
Lecture Notes on
From λ-Calculus to Programming Languages

15-814: Types and Programming Languages
Frank Pfenning

Lecture 6
Thursday, September 19, 2019

1 Introduction

The λ-calculus is exceedingly elegant and minimal, but there are a number
of problems if you want to think it of as the basis for an actual programming
language. Here are some thoughts discussed in class.

Too abstract. Generally speaking, abstraction is good in the sense that it
is an important role of functions (abstracting away from a particular
special computation) or modules (abstracting away from a particular
implementation). “Too abstract” would mean that we cannot express
algorithms or ideas in code because the high level of abstraction pre-
vents us from doing so. This is a legitimate concern for the λ-calculus.
For example, what we observe as the result of a computation is only
the normal form of an expression, but we might want to express some
programs that interact with the world or modify a store. And, yes, the
representation of data like natural numbers as functions has problems.
While all recursive functions on natural numbers can be represented,
not all algorithms can. For example, under some reasonable assump-
tions the minimum function on numbers n and k has complexity
O(max(n, k)) [CF98], which is surprisingly slow.

Observability of functions. Since reduction results in normal form, to in-
terpret the result of a computation we need to be able to inspect the
structure of functions. But generally we like to compile functions and
think of them only as something opaque: we can probe it by applying
it to arguments, but its structure should be hidden from us. This is a

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

L6.2 From λ-Calculus to Programming Languages

serious and major concern about the pure λ-calculus where all data
are expressed as functions.

Generality of typing. The untyped λ-calculus can express fixed points (and
therefore all partial recursive functions on its representation of nat-
ural numbers) but the same is not true for Church’s simply-typed
λ-calculus. In fact, the type system so far is very restrictive.

In this lecture we focus on the first two points: rather than representing
all data as functions, we add data to the language directly, with new types
and new primitives. At the same time we make the structure of functions
unobservable so that implementation can compile them to machine code,
optimize them, and manipulate them in other ways. Functions become
more extensional in nature, characterized via their input/output behavior
rather than distinguishing functions that have different internal structure.

2 Revising the Dynamics of Functions

The statics, that is, the typing rules for functions, do not change, but the way
we compute does. We have to change our notion of reduction as well as
that of normal forms. Because the difference to the λ-calculus is significant,
we call the result of computation values and define them with the judgment
e val. Also, we write e 7→ e′ for a single step of computation. For now, we
want this step relation to be deterministic, that is, we want to arrange the
rules so that every expression either steps in a unique way or is a value.
Furthermore, since we do not reduce underneath λ-abstractions, we only
evaluate expressions that are closed, that is, have no free variables.

When we are done, we should then check the following properties.

Preservation. If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Progress. For every expression · ` e : τ either e 7→ e′ or e val.

Values. If e val then there is no e′ such that e 7→ e′.

Determinacy. If e 7→ e1 and e 7→ e2 then e1 = e2.

Devising a set of rules is usually the key activity in programming lan-
guage design. Proving the required theorems is just a way of checking one’s
work rather than a primary activity. First, one-step computation. We suggest

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

From λ-Calculus to Programming Languages L6.3

you carefully compare these rules to those in Lecture 4 where reduction
could take place in arbitrary position of an expression.

λx. e val
val/lam

Note that e here is unconstrained and need not be a value.

e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

(λx. e1) e2 7→ [e2/x]e1
beta

These two rules together constitute a strategy called call-by-name. There are
good practical as well as foundational reasons to use call-by-value instead,
which we obtain with the following three alternative rules.

e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

e1 val e2 7→ e′2

e1 e2 7→ e1 e
′
2

step/app2

e2 val

(λx. e1) e2 7→ [e2/x]e1
step/beta/val

We achieve determinacy by requiring certain subexpressions to be values.
Consequently, computation first reduces the function part of an application,
then the argument, and then performs a (restricted form) of β-reduction.

There are a lot of spurious arguments about whether a language should
support call-by-value or call-by-name. This turns out to be a false dichotomy
and only historically in opposition.

