
Lecture Notes on
Subject Reduction

15-814: Types and Programming Languages
Frank Pfenning

Lecture 5
September 17, 2019

1 Introduction

In the last lecture we proved some key aspect of a representation theorem for
Booleans, namely that the closed normal forms type α→ (α→ α) are either
true = λx. λy. x or false = λx. λy. y. But how does this fit into the bigger
picture? Recall that we wanted to relate arbitrary expressions of a certain
type to Booleans. We had conjectured (L3.2)

Conjecture 1 (L3.2, Representation of Booleans, v2)
If · ` e : α→ (α→ α) then e =β true or e =β false.

But we want to relate this to computation. Fortunately, by the Church-
Rosser Theorem, e =β e

′ for a normal form e′ if and only if e −→∗ e′ (where
−→∗ is the reflexive and transitive closure of single-step reduction we have
been mostly working with). So we recast this one more time, relating typing
to computation and representation.

Conjecture 2 (Computation of Booleans)
If · ` e : α→ (α→ α) then e −→∗ true or e −→∗ false.

Since every well-typed expression has a normal form (Theorem L3.4,
which we did not prove), the missing link in our reasoning chain is that
typing is preserved under reduction: if we start with an expression e of type
τ and we reduce it all the way to a normal form e′, then e′ will still have
type τ . For the special case where τ = α→ (α→ α) which means that any
expression e of type τ that has a normal form represents a Boolean.

LECTURE NOTES SEPTEMBER 17, 2019



L5.2 Subject Reduction

2 Type Inference

We explained how the rules for Γ ` e ⇐ τ and Γ ` e ⇒ τ describe an
algorithm for type checking (⇐) and synthesis (⇒). Let’s return to the
original typing judgment Γ ` e : τ to see if it somehow embodies an
algorithm.

Our example is self-application, λx. x x. Recall that Ω = (λx. x x) (λx. x x)
does not have a normal form because it only reduces to itself. If we believe
the claim that every simply-typed expression has a normal form, then Ω
cannot have a type (and neither can Y ). The component λx. x x is in normal
form, so there is a chance it might by typable. But we cannot use our bidirec-
tional type checking algorithm since we do not know which type to check
it against. Instead, we use the fact that the typing rules are syntax-directed,
which means we can construct the shape of the typing derivation without
any thought.

x : ` x :
var

x : ` x :
var

x : ` xx :

app

· ` λx. x x :
lam

We can now fill in the blanks with unknowns and collect some constraints.
We write these unknowns as τ? to express “some type τ”. For example, we
know the final conclusion must have some type τ?, and because it is inferred
by the rule lam it must actually have the form τ? = τ1?→ τ2? for some τ1?
and τ2?.

x : ` x :
var

x : ` x :
var

x : τ1? ` xx : τ2?

app

· ` λx. x x : τ?
lam

where τ? = τ1→ τ2. Now we consider the app rule, which types xx. The
function part of this (the first x) must have type τ3?→ τ2?, and the argument

LECTURE NOTES SEPTEMBER 17, 2019



Subject Reduction L5.3

(the second x) must have type τ3? for some τ3?. Filling this in:

x : τ1? ` x : τ3?→ τ2?
var

x : τ1? ` x : τ3?
var

x : τ1? ` xx : τ2?

app

· ` λx. x x : τ?
lam

where τ? = τ1?→ τ2?. Now we analyze the final two var rules, which tell us
that τ1? = τ3?→ τ2? and also τ1? = τ3?. Collecting all the constraints on the
variables, any solution to the following equations will give us a valid typing
derivation:

τ? = τ1?→ τ2?
τ1? = τ3?→ τ2?
τ1? = τ3?

But there cannot be a solution! Substituting the third equation into the
second one we deduce

τ3? = τ3?→ τ2?

which does not have a solution. No matter which type we try to substitute
for τ3?, the right-hand side is always strictly larger than the left-hand side
and therefore the two cannot be equal.

