
Lecture Notes on
Elaboration

15-814: Types and Programming Languages
Frank Pfenning

Lecture 10
Thursday, October 3, 2019

1 Introduction

We have spent a lot of time analyzing and designing the essence of a pro-
gramming language, starting from first principles. The focus has been on
the statics (the type system), the dynamics (the rules for how to evaluate
programs), and understanding the relationship between them in a mathe-
matically rigorous way.

There is, of course, a lot more to a real programming language. At
the “front end” there is the concrete syntax according to which the program
text is parsed. The result of parsing is either some abstract syntax or an
error message if the program is not well-formed according to the grammar
defining its syntax. At the “back end” there are concerns about how a
language might be executed efficiently, or compiled to machine language so it
can run even faster. In this course we will say little about issues of grammar,
concrete syntax, parsers or parser generators, because we want to focus on
the deeper semantic issues where we have accumulated a lot of knowledge
about language design.

In today’s lecture we will look at elaboration, which is a translation medi-
ating between specific forms of concrete syntax and internal representation
in abstract syntax. Elaborating the program allows us to provide some
conveniences that make it easy to write and read concise programs without
giving up the sound underlying principles we have learned about in this
course so far.

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

L10.2 Elaboration

2 “Syntactic Sugar”

A simple form of elaboration is to eliminate some simple forms of “syntactic
sugar” and translate them into an internal form to simplify downstream
processing. A good example are the following definitions:

bool , (true : 1) + (false : 1)

true , true · 〈 〉
false , false · 〈 〉
if e1 then e2 else e3 , case e1 (true · _⇒ e2 | false · _⇒ e3)

Here, we used another common convention, name we use an underscore (_)
in place of a variable name if that variable does not occur in its scope (here,
this scope would be e2 for the first underscore and e3 for the second. Such a
syntactic transformation could take place before or after type checking.

3 Data Types

Consider for example, the definition of the natural numbers:

nat = ρα. (zero : 1) + (succ : α)

This is unnecessarily difficult to read because we have to remember that α
really is supposed to stands for nat on the right hand. Easier to read is

nat ∼= (zero : 1) + (succ : nat)

Moreover, the labels may sometimes be a bit awkward to use, so perhaps
we could “automatically” define

zero : 1→ nat
zero = λu. zero · u
succ : nat→ nat
succ = λn. succ · n

Notice there the difference between the function succ (in italics) and the label
succ (in typewriter font). Maybe we could even go further and eliminate
the 1→ nat because we already know that 1→ τ ∼= τ , in which case we
would obtain

zero : nat
zero = zero · 〈 〉

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

Elaboration L10.3

Finally, it would be nice if we could simplify pattern matching as well.
Instead of, for example,

pred : nat→ nat
pred = λn. case (unfold n) (zero · _⇒ zero | succ · n′ ⇒ n′)

it would be easier to read and understand if we could write
pred : nat→ nat

pred zero = zero
pred (succ n′) = n′

This would somehow only make sense if “zero” was understood not only as
a constant of type nat, but also that it corresponded to a label zero with the
same name so we can elaborate it into the case of the internal definition of
predecessor shown just before. And similarly for succ and succ.

In fact, modern functional languages such as Haskell, OCaml, or Stan-
dard ML provide syntax for data type definitions that provide essentially
the above functionality, and more. In ML we would write:

datatype nat = Zero | Succ of nat
fun pred Zero = Zero
| pred (Succ n’) = n’

In OCaml it might be

type nat = Zero | Succ of nat;;
let pred n = match n with
| Zero -> Zero
| Succ n’ -> n’;;

And Haskell:

data Nat = Zero | Succ Nat

pred :: Nat -> Nat
pred Zero = Zero
pred (Succ n’) = n’

The type we gave here for pred is optional, but it is often helpful to explicitly
state the type of a function. We should also keep in mind that the dynamics
of Zero and Succ is different in Haskell because it is a call-by-need (“lazy”)
language.

We refer to Zero and Succ as data constructors, which means they are
simultaneously functions (or constants in the case of Zero) to constructs
values of a sum, and labels so we can pattern-match against them.

