
Lecture Notes on
Products

15-814: Types and Programming Languages
Frank Pfenning

Lecture 7
Tuesday, September 25, 2019

1 Introduction

Types capture fundamental programming abstractions. If a type system and
its underlying programming language is well-designed, we can then build
complex data representations and computational mechanisms from a few
primitives. The most fundamental is that of a function, captured in the type
τ1→ τ2. As a next step we look for ways to aggregate data. The simplest is
pairs, which are captured by the type τ1 × τ2. By iterating pairs we can then
assemble tuples with elements of arbitrary types.

2 Constructing Pairs

Fundamentally, for each new type we introduce we must be able to construct
element of the type. For example, λx. e constructs element of the function
type τ1→τ2. To construct new elements of the type τ1×τ2 we use the almost
universal notation 〈e1, e2〉. The typing rule is straightforward

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
pair

This is the only rule for pairs, so we maintain the property that the rules are
syntax-directed.

Next we should consider the dynamics, that is, which are the new values
of type τ1 × τ2 and how do we evaluate pairs. In this lecture we consider

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

L7.2 Products

eager pairs, that is, a pair is only a value if both components are. Lazy pairs
are the subject of Exercise 1.

e1 val e2 val

〈e1, e2〉 val
val/pair

We then assume that we can observe the components of a pair. So, at the
current extent of our language we can observe the Booleans and, inductively,
pairs of observable type.

Types τ ::= α | τ1→ τ2 | bool | τ1 × τ2
Observable Types o ::= bool | o1 × o2

To evaluate a pair we decided on evaluating from left to right: it preserves
single-step determinacy and it is consistent with other constructs like func-
tion applications that are also evaluate from left to right.

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

v1 val e2 7→ e′2

〈v1, e2〉 7→ 〈v1, e′2〉
step/pair2

In writing this rule we are starting a convention where expressions known
to be values are denoted by v instead of e.

3 Destructing Pairs

Constructing pairs is only one side of the coin. We also need to be able to
access the components of a pair. There seem to be two natural choices: (1)
to have a first and second projection function, and (2) decompose a pair
with a letpair-like construct (from the pure λ-calculus in Lecture L2.4) that
gives access to both components. It turns out, projections as a primitive are
more suitable for lazy pairs, while a letpair construct matches eager pairs.
We formulate it here as a case expression, because it turns out that several
other destructors can also be written in this way, leading to a more uniform
language.

case e (〈x1, x2〉 ⇒ e′)

The crucial operational rule just deconstructs a pair of values.

v1 val v2 val

case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ [v1/x2][v2/x2]e3
step/case/pair

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

Products L7.3

We also need a second rule to reduce the subject of the case-expression until
it becomes a value.

e0 7→ e′0

case e0 (〈x1, x2〉 ⇒ e3) 7→ case e′0 (〈x1, x2〉 ⇒ e3)
step/case/pair0

In the typing rule, we know the subject of the case-expression should be a
pair and the body should be the same type as the whole expression.

Γ ` e : τ1 × τ2 Γ, x1 : τ1, x2 : τ2 ` e′ : τ ′

Γ ` case e (〈x1, x2〉 ⇒ e′) : τ ′
case/pair

Note how x1 and x2 are added to the context in the second premise because
they may appear in e′.

We are of course obligated to check that our language properties are
preserved under this extension, which we will do shortly. Meanwhile, let’s
write two small programs, verifying that the projections can indeed be
defined.

fst : (α× β)→ α
fst = λp. case p (〈x, y〉 ⇒ x)

snd : (α× β)→ β
snd = λp. case p (〈x, y〉 ⇒ y)

Because the typing is parametric in the variables α and β, the two projections
also have types (τ × σ)→ τ and (τ × σ)→ σ, respectively, for arbitrary τ
and σ.

4 Summary

Here is a summary of our language so far, and the new rules defining it.