We could now check our desired theorems, but we wait until we have
introduced the Booleans as a new primitive type.

3 Booleans as a Primitive Type

Most, if not all, programming languages support Booleans. There are two
values, true and false, and usually a conditional expression if e1 then e2 else e3.
From these we can define other operations such as conjunction or disjunc-
tion. Using, as before, α for type variables and x for expression variables,
our language then becomes:

Types τ ::= α | τ1→ τ2 | bool
Expressions e ::= x | λx. e | e1 e2

| true | false | if e1 e2 e3

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

L6.4 From λ-Calculus to Programming Languages

The additional rules seem straightforward: true and false are values, and
a conditional computes by first reducing the condition to true or false and
then selecting the correct branch.

true val false val

e1 7→ e′1

if e1 e2 e3 7→ if e′1 e2 e3
step/if

if true e2 e3 7→ e2
step/if/true

if false e2 e3 7→ e3
step/if/false

Note that we do not evaluate the branches of a conditional until we know
whether the condition is true or false.

How do we type the new expressions? true and false are obvious.

Γ ` true : bool
tp/true

Γ ` false : bool
tp/false

The conditional is more interesting. We know its subject e1 should be of type
bool, but what about the branches and the result? We want type preservation
to hold and we cannot tell before the program is executed whether the
subject of conditional will be true or false. Therefore we postulate that both
branches have the same general type τ and that the conditional has the same
type.

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 e2 e3 : τ
tp/if

4 Type Preservation

Now we should revisit the most important theorems about the program-
ming language we define, namely preservation and progress. These two
together constitute what we call type safety. Since these theorems are of
such pervasive importance, we will prove them in great detail. Generally
speaking, the proof decomposes along the types present in the language
because we carefully designed the rules so that this is the case. For example,
we added if e1 e2 e3 as a language primitive instead of as if a function of three
arguments. Doing the latter would significantly complicate the reasoning.

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

From λ-Calculus to Programming Languages L6.5

We already know that the rules should satisfy the substitution property
(Theorem L5.4). We can easily check the new cases in the proof because
substitution remains compositional. For example, [e′/x](if e1 e2 e3) =
if ([e′/x]e1) ([e′/x]e2) ([e′/x]e3).

Theorem 1 (Substitution Property)
If Γ ` e : τ and Γ, x : τ ` e′ : τ ′ then Γ ` [e/x]e′ : τ ′.

On to preservation.

Theorem 2 (Type Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Proof: By rule induction on the derivation of e 7→ e′.

Case:

e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

where e = e1 e2 and e′ = e′1 e2.

· ` e1 e2 : τ Assumption
· ` e1 : τ2→ τ and · ` e2 : τ2 for some τ2 By inversion
· ` e′1 : τ2→ τ By ind.hyp.
· ` e′1 e2 : τ By rule app

Case:

v1 val e2 7→ e′2

v1 e2 7→ v1 e
′
2

step/app2

where e = v1 e2 and e′ = v1 e
′
2. As in the previous case, we proceed by

inversion on typing.

· ` v1 e2 : τ Assumption
· ` v1 : τ2→ τ and · ` e2 : τ2 for some τ2 By inversion
· ` e′2 : τ2 By ind.hyp.
· ` v1 e′2 : τ By rule app

Case:

v2 val

(λx. e1) v2 7→ [v2/x]e1
step/beta/val

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

L6.6 From λ-Calculus to Programming Languages

where e = (λx. e1) v2 and e′ = [v2/x]e1. Again, we apply inversion on
the typing of e, this time twice. Then we have enough pieces to apply
the substitution property (Theorem 1).

· ` (λx. e1) v2 : τ Assumption
· ` λx. e1 : τ2→ τ and · ` v2 : τ2 for some τ2 By inversion
x : τ2 ` e1 : τ By inversion
· ` [v2/x]e1 : τ By the substitution property (Theorem 1)

Case:

e1 7→ e′1

if e1 e2 e3 7→ if e′1 e2 e3
step/if

where e = if e1 e2 e3 and e′ = if e′1 e2 e3. As might be expected by
now, we apply inversion to the typing of e, followed by the induction
hypothesis on the type of e1, followed by re-application of the typing
rule for if.