We then conclude that λx. x x cannot have a simple type.
As an example of an expression that can be typed, consider the identity

function, λx. x.

x : ` x :
var

· ` λx. x :
lam

Filling in variables and collecting constraints:

x : τ1? ` x : τ2?
var

· ` λx. x : τ?
lam

where
τ? = τ1?→ τ2?
τ1? = τ2?

LECTURE NOTES SEPTEMBER 17, 2019



L5.4 Subject Reduction

This can easily be solved and we get

τ? = τ2?→ τ2?

for any arbitrary τ2?. The “most general” solution is to use a variable α for
τ2?, because we know that we can obtain another typing derivation from a
given one with α by substituting any type τ for α.

The general form of the process we have illustrated here is type inference.
It construct that skeleton of a typing derivation, collects constraints on the
unknown types, and then solves them to find a most general solution. The
algorithm for finding a most general solution (or reporting there is none) is
called unification.

A great property of type inference is that the programmer does not have
to supply any types. A drawback is that the collected equations are “global”,
that is, they come from the whole typing derivation. This means it may be
difficult to pinpoint the source of a type error, and if you have done any
significant functional programming you probably had to contend with this
issue. Bidirectional type-checking on the other hand only matches types
against each other locally, so type errors are quite specific. The drawback
is that some types have to be supplied by the programmer. The biggest
advantage of the bidirectional algorithm is that it is robust under language
extensions, while type inference fairly quickly becomes either undecidable
or impractical. We will reconsider this going forward, when our language
becomes richer.

3 Subject Reduction

Now we return to the main topic of this lecture, namely subject reduction.
Recall our characterization of reduction from Lecture 3, written here as a
collection of inference rules.

e −→ e′

λx. e −→ λx. e′
red/lam

e1 −→ e′1

e1 e2 −→ e′1 e2
red/app1

e2 −→ e′2

e1 e2 −→ e1 e
′
2

red/app2

(λx. e1) e2 −→ [e2/x]e1
beta

LECTURE NOTES SEPTEMBER 17, 2019



Subject Reduction L5.5

And, for reference, here are the typing rules.

Γ, x1 : τ1 ` e2 : τ2

Γ ` λx1. e2 : τ1→ τ2
lam

x : τ ∈ Γ

Γ ` x : τ
var

Γ ` e1 : τ2→ τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1
app

Theorem 3 (Subject Reduction)
If Γ ` e : τ and e −→ e′ then Γ ` e′ : τ .

Proof: In this theorem statement we are given derivations for two judg-
ments: Γ ` e : τ and e −→ e′. Most likely, the proof will proceed by rule
induction on one of these and by inversion on the other. The typing judg-
ment is syntax-directed and therefore amenable to reasoning by inversion,
so we try rule induction over the reduction judgment.

By rule induction on the derivation of e −→ e′.

Case:

e1 −→ e′1

λx. e1 −→ λx. e′1
red/lam

where e = λx. e′1.

Γ ` λx. e1 : τ Assumption
Γ, x : τ2 ` e1 : τ1 and τ = τ2→ τ1 for some τ1 and τ2 By inversion
Γ, x : τ2 ` e′1 : τ1 By induction hypothesis
Γ ` λx. e′1 : τ2→ τ1 By rule lam

Case:

e1 −→ e′1

e1 e2 −→ e′1 e2
red/app1

where e = e1 e2. We start again by restating what we know in this case
and then apply inversion.

Γ ` e1 e2 : τ Assumption
Γ ` e1 : τ2→ τ and
Γ ` e2 : τ2 for some τ2 By inversion

LECTURE NOTES SEPTEMBER 17, 2019



L5.6 Subject Reduction

At this point we have a type for e1 and a reduction for e1, so we can
apply the induction hypothesis.

Γ ` e′1 : τ2→ τ By ind.hyp.

Now we can just apply the typing rule for application. Intuitively, in
the typing for e1 e2 we have replaced e1 by e′1, which is okay since e′1
has the type of e1.

