Lecture Notes on
Recursive Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 9
Tuesday, October 1, 2019

1 Introduction

Using type structure to capture common constructions available in program-
ming languages, we have built a rich set of primitives in our programming
language (see the summary in Section L8.7). Booleans turned out be repre-
sentable using generic constructions, since bool = 1 + 1. However, natural
numbers would be

nat =1+ 1+ (1+--+))

which cannot be expressed already. However, we can observe that the tail of
the sum is equal to the whole sum. That is,

nat = 1 + nat

We won’t be able to achieve such an equality, but we can achieve an isomor-
phism
nat = 1 + nat

with two functions to witness the isomorphism.

unfo
—
= 1+ nat

(_

Id
nat
d

-+

ol

Actually, unfold and fold will not be functions but language primitives be-
cause we want them to apply to a large class of recursively defined types.

LECTURE NOTES TUESDAY, OCTOBER 1, 2019

L9.2 Recursive Types

2 Recursive Types

The more general type constructor that solves recursive type equations is
written as pa. 7. Rho (p) here stands for “recursive”, « is a type variable
with scope 7. The general picture to keep in mind is that a recursive type
pce. T should be isomorphic to its unfolding [pa. 7/a]T.

unfold

po. T [pav. T/l T

=
Pl
fold
Once we have defined the fold and unfold expressions with their statics and

dynamics, we will have to check that these two types are indeed isomorphic.
As an example, consider

nat = pa. 1 + «
Does this give us the desired isomorphism? Let’s check:

nat pa.l+«
[pa. 1+ a/a](1+ a)
1+ (pa.14)

= 1+ nat

11l

So, yes, we get the desired isomorphism. Here are some other examples of
types with recursive definitions we’d like to represent in a similar manner.

Lists list T
Binary Trees tree
Binary Numbers bin

1+ (7 x list)
1 + (tree x nat x tree)
list (14 1)

1211 1R

For example, binary trees of natural numbers would then be explicitly

defined as

tree pa. 1+ (a x nat x a)

1 + (tree x nat X tree)

[

and satisfy the desired isomorphism.

3 Fold and Unfold

Let’s recall the principal isomorphism we would like to have:

LECTURE NOTES TUESDAY, OCTOBER 1, 2019

Recursive Types L9.3

Each new type we have comes with some constructors for values of the new
type and some destructors. Computation arises when a destructor meets a
constructor. According to the display above, fold should be the constructor
(because it results in something of type pa. 7), while unfold is a destructor.
Reading the types off the above desired isomorphism:

Cke:[pa.7/aT 'Fe:pa.t

fold unfold
I'Ffolde: pa.T I'F unfold e : [pav. T/a]T

We decide that fold e is a value only if e is a value. This is so that, for
example, when we write v : nat, the value v will actually directly represent
a natural number instead of some expression that might result in a natural
number (see Exercise 1)

¢ oal val/fold

fold e val

The interesting rule for stepping (usually the first one to write) is the one
where a destructor meets a constructor.

v val

step/unfold
unfold (fold v) — v

Does this rule preserve types? Let’s say we have
- F unfold (fold v) : o
By inversion (only the unfold rule could have this conclusion), we obtain
-Ffold v : pa. T
where o = [pa. 7/alT. Applying inversion again, we get
ko pa.T/alT

which is also the type of unfold (fold v). Therefore, the rule step/unfold
satisfies type preservation.

We now only need to add rules to reach values and redices, so-called
congruence riles.

— / — /
cre step/fold cre step/unfold,,

fold e — fold €’ unfold e — unfold €’

LECTURE NOTES TUESDAY, OCTOBER 1, 2019

L9.4 Recursive Types

It is a matter of checking the progress theorem and also verifying the desired
isomorphism to ensure that we now have enough rules. A student suggested

?
fold (unfold €) — e

which is eminently reasonable, but turned out to be unnecessary.

4 Examples

Before we check our desired properties, let’s write some examples on natural
numbers (in our unary representation).

nat = pa.l+«
= 14 nat
zero : nat
zero = fold (£-())
one : nat
one = fold (r - zero)
= fold (r-fold (£-()))
succ : nat— nat
succ = An.fold (r-n)
pred : nat — nat
pred = An.case (unfold n) (¢-x; = zero | r - xg = x2)

At this point we realize that we cannot write any function that recurses over
a natural number. Unlike the A-calculus, the representation here as a sum
and a recursive types only allows us to implement a case construct. This is
not a significant obstacle, since we will shortly add general recursion to our
language and then functions like addition, multiplication, exponentiation,
and greatest common divisor can be implemented simply and uniformly.

