
Lecture Notes on
Representation Theorems

15-814: Types and Programming Languages
Frank Pfenning

Lecture 4
September 13, 2018

1 Introduction

In the last lecture we considered how to formulate representation theorems
for Booleans, namely that normal forms type α→ (α→ α) are either true =
λx. λy. x or false = λx. λy. y. But we did not have the tools to prove that
yet, so will develop them in this lecture. The final theorem then will be the
representation theorem and we will mention others.

In the last lecture we gave definition of e nf (e is a normal form) and
e −→ e′ (e reduces to e′) via inference rule to unlock the proof technique of
rule induction. We start by completing the second property relating these
two judgments. However, it turns out that our definition of normal form
is awkward for the proof of representation theorems, so we give a new
formulation in term of well-typed normal terms and well-typed neutral terms.
These then form the basis for the representation theorem that concludes this
lecture.

2 Reduction and Normal Form

Recall our definition of reduction from Lecture 3.

e −→ e′

λx. e −→ λx. e′
red/lam

e1 −→ e′1

e1 e2 −→ e′1 e2
red/app1

e2 −→ e′2

e1 e2 −→ e1 e
′
2

red/app2

(λx. e1) e2 −→ [e2/x]e1
beta

LECTURE NOTES SEPTEMBER 13, 2018

L4.2 Representation Theorems

And our definition of normal forms:

e nf

λx. e nf
nf/lam

x nf
nf/var

e1 6= λ_ e1 nf e2 nf

e1 e2 nf
nf/app

In Theorem L3.6 we established that normal forms do not reduce. Now we
show the opposite, namely that expressions that do not reduce are normal
forms.

Theorem 1 (Irreducible expressions are normal forms) For all expressions
e, if e 6−→ then e nf.

Proof: We would like to use our all-purpose tool of rule induction to prove
this, but unfortunately that seems impossible since we have no derivation.
All we know is that there is no derivation of the form e −→ e′.

So we turn to the related technique of structural induction over some
(abstract) syntactic form, expressions in this case. There are three possibili-
ties: variables x, λ-abstractions λx. e, and applications e1 e2. To prove that a
property P holds for all expressions we have to show three propositions:

Case: P holds for variables x.
Case: P holds for λx. e assuming it holds for e.
Case: P holds for e1 e2 assuming it holds for e1 and e2.

It turns out we do not use this technique very often, but it works well here.

Case: e = x. Then x nf by rule nf/var.

Case: e = λx. e1. We start our reasoning as follows:

λx. e1 6−→ Assumption
. . .
To show: λx. e1 nf

In this situation is it easier to proceed if we develop the proof from the
bottom up: λx. e1 nf if we could show e1 nf.

λx. e1 6−→ Assumption
. . .
To show: e1 nf
λx. e1 nf By rule nf/lam

LECTURE NOTES SEPTEMBER 13, 2018

Representation Theorems L4.3

It is important to observe that this is not an application of inver-
sion! In fact, we do not have a derivation of λx. e1 nf, but we
want to construct one. In the completed proof (and already in this
partial proof), this steps corresponds to an ordinary application of
an inference rule (here nf/lam).

Now e1 nf would follow from the induction hypothesis if only we
knew that e1 6−→ .

λx. e1 6−→ Assumption
. . .
To show: e1 6−→
e1 nf By induction hypothesis on e1
λx. e1 nf By rule nf/lam

In order to show that e1 does not reduce, we assume it reduces and
derive a contradiction from it.

λx. e1 6−→ Assumption
e1 −→ e′1 for some e′1 Assumption
. . .
To show: Contradiction
e1 6−→ Since e1 −→ is contradictory
e1 nf By induction hypothesis on e1
λx. e1 nf By rule nf/lam

Now the final gap is easy to fill directly from an the inference rule
red/lam.

λx. e1 6−→ Assumption
e1 −→ e′1 for some e′1 Assumption
λx. e1 −→ λx. e′1 By rule red/lam
Contradiction Since λx. e1 6−→ and λx. e1 −→
e1 6−→ Since e1 −→ is contradictory
e1 nf By induction hypothesis on e1
λx. e1 nf By rule nf/lam

Case: e = e1 e2. Here we just show the completed proof, not the intermedi-
ate points.

