
Lecture Notes on
Simple Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 3
Tuesday, September 10, 2019

1 Introduction

We have experienced the expressive power of the λ-calculus in multiple
ways. We followed the slogan of data as functions and represented types
such as Booleans and natural numbers. On the natural numbers, we were
able to express the same set of partial functions as with Turing machines,
which gave rise to the Church-Turing thesis that these are all the effectively
computable functions.

On the other hand, Church’s original purpose of the pure calculus of
functions was a new foundations of mathematics distinct from set the-
ory [Chu32, Chu33]. Unfortunately, this foundation suffered from similar
paradoxes as early attempts at set theory and was shown to be inconsistent,
that is, every proposition has a proof. Church’s reaction was to return to the
ideas by Russell and Whitehead [WR13] and introduce types. The resulting
calculus, called Church’s Simple Theory of Types [Chu40] is much simpler than
Russell and Whitehead’s Ramified Theory of Types and, indeed, serves well as
a foundation for (classical) mathematics.

We will follow Church and introduce simple types as a means to classify
λ-expressions. An important consequence is that we can recognize the
representation of Booleans, natural numbers, and other data types and
distinguish them from other forms of λ-expressions. We also explore how
typing interacts with computation.

LECTURE NOTES TUESDAY, SEPTEMBER 10, 2019

L3.2 Simple Types

2 Simple Types, Intuitively

Since our language of expression consists only of λ-abstraction to form
functions, juxtaposition to apply functions, and variables, we would expect
our language of types τ to just contain τ ::= τ1→ τ2. This type might be
considered “empty” since there is no base case, so we add type variables α,
β, γ, etc.

Type variables α
Types τ ::= τ1→ τ2 | α

We follow the convention that the function type constructor “→” is right-
associative, that is, τ1→ τ2→ τ3 = τ1→ (τ2→ τ3).

We write e : τ if expression e has type τ . For example, the identity
function takes an argument of arbitrary type α and returns a result of the
same type α. But the type is not unique. For example, the following two
hold:

λx. x : α→ α
λx. x : (α→ β)→ (α→ β)

What about the Booleans? true = λx. λy. x is a function that takes an argu-
ment of some arbitrary type α, a second argument y of a potentially different
type β and returns a result of type α. We can similarly analyze false:

true = λx. λy. x : α→ (β→ α)
false = λx. λy. y : α→ (β→ β)

This looks like bad news: how can we capture the Booleans by their type
if true and false have a different type? We have to realize that types are not
unique and we can indeed find a type that is shared by true and false:

true = λx. λy. x : α→ (α→ α)
false = λx. λy. y : α→ (α→ α)

The type α→ (α→ α) then becomes our candidate as a type of Booleans in
the λ-calculus. Before we get there, we formalize the type system so we can
rigorously prove the right properties.

3 The Typing Judgment

We like to formalize various judgments about expressions and types in the
form of inference rules. For example, we might say

e1 : τ2→ τ1 e2 : τ2
e1 e2 : τ1

LECTURE NOTES TUESDAY, SEPTEMBER 10, 2019

Simple Types L3.3

We usually read such rules from the conclusion to the premises, pronouncing
the horizontal line as “if ”:

The application e1 e2 has type τ1 if e1 maps arguments of type τ2 to
results of type τ1 and e2 has type τ2.

When we arrive at functions, we might attempt
x1 : τ1 e2 : τ2

λx1. e2 : τ1→ τ2
?

This is (more or less) Church’s approach. It requires that each variable x
intrinsically has a type that we can check, so probably we should write xτ .
In modern programming languages this can be bit awkward because we
might substitute for type variables or apply other operations on types, so
instead we record the types of variable in a typing context.

Typing context Γ ::= x1 : τ1, . . . , xn : τn

Critically, we always assume:

All variables declared in a context are distinct.

This avoids any ambiguity when we try to determine the type of a variable.
The typing judgment now becomes

Γ ` e : τ

where the context Γ contains declarations for the free variables in e. It is
defined by the following three rules

Γ, x1 : τ1 ` e2 : τ2

Γ ` λx1. e2 : τ1→ τ2
lam

x : τ ∈ Γ

Γ ` x : τ
var

Γ ` e1 : τ2→ τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1
app

As a simple example, let’s type-check true. Note that we always construct
such derivations bottom-up, starting with the final conclusion, deciding on
rules, writing premises, and continuing.

x : α, y : α ` x : α
var

x : α ` λy. x : α→ α
lam

· ` λx. λy. x : α→ (α→ α)
lam

LECTURE NOTES TUESDAY, SEPTEMBER 10, 2019

L3.4 Simple Types

In this construction we exploit that the rules for typing are syntax-directed:
for every form of expression there is exactly one rule we can use to infer its
type.