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

L10.4 Elaboration

4 Generalizing Sums

Let’s recall our language so far:

Types τ ::= α | τ1→ τ2 | τ1 × τ2 | 1 | τ1 + τ2 | 0 | ρα. τ

Expressions e ::= x (variables)
| λx. e | e1 e2 (→)
| 〈e1, e2〉 | case e (〈x1, x2〉 ⇒ e′) (×)
| 〈 〉 | case e (〈 〉 ⇒ e′) (1)
| ` · e | r · e | case e (` · x1 ⇒ e1 | r · x2 ⇒ e2) (+)
| case e () (0)
| fold e | unfold e (ρ)
| f | fix f. e (recursion)

Except for functions and recursive types, the destructors are of the form
case e (. . .). We will now unify these constructs even more, replacing the
primitive unfold e by a new one, case e (fold x ⇒ e′). We can then define
Unfold as a function

Unfold : ρα. τ → [ρα. τ/α]τ

Unfold , λx. case x (fold x⇒ x)

See Exercise 3 for more on this restructuring of the language.
Streamlining our language a little bit further, we now officially generalize

the sum from binary to n-ary, allowing labels i to be drawn from a finite
index set I . The case construct for the sums then has a branch for each i ∈ I .
Our previous constructs are a special case, with τ1 + τ2 ,

∑
i∈{l,r}(i : τi) =

(l : τ1) + (r : τ2) and 0 ,
∑

i∈∅(i : τi).

Types τ ::= α | τ1→ τ2 | τ1 × τ2 | 1 |
∑

i∈I(i : τi) | ρα. τ

Expressions e ::= x (variables)
| λx. e | e1 e2 (→)
| 〈e1, e2〉 | case e (〈x1, x2〉 ⇒ e′) (×)
| 〈 〉 | case e (〈 〉 ⇒ e′) (1)
| i · e | case e (i · x⇒ e′)i∈I (

∑
)

| fold e | case e (fold x⇒ e′) (ρ)
| f | fix f. e (recursion)

Except for functions, all destructors are now case-expressions. Functions are
different because values are of the form λx. e that we cannot match against
because we assumed that they are not observable outcomes of computation.

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

Elaboration L10.5

For sums, we have the following generalized statics and dynamics. Key
is that we have to check all branches of a case expressions, and all of them
have the same type τ ′.

k ∈ I Γ ` e : τk

Γ ` k · e :
∑

i∈I(i : τi)
sum

Γ ` e :
∑

i∈I(i : τi) Γ, xi : τi ` e′i : τ ′ (for all i ∈ I)

Γ ` case e (i · xi ⇒ e′i)i∈I : τ ′
sum/case

e val
i · e val

val/sum

e 7→ e′

i · e 7→ i · e′
step/sum

e0 7→ e′0

case e0 (i · xi ⇒ e′i)i∈I 7→ case e′0 (i · xi ⇒ e′i)i∈I
step/sum/case0

k ∈ I vk val

case (k · vk) (i · xi ⇒ e′i)i∈I 7→ [vk/xk]e′k
step/sum/case

5 Nesting Case Expressions

As another example, let’s consider a function half on natural numbers that is
supposed to round down. We write it down in a pattern-matching style.

half : nat→ nat

half zero = zero
half (succ zero) = zero
half (succ (succ n′′)) = succ (half n′′)

This could be elaborated into two nested case expressions and a use of
recursion. To avoid an even deeper nesting of cases, we use Unfold as
defined in the previous section.

half = fix h. λn. case (Unfold n) (zero · _⇒ zero
| succ · n′ ⇒ case (Unfold n′) (zero · _⇒ zero

| succ · n′′ ⇒ succ (h n′′)))

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

L10.6 Elaboration

6 Example: Binary Numbers

This kind of elaboration hinted at in the previous section becomes quite
tedious and difficult to imagine when the patterns over which a functions is
defined become more complex. As an example, we introduce binary numbers.
As previously suggested, they could be implemented as lists of booleans
(list (1 + 1)), but we’d like to avoid using lists for now because they depend
on a type parameter. Instead, we define directly:

bin ∼= (E : 1) + (B0 : bin) + (B1 : bin)

E : bin
E = fold (E · 〈 〉)

B0 : bin→ bin
B0 = λx. fold (B0 · x)

B1 : bin→ bin
B1 = λx. fold (B1 · x)

The interpretation of bit strings as numbers in binary form is given by

xEy = 0
xB0 xy = 2 xxy + 0
xB1 xy = 2 xxy + 1

which means that the least significant bit of the number in binary form
comes first in the representation. For example,

6 = (110)2 = xB0 (B1 (B1 E))y

It also means that the representation of a number is not unique, because
leading zeros do not change its value. For example, xB0 Ey = xEy = 0. We
will return to this issue in a later lecture.