LECTURE NOTES SEPTEMBER 13, 2018

L4.4 Representation Theorems

e1 e2 6−→ Assumption

e1 = λx. e3 Assumption
e1 e2 = (λx. e3) e2 −→ By rule beta
(1) e1 6= λ_ By contradiction

e1 −→ e′1 for some e′1 Assumption
e1 e2 −→ e′1 e2 By rule red/app1
e1 6−→ By contradiction
(2) e1 nf By ind. hyp. on e1

e2 −→ e′2 for some e′2 Assumption
e1 e2 −→ e1 e

′
2 By rule red/appx

e2 6−→ By contradiction
(3) e2 nf By ind. hyp. on e2

e1 e2 nf By rule nf/app from lines (1), (2), (3)

�

3 Normal and Neutral Terms

The characterization of e nf is adequate, but it has a somewhat unpleasant
condition e 6= λ_. This makes it unnecessarily complicated if we want to
use it as a basis to show the desired representation theorem for the Booleans.
It is also somewhat difficult to generalize when we add more constructs to
our language, so we give a slightly different characterization of the normal
forms. Recall that a normal term has the form

λx1. . . . λxn. ((x e1) . . . ek)

which consists of a (possibly empty) sequence of λ-abstractions followed
by a (possibly empty) sequence of applications where all the argument ei
are again normal. The terms of the form ((x e1) . . . ek) are called neutral
because applying them to another argument will not enable any reduction.
In contrast, if we apply a normal term of the form λx._ to an argument we
can then perform a β-reduction, so it may “react” to its environment. We
therefore have two judgments that mutually depend on each other, e normal

LECTURE NOTES SEPTEMBER 13, 2018

Representation Theorems L4.5

and e neutral.

e normal
λx. e normal

norm/lam
e neutral
e normal

norm/neut

e1 neutral e2 normal

e1 e2 neutral
neut/app

x neutral
neut/var

You should convince yourself that it captures the intuition correctly.

normal︷ ︸︸ ︷
λx1. . . . λxn. ((x e1) . . . ek)︸ ︷︷ ︸

neutral

You should also convince yourself (and this now requires some proof) that
e nf if and only if e normal because we already proved that e nf coincides
with e 6−→ . Alternatively, you could skip the intermediary and just prove
that e normal iff e 6−→ .

We will forego such theorems here and leave them to Exercise ??.

4 Typed Normal and Neutral Terms

Recall that our representation theorem expresses that ` e : α→ (α→ α) and
e is a normal form, then e = true or e = false. Dealing with two judgments
side by side, namely being well-typed and being normal, works out, but
we can streamline our reasoning if we have a combined judgment. This
combined judgment also has other applications later in the course.

As a first step, we just superimpose the typing judgment with the two
judgments of e normal and e neutral. We use the following two judgments

Γ ` e⇐ τ e normal and Γ ` e : τ
Γ ` e⇒ τ e neutral and Γ ` e : τ

These mutually depend on each other, because normal and neutral terms
are also mutually dependent. Writing out rules blindly, by which we mean
changing “:” to “⇐” for normal terms and “⇒” for neutral terms gives us
the rules chk/lam, syn/var and syn/app below. In addition, we need one rule
syn/chk that corresponds to the norm/neut rule expressing that every neutral

LECTURE NOTES SEPTEMBER 13, 2018

L4.6 Representation Theorems

term is normal.

Γ, x1 : τ1 ` e2 ⇐ τ2

Γ ` λx1. e2 ⇐ τ1→ τ2
chk/lam

Γ ` e⇒ τ

Γ ` e⇐ τ
chk/syn

x : τ ∈ Γ

Γ ` x⇒ τ
syn/var

Γ ` e1 ⇒ τ2→ τ1 Γ ` e2 ⇐ τ2

Γ ` e1 e2 ⇒ τ1
syn/app

Observe that these rules are no longer entirely syntax-directed, because of
the chk/syn rule.

It turns that these rules are indeed a correct merge of the rules for typing
and normality (see Exercise ??). They have some other remarkable properties
which we sketch in Section ??. But first, let’s use them to finally prove the
representation theorem.

5 Representation on Well-Typed Normal Forms

Theorem 2 (Representation of Booleans, v4) If · ` e ⇐ α→ (α→ α) then
e = true = λx. λy. x or e = false = λx. λy. y.