5 Preservation and Progress

We have already seen the key idea in the preservation theorem; all other
cases are simple and follow familiar patterns.

For progress, we first need a canonical form theorem. We get the new
case

LECTURE NOTES TUESDAY, OCTOBER 1, 2019

Recursive Types L9.5

(vi) If - F v : pa. 7 and v val then v = fold v’ for a value v'.

This follows, as before, by analyzing the cases for typing and values.
The critical case in the proof of progress (by rule induction on the given
typing derivation) is

-Fep:pa.T

fold
-k unfold e; : [pa. 7/alT

If e; — €] then, by rule, unfold e; — unfold €). If e; is a value, then
the canonical forms theorem tells us that e; = fold vy for some value v,.
Therefore, the step/unfold applies and unfold (fold v3) — va.

6 Isorecursive Types

The new type constructor pa. 7 we have defined is called an isorecursive type,
because we have and isomorphism

fol

o

c
=]

—
po. T i [pa. T/alT
Id

o

rather than an equality between the two types (wWhich would be equirecursive).
But is it really an isomorphism? Let’s check the two directions.

First, we need to check that unfold (fold v) = v for any value v :
[pa. T /a]T. But immediately (by rule step/unfold) we have

unfold (fold v) — v

so the two are certainly equal.
In the other direction, we need to verify that

fold (unfold v) Lo for any value v : pa. T

By the canonical forms theorem, v = fold v’ for some value v. Then we

reason
fold (unfold v)

fold (unfold (fold v"))
fold v’

(

I

So, an isorecursive type is indeed isomorphic to its unfolding.

LECTURE NOTES TUESDAY, OCTOBER 1, 2019

L9.6 Recursive Types

7 Excursion: Embedding the Untyped A-Calculus

As one of you suspected during lecture, now that we have recursive types,
perhaps we can type Az. z x, which we previously proved to have no type.
And if that works, why stop there? Why not type the Y combinator itself?
In Lecture 5 (pages L5.2-3) we convinced ourselves that A\x. x z : 73 — 7 for
any types 73 and 7 satisfying 3 = 73 — 7. That’s because x needs to take
itself as an argument.

This does not seem promising, since we still cannot solve this equation!
But we may be able to approximate it by an isomorphism. Can we find a type
U such that U = U — 72. The unspecified type 7 gets in the way, so let’s try
it with » = U. So, we have to solve

unfold
—
U = U-=U
(‘
fold

In our language, any recursive type equation has a solution (perhaps degen-
erate), so we just set
U=pa.a—a=2U—-U

Let’s try to type self-application at type U — U.

?
z:Uklbzx:U
FXxx:U—>U

lam

This still does not work, but we can unfold the type of the first occurrence of
x so it matches the type of its argument!

ar

_— v
z:Ukz:U
unfod ————— v
z:Ukrunfoldz : U —U x:Ul—x:Ua
z:UF (unfold z) z : U

|
-FAz. (unfold) x : U - U

ar
pp

am

So, lo and behold, if we are willing to insert an unfold we can now type-check
self-application.

Curious: can we do the same with the Y combinator? The answer is
yes, but let’s be even more ambitious: let’s translate the whole untyped

LECTURE NOTES TUESDAY, OCTOBER 1, 2019

Recursive Types L9.7

A-calculus into our language! We write M for untyped expressions to
distinguish them from the target language expressions e.

Untyped Exps M == x| z.M | My M,
We try to devise a translation " — " such that
™MT:U

for any untyped expression M. To be more precise, assume the untyped
expression has free variables z1, ..., z,, then we aim for

z1:U,...,xp :UF"M": U

The reason all variables have type U because in the source they stand for an
arbitrary untyped expression. We define

[P

X = T
"Az. M7 = fold (Az." M)
"My My = (unfold "M;7) TM,T

We suggest you go through these definitions and type-check them, keeping
in mind the all-important

unfold
—
U = U—-U
%
old

=h

The type-correctness of this translation means we have a very direct repre-
sentation of the whole untyped A-calculus in our language, using only a single
type U (but exploiting recursive types). Therefore, the untyped A-calculus is
sometimes referred to as the unityped A-calculus because it can be represented
with a single universal type U.