As a warm-up exercise, let’s define an increment function on this repre-
sentation, using pattern matching. Our specification is xinc vy = xvy + 1 for
any value v : bin.

inc : bin→ bin
inc E = B1 E
inc (B0 x) = B1 x
inc (B1 x) = B0 (inc x)

The recursive call to inc in the last case represents the carry bit. It is straight-
forward to imagine how this function could be elaborated into the current
language primitives.

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

Elaboration L10.7

Next, let’s define equality on binary numbers. It would be tempting to
write

eq : (bin× bin)→ bool

eq 〈x, x〉 = true
eq _ = false

However, pattern matching does not allow repeated variables in patterns.
The principal reason is that this means the complexity of matching even
against a single pattern is O(n), where n is the size of the data structure
matching against. A second reason is that the type of the variable we are
matching against is, say, a function type, we cannot even determine equality.
And finally, even types for which their structural equality could be defined,
it is often the wrong kind of equality. This is actually the case here: because
leading zeros do not change the represented value, our equality function is
trickier than we might expect. Here is one way to write it:

eq : (bin× bin)→ bool

eq 〈E,E〉 = true
eq 〈B0 x,B0 y〉 = eq 〈x, y〉
eq 〈B1 x,B1 y〉 = eq 〈x, y〉
eq 〈B0 x,E〉 = eq 〈x,E〉
eq 〈E,B0 y〉 = eq 〈E, y〉
eq _ = false

Elaborating this kind of pattern match into our explicit internal forms is
quite tricky. For example, the last catch-all pattern _ (which stands for
any variable p) must indeed come last. If we had put it first, the pattern
match would have been incorrect because it would always return false. So
even before we could write complicated elaboration rules, general pattern
matching is complicated enough that we should design a formal statics and
dynamics.

7 General Pattern Matching

We now unify all the different case expressions into a single one. For this,
we need two new categories of syntax: branches B and patterns p. Patterns
are either variables, or value constructors for one of types (omitting only

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

L10.8 Elaboration

functions).

Expressions e ::= x | 〈e1, e2〉 | 〈 〉 | i · e | fold e | f | fix f. e | case e B
Patterns p ::= x | 〈p1, p2〉 | 〈 〉 | i · p | fold p
Branches B ::= · | (p⇒ e | B)

Because we have new forms of expression, there will also be new judgments
for typing the constructs. Let’s see what these might be by starting with the
rule for case expressions.

Γ ` e : τ Γ ` τ . B : σ

Γ ` case e B : σ
case

The new judgment here is
Γ ` τ . B : σ

We read this as

Match a case subject of type τ against the branches B, each of which
must have type σ.

The reason all branches must have the same type is the same as for the
conditional or branching over a sum: we don’t know which branch will be
taken when the programs runs. Each pattern in B should match the type τ .
Because there are two alternatives for branches in the syntax, we have two
typing rules for branches.

Γ ` τ . · : σ
branch/none

Γ ; (p : τ) ` e : σ Γ ` τ . B : σ

Γ ` τ . (p⇒ e | B) : σ
branch/alt

We see that to check a single branch p ⇒ e we also need a new judgment.
We want to check that p : τ , but p contains variables that may occur in e so
we also want to create these assumptions. We do this with a new judgment

Γ ; Φ ` e : σ

where Φ consists of a sequence of assumptions about patterns

Φ ::= · | (p : τ) Φ

In the rule above, we always start it as a singleton, but it becomes more
complicated as we build its derivation. The simplest case is that for variables,
which we just move to Γ. And if the pattern context is empty, we revert back

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

Elaboration L10.9

to the usual typing judgment because we have successfully extracted a type
for all the variables in the original pattern p.

x : _ 6∈ Γ Γ, x : τ ; Φ ` e : σ

Γ ; (x : τ) Φ ` e : σ
pat/var

Γ ` e : σ

Γ ; · ` e : σ
pat/none

In the other cases we do two things: we check that the type matches the
pattern at the outer level, and also decompose it to check all component
patterns.

Γ ; (p1 : τ1) (p2 : τ2) Φ ` e : σ

Γ ; (〈p1, p2〉 : τ1 × τ2) Φ ` e : σ
pat/pair

Γ ; Φ ` e : σ

Γ ; (〈 〉 : 1) Φ ` e : σ
pat/unit

k ∈ I Γ ; (p : τk) Φ ` e : σ

Γ ; (k · p :
∑

i∈I(i : τi)) Φ ` e : σ
pat/sum

Γ ; (p : [ρα. τ/α]τ) Φ ` e : σ

Γ ; (fold p : ρα. τ) Φ ` e : σ
pat/fold

We have written Φ as an ordered sequence rather than a set so that the
next step in breaking down Φ in the judgment Γ ; Φ ` e : σ is uniquely
determined.