Proof: The proof proceeds by repeated inversions on the given derivation
of the judgment · ` e⇐ α→ (α→α). From this proof the need for Lemma ??
will emerge, but we present it in the order one might discover the lemma
and the need for it.

· ` e⇐ α→ (α→ α) Given

Matching this judgment against the conclusion of the rules, we see that two
could have been used to infer this: chk/lam and chk/syn. This is a use of
inversion with two cases.
Case:

· ` e⇒ α→ (α→ α)

· ` e⇐ α→ (α→ α)
chk/syn

It turns out this case is impossible by Lemma ??. Intuitively, this is
because e is a neutral term so it must be ((x e1) . . . ek), but the context
is empty so there is no variable we can start with.

LECTURE NOTES SEPTEMBER 13, 2018

Representation Theorems L4.7

Case:

x : α ` e1 ⇐ α→ α

· ` λx. e1 ⇐ α→ (α→ α)
chk/lam

where e = λx. e1. Again we can apply inversion, with the same two
rule being possible.

Subcase:

x : α ` e1 ⇒ α→ α

x : α ` e1 ⇐ α→ α
chk/syn

Again, this case is impossible by Lemma ??. The intuitive reason
is slightly different: the neutral term e1 must now have the form
((x e′1) . . . e

′
k) where the variable at the head is indeed the only

available x. But that is not of function type, so it cannot be
applied, but e1 ⇒ α→ α (which is a contradiction).

Subcase:

x : α, y : α ` e2 ⇐ α

x : α ` λy. e2 ⇐ α→ α
chk/lam

where e1 = λy. e2. Now we apply inversion again, and this time
there is only one possibility.

x : α, y : α ` e2 ⇒ α

Once more we apply inversion, with two eligible rules.
Sub2case:

z : α ∈ (x : α, y : α)

x : α, y : α ` z ⇒ α
syn/var

where e2 = z. We see the only possibilities are z = x or z = y.
Collecting the equalities: e = λx. e1 = λx. λy. e2 = λx. λy. z
where z = x or z = y, which is what we wanted to show.
Now we just need to know that the very last sub2case is
impossible.

Sub2case:

x : α, y : α ` e3 ⇒ τ → α x : α, y : α ` e4 ⇐ τ

x : α, y : α ` e3 e4 ⇒ α
syn/app

LECTURE NOTES SEPTEMBER 13, 2018

L4.8 Representation Theorems

for some τ , where e2 = e3 e4 and for some e3 and e4. This is
indeed impossible, rigorously by Lemma ??, and informally
because now e3 is neutral and the variable at its head must
be either x or y (both of which have type α).

�

The following lemma provides a rigorous argument about the possible
forms and types of neutral terms if all variables have some variable type αi.

Lemma 3 (Neutral Terms)
If x1 : α1, . . . , xn : αn ` e⇒ τ then e = xi and τ = αi for some 0 ≤ i ≤ n.

Proof: By rule induction on x1 : α1, . . . , xn : αn ` e⇒ τ . There are just two
cases.
Case:

z : τ ∈ (x1 : α1, . . . , xn : αn)

x1 : α1, . . . , xn : αn ` z ⇒ τ
syn/var

where e = z. Then z = xi and τ = αi for some i as required.

Case:

x1 : α1, . . . , xn : αn ` e1 ⇒ τ2→ τ x1 : α1, . . . , xn : αn ` e2 ⇐ τ2

x1 : α1, . . . , xn : αn ` e1 e2 ⇒ τ
syn/app

where e = e1 e2. By induction hypothesis on the first premise, we have
e1 = xi and τ2→ τ = αi. But that’s a contraction, since αi is a variable,
not a function type.

�

For some representation theorems we need to also allow some function
types in the context and we obtain other, more complex characterizations of
the neutral terms and their types.

6 Algorithmic Interpretation of Rules

In the theory of programming language we have a pervasive habit to present
just about anything via inference rules. The typing judgment for normal
forms is an excellent example of that: It also describes an algorithm for

LECTURE NOTES SEPTEMBER 13, 2018

Representation Theorems L4.9

type-checking! This, like much in programming languages, takes some time
to understand and absorb. Let’s talk through it.