4.1 Syntax

Types τ ::= α | τ1→ τ2 | bool | τ1 × τ2
Expressions e ::= x | λx. e | e1 e2 (τ1→ τ2)

| true | false | if e1 e2 e3 (bool)
| 〈e1, e2〉 | case e (〈x1, x2〉 ⇒ e′) (τ1 × τ2)

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

L7.4 Products

4.2 Statics

e1 val e2 val

〈e1, e2〉 val
val/pair

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
pair

Γ ` e : τ1 × τ2 Γ, x1 : τ1, x2 : τ2 ` e′ : τ ′

Γ ` case e (〈x1, x2〉 ⇒ e′) : τ ′
case/pair

4.3 Dynamics

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

v1 val e2 7→ e′2

〈v1, e2〉 7→ 〈v1, e′2〉
step/pair2

e0 7→ e′0

case e0 (〈x1, x2〉 ⇒ e3) 7→ case e′0 (〈x1, x2〉 ⇒ e3)
step/case/pair0

v1 val v2 val

case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ [v1/x1][v2/x2]e3
step/case/pair

5 Preservation and Progress, Revisited

Design of the new types and expressions are always carefully rigged so that
the preservation and progress theorems continue to hold. Among other
things, we make sure that each definition is self-contained. For example, we
might have postulated a primitive function pair : τ1→ (τ2→ (τ1 × τ2)) but
then the canonical forms theorem would have to be altered: not every value
of function type is actually a λ-expression. Instead, we have a new expression
constructor 〈−,−〉 and we can define pair as a regular function from that.

Theorem 1 (Type Preservation, new cases for τ1 × τ2)
If · ` e : τ and e 7→ e′ then · ` e′ : τ

Proof: Recall the structure of the proof of type preservation. We use rule
induction on the derivation of e 7→ e′ and apply inversion on · ` e : τ in
order to gain enough information to assemble a derivation of e′. We exploit
here that the typing rules are syntax-directed. Technically, we rely on the
substitution property and so that needs to be extended as well. But since we
continue to use a standard hypothetical judgment and we do not touch our
notion of variable, the new cases don’t require any particular attention.

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

Products L7.5

The congruence cases of reduction, where we reduce a subexpression,
are straightforward because we can follow this pattern mechanically. For
example:

Case:

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

where e = 〈e1, e2〉, e′ = 〈e′1, e2〉.

· ` 〈e1, e2〉 : τ Assumption
· ` e1 : τ1 and · ` e2 : τ2 where τ = τ1 × τ2. By inversion
· ` e′1 : τ1 By ind. hyp.
· ` 〈e′1, e2〉 : τ1 × τ2 By rule pair

The main case to check then is one where some “real” reduction takes place.
This is when a destructor for values of a type meets a constructor.

Case:

v1 val v2 val

case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ [v1/x1][v2/x2]e3
step/case/pair

where e = case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) and e′ = [v1/x2][v2/x2]e3. In
this case, we cannot apply the induction hypothesis (the premises are
of a different form), but we can nevertheless apply inversion and then
use the substitution property.

· ` case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) : τ Assumption
· ` 〈v1, v2〉 : τ1 × τ2
and x1 : τ1, x2 : τ2 ` e3 : τ for some τ1 and τ2 By inversion
· ` v1 : τ1 and · ` v2 : τ2 By inversion
x1 : τ1 ` [v2/x2]e3 : τ By substitution (Theorem L6.1)
· ` [v1/x1][v2/x2]e3 : τ By substitution (Theorem L6.1)

�

In preparation for the progress theorem, we extend the canonical forms
theorem. The latter is a bit different than the other theorems in that for every
extension of our language by a new form of type, we need to add a case that
characterizes the values of the new type.

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

L7.6 Products

Theorem 2 (Canonical Forms)
Assume v val. Then

(i) If · ` v : τ1→ τ2 then v = λx. e′ for some x and e′.

(ii) If · ` v : bool then v = true or v = false.

(iii) If · ` v : τ1 × τ2 then v = 〈v1, v2〉 for some v1 val and v2 val.