Are these new rules syntax-directed? They are! There is one rule for
case expression, then one for the empty branches and one to check the first
branch. In the Γ ; Φ ` e : σ judgment there is exactly one rule for each form
of Φ for each nonempty Φ exactly one rule for each kind of pattern.

As an example, let’s return to the equality function on binary numbers.

eq : (bin× bin)→ bool

eq 〈E,E〉 = true
eq 〈B0 x,B0 y〉 = eq 〈x, y〉
eq 〈B1 x,B1 y〉 = eq 〈x, y〉
eq 〈B0 x,E〉 = eq 〈x,E〉
eq 〈E,B0 y〉 = eq 〈E, y〉
eq _ = false

This is elaborated into something like

eq = fixf. λp. case p (〈fold (E · 〈 〉), fold (E · 〈 〉)〉 ⇒ true · 〈 〉
| 〈fold (B0 · x), fold (B0 · y)〉 ⇒ f 〈x, y〉
| . . .)

We typecheck the case with

Γ0 ` p : bin× bin Γ0 ` bin× bin . B0 : bool

Γ0 ` case p B0 : τ ′
case

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

L10.10 Elaboration

where
Γ0 = (f : (bin× bin)→ bool, p : bin× bin)
B0 = (〈fold (E · 〈 〉), fold (E · 〈 〉)〉 ⇒ true · 〈 〉

| 〈fold (B0 · x), fold (B0 · y)〉 ⇒ f 〈x, y〉
| . . .)

Let’s look at how to type-check the second branch of B0. We have to check

?
Γ0 ; (〈fold (B0 · x), fold (B0 · y)〉 : bin× bin) ` f 〈x, y〉 : bool

If we abbreviate

σ0 = (E : 1) + (B0 : bin) + (B1 : bin)

we go through the following inferences

Γ0, x : bin, y : bin ` f 〈x, y〉 : bool

Γ0, x : bin, y : bin ; · ` f 〈x, y〉 : bool
pat/none

Γ0, x : bin ; (y : bin) ` f 〈x, y〉 : bool
pat/var

Γ0, x : bin ; (B0 · y : σ0) ` f 〈x, y〉 : bool
pat/sum

Γ0, x : bin ; (fold (B0 · y) : bin) ` f 〈x, y〉 : bool
pat/fold

Γ0 ; (x : bin) (fold (B0 · y) : bin) ` f 〈x, y〉 : bool
pat/var

Γ0 ; (B0 · x : σ0) (fold (B0 · y) : bin) ` f 〈x, y〉 : bool
pat/sum

Γ0 ; (fold (B0 · x) : bin) (fold (B0 · y) : bin) ` f 〈x, y〉 : bool
pat/fold

Γ0 ; (〈fold (B0 · x), fold (B0 · y)〉 : bin× bin) ` f 〈x, y〉 : bool
pat/pair

We have highlighted the active part of the pattern context Φ (where the
inference rule is applied) in red and the rest of the pattern context in blue.
At the top we arrive back at the usual typing judgment. You should convince
yourself that this correctly extracts the assumptions x : bin and y : bin from
the pattern.

8 Dynamics of Pattern Matching

The dynamics now also has to deal with pattern matching, and up to a
certain point it seems less complicated. When we actually match a value v
against a pattern p, this match either has to fail or return to us a substitution

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

Elaboration L10.11

η for all the variables in p. We write this as either v = [η]p or “there is no
η with v = [η]p”. This η is a simultaneous substitution for all the variables
in p which we write as (v1/x1, . . . , vn/xn). Matching proceeds sequentially
through the patterns. If it reaches the end of the branches and no case has
matched, it transitions to MatchException, which is a new possible outcome
of a computation.

e0 7→ e′0

case e0 B 7→ case e′0 B
step/case0

v val v = [η]p

case v (p⇒ e | B) 7→ [η]e
step/case/match

v val there is no η with v = [η]p

case v (p⇒ e | B) 7→ case v B
step/case/nomatch

v val
case v (·) 7→ MatchException

step/case/none

If we allow MatchException to have every possible type, then the preserva-
tion theorem still goes through. But since MatchException cannot be a value,
the progress theorem now has to change: a closed well-typed expression
either can take a step or is a value or raises a match exception.

