your compiler detects any (compile-time) errors in the source program, it should exit with
a non-zero return code. If compilation succeeds and target code is generated, the compiler should
then exit with a return code of 0.

Revision 1, Oct 13

• Added the stipulation that no defined function g should conflict with an external function
declared with extern _l3_g; such a conflict should be a compile-time error.

• Clarified the role of exceptions 0 (= any exception), 8 (SIGFPE), 11 (SIGSEGV), and 14
(SIGALRM). Infinitely recursing programs could raise exception 11 or 14, depending on whether
the first run out of space or time, so no specific exception should checked in this case for ro-
bustness.

8