Proof: We consider each case for v val and then invert on the typing deriva-
tion in each case. �

Theorem 3 (Progress, new cases for τ1 × τ2)
If · ` e : τ then either e 7→ e′ for some e′ or e val.

Proof: By rule induction on · ` e : τ . The rules where we reduce pairs are
straightforward, as before, so we only write out the case construct.

Case:

· ` e0 : τ1 × τ2 x1 : τ1, x2 : τ2 ` e2 : τ

· ` case e0 (〈x1, x2〉 ⇒ e3) : τ
case/pair

where e = case e0 (〈x1, x2〉 ⇒ e3).

Either e0 7→ e′0 for some e0 for e0 val By ind. hyp.

e0 7→ e′0 First subcase
case e0 (〈x1, x2〉 ⇒ e3) 7→ case e′0 (〈x1, x2〉 ⇒ e3) By rule step/case/pair0

e0 val Second subcase
e0 = 〈v1, v2〉 for some v1 val and v2 val

By the canonical forms (Theorem 2)
case e0 (〈x1, x2〉 ⇒ e3) 7→ [v1/x1][v2/x2]e3 By rule step/case/pair

�

6 Examples

Now that we know our statics (typing rules) and dynamics (value and eval-
uation rules) make sense and are consistent, we can write some examples.
First, pairing as a function.

pair : α→ (β→ (α× β))
pair = λx. λy. 〈x, y〉

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

Products L7.7

The next example illustrates and important technique and therefore has
a name: Currying, after the logician Haskell Curry. Instead of a function
taking a pair as an argument we can take the two arguments in succession.
And vice versa! We express this by saying that two types are isomorphic,
written as τ ∼= σ.

(τ × σ)→ ρ ∼= τ → (σ→ ρ)

But what does a type isomorphism mean? We say τ ∼= τ ′ if there are two
functions

Forth : τ → τ ′

Back : τ ′→ τ

such that
Back ◦ Forth = λx. x = Forth ◦ Back

where we are somewhat loose at this point what we mean by function
equality.

We program the Forth and Back functions in a type-directed manner. We
show the process only once, but we recommend thinking about coding in
this general style. We have

Forth : ((τ × σ)→ ρ)→ (τ → (σ→ ρ))

We see this function takes three arguments in succession: first a function of
type (τ × σ)→ ρ, then a value of type τ followed by a value of type σ. So
we start the code with three λ-abstractions, followed by an as yet unknown
body.

Forth = λf. λx. λy.

where
f : (τ × σ)→ ρ
x : τ
y : σ

: ρ

We can see that only f produces a result of type ρ, and it requires a pair of
type τ × σ as an argument. Fortunately, we have x and y available to form
the two components of the pair. Filling everything in:

Forth : ((τ × σ)→ ρ)→ (τ → (σ→ ρ))
Forth = λf. λx. λy. f 〈x, y〉

Programming the other direction in a similar manner yields

Back : (τ → (σ→ ρ))→ ((τ × σ)→ ρ)
Back = λg. λp. case p (〈x, y〉 ⇒ g x y)

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

L7.8 Products

Let’s see if we can verify that Forth and Back compose to the identity, picking
an arbitrary direction first.

Back ◦ Forth = λf.Back (Forth f)
?
= λf. f : ((τ × σ)→ ρ)→ ((τ × σ)→ ρ)

To compare these two functions we apply them to an arbitrary value v :
(τ × σ)→ ρ and compare the result. We reason:

(λf.Back (Forth f)) v
7→ Back (Forth v)
= Back ((λf. λx. λy. f 〈x, y〉) v)
7→ Back (λx. λy.v 〈x, y〉)
= (λg. λp. case p (〈x, y〉 ⇒ g x y)) (λx. λy. v 〈x, y〉)
7→ λp. case p (〈x, y〉 ⇒ (λx′. λy′. v 〈x′, y′〉)x y)
?
= v : (τ × σ)→ ρ

In the last step we renamed some variable to avoid confusion.
Again, we are comparing two functions, this time on an argument of

type τ × σ. These two functions are the same if the return the same result if
we apply them to the pair 〈v1, v2〉 of two values v1 : τ and v2 : τ2. We use
values here because the type τ × σ is observable, and a value of this type is
a pair of two values. Then we find:

(λp. case p (〈x, y〉 ⇒ (λx′. λy′. v 〈x′, y′〉)x y)) 〈v1, v2〉
7→ case 〈v1, v2〉 (〈x, y〉 ⇒ (λx′. λy′. v 〈x′, y′〉)x y)
7→ (λx′. λy′. v 〈x′, y′〉) v1 v2
7→2 v 〈v1, v2〉
!