This may be somewhat unsatisfactory because the slogan “well-typed
programs do not go wrong” no longer applies in its purest form. However, the
progress theorem (once carefully spelled out) still characterizes the possible
outcomes of computations exactly.

In order to avoid this unpleasantness, in Standard ML (SML) it is as-
sumed that pattern matches are exhaustive. If the compiler determines that
a given set of patterns is not, it adds a catch-all final branch at the end.
However, this branch reads “_⇒ raise Match” (exploiting the presence of
exceptions in SML) which is therefore no different from the semantics we
gave above.

We will complete the discussion of pattern matching and exceptions in
the next lecture.

Exercises

Exercise 1 It is often intuitive to define types in a mutually recursive way.
As a simple example, consider how to define binary numbers in standard

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

L10.12 Elaboration

form, that is, not allowing leading zeros. We define binary numbers in stan-
dard form (std) mutually recursively with strictly positive binary numbers
(pos).

std ∼= (E : 1) + (B0 : pos) + (B1 : std)
pos ∼= (B0 : pos) + (B1 : std)

1. Using only std, pos, and function types formed from them, give all
types of E, B0, and B1 defined as follows:

E = fold (E · 〈 〉)

B0 = λx. fold (B0 · x)

B1 = λx. fold (B1 · x)

2. Define the types std and pos explicitly in our language using the ρ type
former so that the isomorphisms stated above hold.

3. Does the function inc from Section 6 have type std→ pos? Rewrite it
in the syntax from Section 4, where you may use the function Unfold
(defined in that section and also in Exercise 3). Then either explain
where the typing fails or indicate that it has that type. You do not need
to write out a typing derivation.

4. Write a function pred : pos → std that returns the predecessor of a
strictly positive binary number. You may use pattern matching to
define your function, but you must make sure it is correctly typed.

Exercise 2 It is often convenient to define functions by mutual recursion.
As a simple example, consider the following two functions on bit strings
determining if it has even or odd parity.

bin ∼= (E : 1) + (B0 : bin) + (B1 : bin)

even : bin→ bool
odd : bin→ bool

even E = true
even (B0 x) = even x
even (B1 x) = odd x

odd E = false
odd (B0 x) = odd x
odd (B1 x) = even x

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

Elaboration L10.13

1. Write a function parity with a single fixed point constructor and use it
to define even and odd. You may use pattern matching, but the pattern
of recursion (and the fact you only need one fixed point) should be
clear. Also, state the type of your parity function explicitly.

2. More generally, our simple recipe for implementing a recursively
specified function using the fixed point constructor in our call-by-
value language goes from the specification

f : τ1→ τ2
f x = h f x

to the implementation

f = fix g. λx. h g x

It is easy to misread these, so remember that by our syntactic conven-
tion, h f x stands for (h f)x and similarly for h g x. Give the type of
h and show by calculation that f satisfies the given specification by
considering f v for an arbitrary value v of type τ1.

3. A more general, mutually recursive specification would be

f : τ1→ τ2
g : σ1→ σ2
f x = h1 f g x
g y = h2 f g y

Give the types of h1 and h2.

4. Show how to explicitly define f and g in our language from h1 and
h2 using the fixed point constructor and verify its correctness by cal-
culation as in part 2. You may use any other types in the language
introduced so far (pairs, unit, sums, and recursive types).

Exercise 3 In the language where the primitive unfold has been replaced by
pattern matching, we can define the following two functions:

Unfold : ρα. τ → [ρα. τ/α]τ
Unfold = λx. case x (fold x⇒ x)

Fold : [ρα. τ/α]τ → ρα. τ
Fold = λx. fold x

Prove that Fold and Unfold are witnessing a type isomorphism.

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

L10.14 Elaboration

Exercise 4 Design a collection of inference rules for bidirectional type-
checking in the language with general pattern matching. As before, we
expect checking to either succeed or fail and synthesis to either return a
unique type or fail. One key question will be how to interpret the new
judgments Γ ` τ . B : σ and Γ ; Φ ` e : σ or, if that is not possible, how to
restructure them.

For simplicity, you only need to write out the rules for functions τ1→ τ2
and general sums

∑
i∈I(i : τi), omitting products, unit, and recursive types.

LECTURE NOTES THURSDAY, OCTOBER 3, 2019

	Introduction
	``Syntactic Sugar''
	Data Types
	Generalizing Sums
	Nesting Case Expressions
	Example: Binary Numbers
	General Pattern Matching
	Dynamics of Pattern Matching