To execute and algorithm encapsulated in the rules means to proceed
by bottom-up proof construction. We match the desired judgments to the
conclusion and then fill in the premises. Then we continue by trying to
derive the premises. We succeed when the whole derivation is filled in
and we can read off the answer (which varies with the problem, of course).
Sometimes, more than one rule applies and we have to try both in turn.
Sometimes, no rule applies and we fail. In case we had earlier choices, we
then backtrack to the most recent choice. If not, or if all choices have been
exhausted, we just fail and conclude the judgment is not derivable.

The algorithmic interpretation of the typing judgment for normal and
neutral terms is the following:

Γ ` e⇐ τ : Given Γ, e, and τ , determine whether or not the given judgment
holds. Success indicates that Γ ` e⇐ τ holds, failure that either e is
not normal or it does not have the given type τ . We say expression e is
checked against type τ .

Γ ` e⇒ τ : Given Γ and e, calculate a type τ such that the given judgment
holds or fail. Success yields that Γ ` e ⇒ τ holds for the τ we
calculated, failure that there is no suitable type e (either e is not neutral,
or it does not have any type at all). We say expression e synthesizes type
τ .

We illustrate the algorithm by verifying that 1 = λs. λz. s z ⇐ (α→ α)→
(α→ α). We execute it step by step and write ? wherever the algorithm
still has to compute an answer. If this answer is needed elsewhere we give
it a name, as in τ? which stands for “some type τ”.

At the beginning, we only know the judgment, but nothing yet about
the derivation (which may or may not exist, as far as we know at this point).

?

· ` λs. λz. s z ⇐ (α→ α)→ (α→ α)

Two rules could apply (chk/syn and chk/lam), but λs._ cannot synthesize a
type so chk/syn fails in the next step and we focus on chk/lam.

?

s : α→ α ` λz. s z ⇐ α→ α

· ` λs. λz. s z ⇐ (α→ α)→ (α→ α)
chk/lam

LECTURE NOTES SEPTEMBER 13, 2018

L4.10 Representation Theorems

As before, only one possibility remains

?

s : α→ α, z : α ` s z ⇐ α

s : α→ α ` λz. s z ⇐ α→ α
chk/lam

· ` λs. λz. s z ⇐ (α→ α)→ (α→ α)
chk/lam

At this point, only a single rule would have this conclusion, so we continue
with our construction.

?

s : α→ α, z : α ` s z ⇒ α

s : α→ α, z : α ` s z ⇐ α
chk/syn

s : α→ α ` λz. s z ⇐ α→ α
chk/lam

· ` λs. λz. s z ⇐ (α→ α)→ (α→ α)
chk/lam

Now it becomes somewhat interesting. The only rule that could have this
conclusion is syn/app. Recall that we interpret Γ ` e ⇒ τ as saying that Γ
and e as are given and we construct the τ , if it exists.

?

s : α→ α, z : α ` s⇒ τ? τ? = σ?→ α

?

s : α→ α, z : α ` z ⇐ σ?

s : α→ α, z : α ` s z ⇒ α
syn/app

s : α→ α, z : α ` s z ⇐ α
chk/syn

s : α→ α ` λz. s z ⇐ α→ α
chk/lam

· ` λs. λz. s z ⇐ (α→ α)→ (α→ α)
chk/lam

Now we note that we cannot yet start on the second premise of the syn/app

rule because we do not yet know σ? . So we work on the first premise.
That’s possible because it will return to us the type τ? of s, if it exists, and
from that we can determine τ? and then in turn σ? .

τ? = α→ α

s : α→ α, z : α ` s⇒ α→ α
syn/var

τ? = σ?→ α

?

s : α→ α, z : α ` z ⇐ σ?

s : α→ α, z : α ` s z ⇒ α
syn/app

s : α→ α, z : α ` s z ⇐ α
chk/syn

s : α→ α ` λz. s z ⇐ α→ α
chk/lam

· ` λs. λz. s z ⇐ (α→ α)→ (α→ α)
chk/lam

LECTURE NOTES SEPTEMBER 13, 2018

Representation Theorems L4.11

Now that the algorithm has determined all the unknowns in the first premise,
we can solve the equations, determine that σ? = α and proceed with the
second premise.

s : α→ α, z : α ` s⇒ α→ α
syn/var

?

s : α→ α, z : α ` z ⇐ α

s : α→ α, z : α ` s z ⇒ α
syn/app

s : α→ α, z : α ` s z ⇐ α
chk/syn

s : α→ α ` λz. s z ⇐ α→ α
chk/lam

· ` λs. λz. s z ⇐ (α→ α)→ (α→ α)
chk/lam

Again, only one rule applies.