How about the expression λx. λx. x? This is α-equivalent to λx. λy. y
and therefore should check (among other types) as having type α→ (β→β).
It appears we get stuck:

??
x : α ` λx. x : β→ β

lam??

· ` λx. λx. x : α→ (β→ β)
lam

The worry is that applying the rule lam would violate our presupposition
that no variable is declared more than once and x : α, x : β ` x : β would be
ambiguous. But we said we can “silently” apply α-conversion, so we do it
here, renaming x to x′. We can then apply the rule:

x : α, x′ : β ` x′ : β
var

x : α ` λx. x : β→ β
lam

· ` λx. λx. x : α→ (β→ β)
lam

A final observation here about type variables: if · ` e : α→ (β→ β) then
also · ` e : τ1→ (τ2→ τ2) for any types τ1 and τ2. In other words, we can
substitute arbitrary types for type variables in a typing judgment Γ ` e : τ
and still get a valid judgment. In particular, the expressions true and false
have infinitely many types.

4 Characterizing the Booleans

We would now like to show that the representation of the Booleans is in fact
correct. We go through a sequence of conjectures to (hopefully) arrive at the
correct conclusion.

Conjecture 1 (Representation of Booleans, v1)
If · ` e : α→ (α→ α) then e = true or e = false.

If by “=” we mean mathematical equality that this is false. For example,

· ` (λz. z) (λx. λy. x) : α→ (α→ α)

but the expression (λz. z) (λx. λy. x) represents neither true nor false. But it
is in fact β-convertible to true, so we might loosen our conjecture:

LECTURE NOTES TUESDAY, SEPTEMBER 10, 2019

Simple Types L3.5

Conjecture 2 (Representation of Booleans, v2)
If · ` e : α→ (α→ α) then e =β true or e =β false.

This is actually quite difficult to prove, so we break it down into several
propositions, some of which we can actually prove. The first one concerns
normal forms, that is, expressions that cannot be β-reduced. They play the
role that values play in many programming language.

Conjecture 3 (Representation of Booleans, v3)
If · ` e : α→ (α→ α) and e is a normal form, then e = true or e = false.

We will later combine this with the following theorems which yields
correctness of the representation of Booleans. These theorems are quite
general (not just on Booleans), and we will see multiple versions of them in
the remainder of the course.

Theorem 4 (Termination) If Γ ` e : τ then e −→∗β e′ for a normal form e′.

Theorem 5 (Subject reduction) If Γ ` e : τ and e −→β e
′ then Γ ` e′ : τ .

We will prove subject reduction in Lecture 4, and we may or may not
prove termination in a later lecture. Today, we will focus on the the correct-
ness of the representation of normal forms.

5 Normal Forms

Recall the rules for reduction. We refer to the first three rules as congruence
rules because they allow the reduction of a subterm.

e −→ e′

λx. e −→ λx. e′
red/lam

e1 −→ e′1

e1 e2 −→ e′1 e2
red/app1

e1 −→ e′2

e1 e2 −→ e1 e
′
2

red/app2

(λx. e1) e2 −→ [e2/x]e1
beta

A normal form is an expression e such that there does not exists an e′ such
that e −→ e′. Basically, we have to rule out β-redices (λx. e1) e2, but we
would like to describe normal forms via inference rules so we can easily
prove inductive theorems on them. This definition should capture the form

λx1. . . . λxn. ((x e1) . . . ek)

LECTURE NOTES TUESDAY, SEPTEMBER 10, 2019

L3.6 Simple Types

where e1, . . . ek are again in normal form. To capture something like this,
we define a judgment e nf by using inference rules. First, a λ-abstraction
is normal if its body is normal (the only place where a reduction might be
applied). Also, variables by themselves are certainly normal.

e nf

λx. e nf
nf/lam

x nf
nf/var

Applications e1 e2 are trickier. Certainly, both e1 and e2 need to be normal.
In addition, e1 cannot be a λ-abstraction because then the term would be a
β-redex.

e1 6= λ_ e1 nf e2 nf

e1 e2 nf
nf/app

Of course, we are now obligated to check that this definition is correct, that
is, e nf if and only if there is no e′ such that e −→ e′. We now prove one
direction because it introduces the ubiquitous techniques of rule induction
and inversion.

We write e 6−→ (pronounced e does not reduce) if there is no e′ such that
e −→ e′. Before we launch into any proof, how do we establish e 6−→ ?
Because it is a negation, we assume instead that e −→ e′ for some e′ and
then derive a contradiction from that. Also, because e′ is not significant in
this study of normal forms, we may write e −→ (pronounced e reduces) to
express that there is an e′ such that e −→ e′.