= v 〈v1, v2〉

The final equality is the one we wanted to check.
Checking the other direction is left to Exercise 4

7 The Unit Type

For every binary type constructor we can ask if there is a nullary version
that is its unit. So, for (eager) pairs we are looking for a type 1 such that
τ×1 ∼= τ ∼= 1×τ . This would hold, intuitively, if 1 where a type with exactly
one element.

We can also approach this from the purely formalistic perspective. A
pair is a tuple with two elements, so an element of 1 should be a tuple with

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

Products L7.9

0 elements. We write this tuple as 〈 〉 and type it with

Γ ` 〈 〉 : 1
unit

〈 〉 val
val/unit

With pairs, there is a single destructor thats extracts two components, so for
the unit type there is also a single destructor that extracts zero components.

Γ ` e : 1 Γ ` e′ : τ ′

Γ ` case e (〈 〉 ⇒ e′) : τ ′
case/unit

In the dynamics, we only reduce the new version of the case construct, since
the unit element is already a value.

e0 7→ e′0

case e0 (〈 〉 ⇒ e1) 7→ case e′0 (〈 〉 ⇒ e1)
step/case/unit0

case 〈 〉 (〈 〉 ⇒ e1) 7→ e1
step/case/unit

It is easy to verify that our theorems continue to hold, and that · ` e : 1 and
e val implies that e = 〈 〉 (as an extension of the canonical forms theorem).

The unit type is not as useless as it might appear. In C, the unit type
is called void and indicates that a function does not return a value. In a
functional language with effects, you will often see code such as

let val () = print(v)

to execute an effect and return the only value of type 1 (called unit in
Standard ML).

Let’s quickly verify that τ ∼= τ × 1. We have

Forth : τ → (τ × 1)
Forth = λx. 〈x, 〈 〉〉

Back : (τ × 1)→ τ
Back = λp. case p (〈x, y〉 ⇒ x)

We first check that Back (Forth v) = v for an arbitrary value v : τ

Back (Forth v)
= Back ((λx. 〈x, 〈 〉〉) v)
7→ Back 〈v, 〈 〉〉
= (λp. case p (〈x, y〉 ⇒ x)) 〈v, 〈 〉〉
7→ case 〈v, 〈 〉〉 (〈x, y〉 ⇒ x)
7→ v

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

L7.10 Products

For the other direction, we exploit that, by the canonical forms theorem, a
value of type v : τ × 1 must have the form v = 〈v′, 〈 〉〉:

Forth (Back 〈v′, 〈 〉〉)
= Forth ((λp. case p (〈x, y〉 ⇒ x)) 〈v′, 〈 〉〉)
7→ Forth (case 〈v′, 〈 〉〉 (〈x, y〉 ⇒ x))
7→ Forth v′

= (λx. 〈x, 〈 〉〉) v′
7→ 〈v′, 〈 〉〉
!

= v

8 Checking and Synthesis

Extending our rules for checking and synthesizing types is not straightfor-
ward, since the new case constructs require some thought. We also have to
revise our notion of neutral expression to account for the possibility of case.
The constructor is easy, in that we check it against a type as usual.

Γ ` e1 ⇐ τ1 Γ ` e2 ⇐ τ2

Γ ` 〈e1, e2〉 ⇐ τ1 × τ2
chk/pair

Γ ` 〈 〉 ⇐ 1
chk/unit

Synthesis goes from synthesizing a type for the subject of a case to the
types of the variables (which always synthesize their type), but the whole
construct is checked.