s : α→ α, z : α ` s⇒ α→ α
syn/var

?

s : α→ α, z : α ` z ⇒ ρ? ρ? = α

s : α→ α, z : α ` z ⇐ α
chk/syn

s : α→ α, z : α ` s z ⇒ α
syn/app

s : α→ α, z : α ` s z ⇐ α
chk/syn

s : α→ α ` λz. s z ⇐ α→ α
chk/lam

· ` λs. λz. s z ⇐ (α→ α)→ (α→ α)
chk/lam

Now in the last step we can synthesize the type ρ for z and compare it
to α—fortunately it matches with ρ? = α and this run of the algorithm is
successful and complete.

s : α→ α, z : α ` s⇒ α→ α
syn/var

s : α→ α, z : α ` z ⇒ α
syn/var

s : α→ α, z : α ` z ⇐ α
chk/syn

s : α→ α, z : α ` s z ⇒ α
syn/app

s : α→ α, z : α ` s z ⇐ α
chk/syn

s : α→ α ` λz. s z ⇐ α→ α
chk/lam

· ` λs. λz. s z ⇐ (α→ α)→ (α→ α)
chk/lam

So the rules, read as an algorithm, tell us that · ` λs. λz. s z ⇐ (α→ α)→
(α→ α). The derivation we construct while we run the algorithm serves as
explicit evidence of this fact.

LECTURE NOTES SEPTEMBER 13, 2018

L4.12 Representation Theorems

Exercises

Since this is the first time we (that is, you) are proving theorems about
judgments defined by rules, we ask you to be very explicit, as we were in
the lectures and lecture notes. In particular:

• Explicitly state the overall structure of your proof: whether it proceeds
by rule induction, and, if so, on the derivation of which judgment, or
by structural induction, or by inversion, or just directly. If you need to
split out a lemma for your proof, state it clearly and prove it separately.
If you need to generalize your induction hypothesis, clearly state the
generalized form.

• Explicitly list all cases in an induction proof. If a case is impossible,
prove that is is impossible. Often, that’s just inversion, but sometimes
it is more subtle.

• Explicitly note any appeals to the induction hypothesis.

• Any appeals to inversion should be noted as such, as well as the rules
that could have inferred the judgment we already know. This could
lead to zero cases (a contradiction—the judgment could not have been
derived), one case (there is exactly one rule whose conclusion matches
our knowledge), or multiple cases, in which case your proof now splits
into multiple cases.

Exercise 1 If we have two judgments defined simultaneously (like e normal
and e neutral we often need to prove properties about them by simultaneous
induction. In simultaneous induction you have multiple induction hypothe-
ses and if the premise of a rule comes from a different judgment, you may
apply the appropriate induction hypothesis to it. In proving properties
?? and ?? below, make a note if you needed a simple or a simultaneous
induction.

1. In each case below, give an example of an expressions e and type
τ with · ` e : τ and also the stated property, or indicate no such
expression and type exist. You do not need to justify your answer
further (no need for typing derivations or proofs).

(i) · ` e⇐ τ and also · ` e⇒ τ

(ii) · ` e⇐ τ but not · ` e⇒ τ

(iii) · ` e⇒ τ but not · ` e⇐ τ

LECTURE NOTES SEPTEMBER 13, 2018

Representation Theorems L4.13

(iv) Neither · ` e⇐ τ nor · ` e⇒ τ

2. Prove that the bidirectional typing rules are sound, that is, we verify or
synthesize only correct types.

(i) If Γ ` e⇐ τ then Γ ` e : τ and e normal.

(ii) If Γ ` e⇒ τ then Γ ` e : τ and e neutral.

3. Prove that the bidirectional rules are complete, that is, we can verify or
infer any correct type.

(i) If Γ ` e : τ and e normal then Γ ` e⇐ τ .

(ii) If Γ ` e : τ and e neutral then Γ ` e⇒ τ .

Exercise 2 Prove the following theorems.

1. If e nf then e normal.

2. If e normal then e nf.

Because the judgment e normal is defined simultaneously with e neutral,
you may have to generalize some of the statements before you can prove
them by simultaneous induction (see Exercise ??).

LECTURE NOTES SEPTEMBER 13, 2018