Theorem 6 (Normal forms do not reduce) For all expressions e, if e nf then
e 6−→ .

Proof: By rule induction on the derivation of e nf. We can also think of this
as structural induction over the derivation of e nf. This is a sound principle
because the rules we give exactly define the judgment e nf.

Since there are three inference rules for e nf, we distinguish three cases.

Case:

e1 nf

λx. e1 nf
nf/lam

where e = λx. e1. Then we start reasoning as follows:

e1 6−→ By induction hypothesis

LECTURE NOTES TUESDAY, SEPTEMBER 10, 2019

Simple Types L3.7

We have to show that λx. e1 6−→ . For that purpose we assume that
λx. e1 reduces and then derive a contradiction.

λx. e1 −→ e′ for some e′ Assumption

Now we can examine rules for reduction and see there is only one
rule that could possibly arrive at this conclusion, namely red/lam.
Therefore, there must also be a derivation of the premise. We call
this kind of reasoning inversion because we obtain a derivation of the
premise from knowing the conclusion is true.

In my experience, incorrect application of inversion is the main
source of error by novices when constructing “proofs” in the theory
of programming languages. To apply inversion, you

(a) You must already know that there is the derivation of a judg-
ment, and

(b) you must carefully determine all the possible rules that could
derive this judgment, and

(c) you must distinguish all these cases, and finally
(d) in each case you may assume that the premise(s) hold.

In this case, we find that

e1 → e′1 for some e′1 and e′ = λx. e′1 By inversion

But this is a contradiction, since we already learned from the induction
hypothesis that e1 6−→ .

In summary:

e1 6−→ By induction hypothesis
λx. e1 −→ e′ for some e′ Assumption
e1 → e′1 for some e′1 and e′ = λx. e′1 By inversion
Contradiction Since e1 6−→
λx. e1 6−→ Since λx. e1 −→ is contradictory

Case:

x nf
nf/var

where e = x. Then

LECTURE NOTES TUESDAY, SEPTEMBER 10, 2019

L3.8 Simple Types

x −→ e′ for some e′ Assumption
Contradiction By inversion (no rule allows this conclusion)
x 6−→ since x −→ is contradictory

Case:

e1 6= λ_ e1 nf e2 nf

e1 e2 nf
nf/app

where e = e1 e2. Then

e1 6−→ By induction hypothesis
e2 6−→ By induction hypothesis
e1 e2 −→ e′ for some e′ Assumption

At this point we would like to apply inversion, and there are three
rules matching the conclusion e1 e2 −→ e′.

e1 e2 −→ e′1 e2
where e1 −→ e′1 First subcase (rule red/app1)
Contradiction Since e1 6−→
e1 e2 6−→ since e1 e2 −→ is contradictory

e1 e2 −→ e1 e
′
2

where e2 −→ e′2 Second subcase (rule red/app2)
Contradiction Since e2 6−→
e1 e2 6−→ since e1 e2 −→ is contradictory

(λx. e3) e2 −→ [e2/x]e3
where e1 = (λx. e3) Third subcase (rule beta)
Contradiction Since e1 6= λ_ by the first premise of nf/app

�

Exercises

Exercise 1 Fill in the blanks in the following typing judgments so the result-
ing judgment holds, or indicate there is no way to do so. You do not need
to justify your answer or supply a typing derivation, and the types do not
need to be “most general” in any sense. Remember that the function type
constructor associates to the right, so that τ → σ→ ρ = τ → (σ→ ρ).

LECTURE NOTES TUESDAY, SEPTEMBER 10, 2019

Simple Types L3.9

(i) ` y x : α

(ii) ` xx :

(iii) · ` : (α→ α)→ α

(iv) · ` (λz. z) (λx. λy. λp. p x y) :

(v)

· `λf. λg. λx. (f x) (g x)

: (α→)→ (α→)→ (α→)

References

[Chu32] A. Church. A set of postulates for the foundation of logic I. Annals
of Mathematics, 33:346–366, 1932.

[Chu33] A. Church. A set of postulates for the foundation of logic II. Annals
of Mathematics, 34:839–864, 1933.

[Chu40] Alonzo Church. A formulation of the simple theory of types.
Journal of Symbolic Logic, 5:56–68, 1940.

[WR13] Alfred North Whitehead and Bertrand Russell. Principia Mathemat-
ica. Cambridge University Press, 1910–13. 3 volumes.

LECTURE NOTES TUESDAY, SEPTEMBER 10, 2019

	Introduction
	Simple Types, Intuitively
	The Typing Judgment
	Characterizing the Booleans
	Normal Forms