Since the Y combinator is only a particular untyped A-expression, we
can also translate it into the target.

However, there is still a fly in the ointment: even though we know the
target is well-typed, we don’t know if it behaves correctly, operationally.
Under some definitions it does not. For example, Az. 2 has no normal form,
but "Az. Q7 = fold (Azx."Q7) is a value and does not take a step. We will
discuss at a later point how to bridge this gap, which is not straightforward.

LECTURE NOTES TUESDAY, OCTOBER 1, 2019

L9.8 Recursive Types

8 Fixed Point Expressions

We have added recursive types that solve recursive type equations. But in
order to write all the programs we want (for example, on natural numbers
all the recursive functions) we also need recursively defined expressions.
The Y combinator is not directly available to us in the needed generality,
even though it can be defined at type U. Instead we add a primitive, fix f.e,
where f is a variable. It is not a value, and it steps by unrolling the fixed
point:

step/fix

fix f.e— [fix f.e/fle
This “unrolling” is quite similar to unfolding a recursive type, but at the
level of expressions. However, it is independent of recursive types and can
be applied in full generality. One particular example is fix f. f — fix f. f so
in this language we can define L = fix f. f (see Exercise L6.2). Emboldened
by this property, we imagine we might have in general

L.f || |

i
F'Hfix fie: 7 .

but there are still some holes in this typing rule.
We want preservation to hold (progress is trivial to extend, because a
fixed point always steps) so we need that

- fix f.e: 7implies - - [fix f.e/fle: T

From this we can deduce two things: first, e : 7 because that is the result of
substitution. And, second, for the substitution property to hold we need
that f : 7 so we can substitute [fix f.e/f]e. Filling in this information:

L f:r7ke:r
I'Hfix fe: 7

fix
Now we have settled both statics and dynamic and have fixed point expres-
sions available to us. For example

plus : nat — (nat — nat)
plus = fix p. \n. Ak.if (is_zero n) k (succ (p (pred n) k))

where we have seen succ and pred, and is_zero is easy to define (see Exercise 3).
We see that after one step of unrolling we have

plus — An. \k.if (is_zero n) k (succ (plus (pred n) k))

LECTURE NOTES TUESDAY, OCTOBER 1, 2019

Recursive Types L9.9

which is the intended recursive definition. We can treat for example gcd as
in Section L2.4 and Exercise L2.3.

There are a few unpleasant things about fixed point expressions. One is
that it is neither a constructor nor a destructor of any particular type, but
is applicable at any type 7. It thus violates one of the design principles of
our language that we have followed so far. We may interpret this as an
indication that recursion is a fundamental computational principle separate
from any particular typing construct, but this is not a universally held view.

The second one is that in fix f.e the variable f does not stand for a
value (like all other variables = we have used so far) but a expression (we
substitute fix f.e for f, and that’s not a value). To avoid this latter issue, in
call-by-value languages sometimes the fixed point expression is limited to
functions, as in fun f(z) = e where e can depend on both z and f.

Exercises

Exercise 1 Prove adequacy of natural number encodings in type nat.

1. Define a (mathematical) function "n " on natural numbers n such that
-F ™7 : nat and "n val.

2. Define a (mathematical) function cv1 on values v with - + v : nat
returning the number represented by v.

3. Prove that the pair of functions "—" and . —_ witness an isomorphism
between the usual (mathematical) natural numbers and closed values
of type nat.

Exercise 2 Consider the combinators Y and Z. Here Z, the call-by-value
tixed point combinator, is defined as

Z =M. (Az. f(M.zzv)) (Az. f (Av.zz0))

1. Exhibit a difference between Y and Z under that assumption that the
pure untyped A-calculus follows a call-by-value evaluation strategy.

2. Give the translation "Z™ : U into the universal type.

Exercise 3 Define is_zero : nat — bool, where you may take bool = 1+ 1 or as
a primitive with true, false, and if.

LECTURE NOTES TUESDAY, OCTOBER 1, 2019

	Introduction
	Recursive Types
	Fold and Unfold
	Examples
	Preservation and Progress
	Isorecursive Types
	Excursion: Embedding the Untyped -Calculus
	Fixed Point Expressions