Γ ` e′1 e2 : τ By rule lam

Case:

e2 −→ e′2

e1 e2 −→ e′1 e2
red/app2

where e = e1 e2. This proceeds completely analogous to the previous
case.

Case:

(λx. e1) e2 −→ [e2/x]e1
β

where e = (λx. e1) e2. In this case we apply inversion twice, since the
structure of e is two levels deep.

Γ ` (λx. e1) e2 : τ Assumption
Γ ` λx. e1 : τ2→ τ
and Γ ` e2 : τ2 for some τ2 By inversion
Γ, x : τ2 ` e1 : τ By inversion

At this point we are truly stuck, because there is no obvious way to
complete the proof.

To Show: Γ ` [e2/x]e1 : τ

Fortunately, the gap that presents itself is exactly the content of the
substitution property, stated below. The forward reference here is ac-
ceptable, since the proof of the substitution property does not depend
on subject reduction.

LECTURE NOTES SEPTEMBER 17, 2019



Subject Reduction L5.7

Γ ` [e2/x]e1 : τ By the substitution property (Theorem 4)

�

Theorem 4 (Substitution Property)
If Γ ` e : τ and Γ, x : τ ` e′ : τ ′ then Γ ` [e/x]e′ : τ ′

Proof sketch: By rule induction on the deduction of Γ, x : τ ` e′ : τ ′.
Intuitively, in this deduction we can use x : τ only at the leaves, and there
to conclude x : τ . Now we replace this leaf with the given derivation of
Γ ` e : τ which concludes e : τ . Luckily, [e/x]x = e, so this is the correct
judgment.

There is only a small hiccup: when we introduce a different variable
x1 : τ1 into the context in the lam rule, the contexts of the two assumptions
no longer match. But we can apply weakening, that is, adjoin the unused
hypothesis x1 : τ1 to every judgment in the deduction of Γ ` e : τ . After
that, we can apply the induction hypothesis. �

We recommend you write out the cases of the substitution property in
the style of our other proofs, just to make sure you understand the details.

The substitution property is so critical that we may elevate it to an
intrinsic property of the turnstile (`). Whenever we write Γ ` J for any
judgment J we imply that a substitution property for the judgments in Γ
must hold. This is an example of a hypothetical and generic judgment [ML83].
We may return to this point in a future lecture, especially if the property
appears to be in jeopardy at some point. It is worth remembering that,
while we may not want to prove an explicit substitution property, we still
need to make sure that the judgments we define are hypothetical/generic
judgments.

4 Taking Stock

Where do we stand at this point in our quest for a representation theorems
for Booleans? We have the following:

Reduction and Normal Forms

(i) If e 6−→ then e normal.

(ii) If e normal the e 6−→ .

LECTURE NOTES SEPTEMBER 17, 2019



L5.8 Subject Reduction

Typing and Normal Forms (Exercise L4.1.2-3)

(i) If Γ ` e⇐ τ then Γ ` e : τ and e normal.

(ii) If Γ ` e : τ and e normal then Γ ` e⇐ τ

Representation of Booleans in Normal Form (L4.2)
If · ` e⇐ α→(α→α) then either e = true = λx. λy. x or e = false = λx. λy. y.

Subject Reduction (L5.3)
If Γ ` e : τ and e −→ e′ we have Γ ` e′ : τ .

We did not prove normalization (also called termination) or confluence
(also called the Church-Rosser property).

Normalization
If Γ ` e : τ then e −→∗ e′ for some e′ with e′ nf.

Confluence
If e −→∗ e1 and e −→∗ e2 then there exists an e′ such that e1 −→∗ e′ and
e2 −→ e′.

We could replay the whole development for the representation of natural
numbers instead of Booleans, with some additional complications, but we
will forego this in favor of tackling more realistic programming languages.

References

[ML83] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Notes for three lectures given in
Siena, Italy. Published in Nordic Journal of Philosophical Logic, 1(1):11-
60, 1996, April 1983.

LECTURE NOTES SEPTEMBER 17, 2019


	Introduction
	Type Inference
	Subject Reduction
	Taking Stock