· ` if e1 e2 e3 : τ Assumption
· ` e1 : bool and · ` e2 : τ and · ` e3 : τ By inversion
· ` e′1 : bool By ind.hyp.
· ` if e′1 e2 e3 : τ By rule tp/if

Case:

if true e2 e3 7→ e2
step/if/true

where e = if true e2 e3 and e′ = e2. This time, we don’t have an
induction hypothesis since this rule has no premise, but fortunately
one step of inversion suffices.

· ` if true e2 e3 : τ Assumption
· ` true : bool and · ` e2 : τ and · ` e3 : τ By inversion
· ` e′ : τ Since e′ = e2.

Case: Rule step/if/false is analogous to the previous case.

�

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

From λ-Calculus to Programming Languages L6.7

5 Progress

To complete the lecture, we would like to prove progress: every closed, well-
typed expression is either already a value or can take a step. First, it is easy
to see that the assumptions here are necessary. For example, the ill-typed
expression if (λx. x) false true cannot take a step since the subject (λx. x) is
a value but the whole expression is not and cannot take a step. Similarly,
the expression if b false true is well-typed in the context with b : bool, but it
cannot take a step nor is it a value.

Theorem 3 (Progress)
If · ` e : τ then either e 7→ e′ for some e′ or e val.

Proof: There are not many candidates for this proof. We have e and we
have a typing for e. From that scant information we need obtain evidence
that e can step or is a value. So we try the rule induction on · ` e : τ .

Case:

x1 : τ1 ` e2 : τ2

· ` λx1. e2 : τ1→ τ2

where e = λx1. e2. Then we have

λx1. e2 val By rule val/lam

It is fortunate we don’t need the induction hypothesis, because it
cannot be applied! That’s because the context of the premise is not
empty, which is easy to miss. So be careful!

Case:

· ` e1 : τ2→ τ · ` e2 : τ2

· ` e1 e2 : τ

where e = e1 e2. At this point we apply the induction hypothesis to
e1. If it reduces, so does e = e1 e2. If it is a value, then we apply the
induction hypothesis to e2. If is reduces, so does e1 e2. If not, we have
a βval redex. In more detail:

Either e1 7→ e′1 for some e′1 or e1 val By ind.hyp.

e1 7→ e′1 Subcase

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

L6.8 From λ-Calculus to Programming Languages

e = e1 e2 7→ e′1 e2 by rule step/app1

e1 val Subcase
Either e2 7→ e′2 for some e′2 or e2 val By ind.hyp.

e2 7→ e′2 Sub2case
e1 e2 7→ e1 e

′
2 By rule step/app2 since e1 val

e2 val Sub2case
e1 = λx. e′1 and x : τ2 ` e′1 : τ By “inversion”

We pause here to consider this last step. We know that · ` e1 : τ2→ τ
and e1 val. By considering all cases for how both of these judgments
can be true at the same time, we see that e1 must be a λ-abstraction.
This is often summarized in a canonical forms theorem which we state
after this proof. Finishing this sub2case:

e = (λx. e′1) e2 7→ [e2/x]e′1 By rule step/beta/val since e2 val

Case:

· ` true : bool

where e = true. Then e = true val by rule.

Case: Typing of false. As for true.

Case:

· ` e1 : bool · ` e2 : τ · ` e3 : τ

· ` if e1 e2 e3 : τ

where e = if e1 e2 e3.

Either e1 7→ e′1 for some e′1 or e1 val By ind.hyp.

e1 7→ e′1 Subcase
e = if e1 e2 e3 7→ if e′1 e2 e3 By rule step/if

e1 val Subcase
e1 = true or e1 = false

By considering all cases for · ` e1 : bool and e1 val

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

From λ-Calculus to Programming Languages L6.9

e1 = true Sub2case
e = if true e2 e3 7→ e2 By rule step/if/true

e1 = false Sub2case
e = if false e2 e3 7→ e3 By rule step/if/false

�

This completes the proof. The complex inversion steps can be summa-
rized in the canonical forms theorem that analyzes the shape of well-typed
values. It is a form of the representation theorem for Booleans we proved in
an earlier lecture for the simply-typed λ-calculus.