Γ ` e⇒ τ1 × τ2 Γ, x1 : τ1, x2 : τ2 ` e′ ⇐ τ ′

Γ ` case e (〈x1, x2〉 ⇒ e′)⇐ τ ′
chk/case/pair

Γ ` e⇒ 1 Γ ` e′ ⇐ τ ′

Γ ` case e (〈 〉 ⇒ e′)⇐ τ ′
chk/case/unit

There are at least two reasons why the first premise of the chk/case/pair
rule synthesized a type for e. First, if we allowed Γ ` e ⇐ τ1 × τ2, then
case 〈v1, v2〉 (〈x1, x2〉 ⇒ e′) would be allowed, but this is a redex and we
only want to check normal forms. The second reason has to do with the
algorithmic interpretation of the rules. If we look at the conclusion of the
rule, we can read off Γ, e, x1, x2, e′ and τ ′ but neither τ1 nor τ2. Therefore we
cannot invoke the checking judgment Γ ` e⇐ τ1 × τ2 because that requires
all components of the judgment (including τ1 and τ2 to be known).

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

Products L7.11

Exercises

Exercise 1 Lazy pairs, constructed as 〈|e1, e2|〉, are an alternative to the eager
pairs 〈e1, e2〉. Lazy pairs are typically available in “lazy” languages such as
Haskell. The key differences are that a lazy pair 〈|e1, e2|〉 is always a value,
whether its components are or not. In that way, it is like a λ-expression,
since λx. e is always a value. The second difference is that its destructors are
fst e and snd e rather than a new form of case expression.

We write the type of lazy pairs as τ1Nτ2. In this exercise you are asked
to design the rules for lazy pairs and check their correctness.

1. Write out the new rule(s) for e val.

2. State the typing rules for new expressions 〈|e1, e2|〉, fst e, and snd e.

3. Give evaluation rules for the new forms of expressions.

Instead of giving the complete set of new proof cases for the additional
constructs, we only ask you to explicate a few items. Nevertheless, you need
to make sure that the progress and preservation continue to hold.

4. State the new clause in the canonical forms theorem.

5. Show one case in the proof of the preservation theorem where a de-
structor is applied to a constructor.

6. Show the case in the proof of the progress theorem analyzing the
typing rule for fst e.

Exercise 2 Design the lazy unit 〈| |〉 as the nullary version of the lazy pairs
of Exercise 1. We write this type as >. Give the rules for values, typing,
and evaluation, being careful to preserve their origins as “lazy pairs with zero
components”. Prove or refute that 1 ∼= >.

Exercise 3 It is often stated that lazy pairs are not necessary in an eager
language, because we can already define τ1Nτ2 and the corresponding
constructors and destructors. Fill in this table.

τ1Nτ2 , (1→ τ1)× (1→ τ2)

〈|e1, e2|〉 ,
fst e ,

snd e ,

Explain with some counterexamples why we cannot just define τ1Nτ2 ,
τ1 × τ2. It may be helpful to refer to Exercise L6.2.

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

L7.12 Products

Exercise 4 Verify that the composition Forth ◦ Back = λg. g where Forth and
Back coerce from a curried function to its tupled counterpart.

Forth : ((τ × σ)→ ρ)→ (τ → (σ→ ρ))
Forth = λf. λx. λy. f 〈x, y〉

Back : (τ → (σ→ ρ))→ ((τ × σ)→ ρ)
Back = λg. λp. case p (〈x, y〉 ⇒ g x y)

For equality of functions, use the simple call-by-value extensionality princi-
ple that f = g : τ1→ τ2 if for every value v : τ1 we have f v = g v : τ2.

LECTURE NOTES TUESDAY, SEPTEMBER 25, 2019

	Introduction
	Constructing Pairs
	Destructing Pairs
	Summary
	Syntax
	Statics
	Dynamics

	Preservation and Progress, Revisited
	Examples
	The Unit Type
	Checking and Synthesis