Theorem 4 (Canonical Forms)

(i) If · ` v : τ1→ τ2 and v val then v = λx1. e2 for some x1 and e2.

(ii) If · ` v : bool and v val then v = true or v = false.

Proof: For each part, analyzing all the possible cases for the value and
typing judgments. �

Exercises

Exercise 1 Prove single-step determinacy: If · ` e : τ , e 7→ e1 and e 7→ e2
then e1 = e2.

Exercise 2 Consider adding a new expression ⊥ to our call-by-value lan-
guage (with functions and Booleans) with the following evaluation and
typing rules:

⊥ 7→ ⊥
step/bot

Γ ` ⊥ : τ
bot

We do not change our notion of value, that is, ⊥ is not a value.

1. Does preservation (Theorem L6.2) still hold? If not, provide a coun-
terexample. If yes, show how the proof has to be modified to account
for the new form of expression.

2. Does the canonical forms theorem (L6.4) still hold? If not, provide
a counterexample. If yes, show how the proof has to be modified to
account for the new form of expression.

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

L6.10 From λ-Calculus to Programming Languages

3. Does progress (Theorem L6.3) still hold? If not, provide a counterex-
ample. If yes, show how the proof has to be modified to account for
the new form of expression.

Once we have nonterminating computation, we sometimes compare ex-
pressions using Kleene equality: e1 and e2 are Kleene equal (e1 ' e2) if they
evaluate to the same value, or they both diverge (do not compute to a value).
Since we assume we cannot observe functions, we can further restrict this
definition: For · ` e1 : bool and · ` e2 : bool we write e1 ' e2 iff for all values
v, e1 7→∗ v iff e2 7→∗ v.

4. Give an example of two closed terms e1 and e2 of type bool such that
e1 ' e2 but not e1 =β e2, or indicate that no such example exists (no
proof needed in either case).

Exercise 3 In our call-by-value language with functions, Booleans, and ⊥
(see Exercise 2) consider the following specification of or, sometimes called
“short-circuit or”:

or true e ' true
or false e ' e

where e1 ' e2 is Kleene equality from Exercise 2.

• We cannot define a function or : bool→ (bool→bool) with this behavior.
Prove that it is indeed impossible.

• Show how to translate an expression or e1 e2 into our language so
that it satisfies the specification, and verify the given equalities by
calculation.

Exercise 4 In our call-by-value language with functions, Booleans, and ⊥
(see Exercise 2) consider the following specification of por, sometimes called
“parallel or”:

por true e ' true
por e true ' true
por false false ' false

where e1 ' e2 is Kleene equality as in Exercises 2 and 3.

1. We cannot define a function por : bool→ (bool→ bool) in our language
with this behavior. Prove that it is indeed impossible.

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

From λ-Calculus to Programming Languages L6.11

2. We also cannot translate expressions por e1 e2 into our language so
that the result satisfies the given properties (which you do not need to
prove). Instead consider adding a new primitive form of expression
por e1 e2 to our language.

(a) Give one or more typing rules for por e1 e2.

(b) Provide one or more evaluation rules for por e1 e2 so that it satis-
fies the given specification and, furthermore, such that preserva-
tion, canonical forms, and progress continue to hold.

(c) Show the new case(s) in the preservation theorem.

(d) Show the new case(s) in the progress theorem.

(e) Do your rules satisfy single-step determinacy (see Exercise 1)? If
not, provide a counterexample. If yes, just indicate that it is the
case (you do not need to prove it).

References

[CF98] Loı̈c Colson and Daniel Fredholm. System T, call-by-value, and the
minimum problem. Theoretical Computer Science, 206(1–2):301–315,
1998.

LECTURE NOTES THURSDAY, SEPTEMBER 19, 2019

	Introduction
	Revising the Dynamics of Functions
	Booleans as a Primitive Type
	Type Preservation
	Progress

