Lecture Notes on
Exceptions

15-814: Types and Programming Languages
Frank Pfenning

Lecture 11
Tuesday, October 8, 2019

1 Introduction

In the previous lecture we introduced general pattern matching, which
naturally led to considering an exception if no branch matched. In this lec-
ture we continue our investigation of pattern matching and also exceptions.
As always, we consider statics and dynamics and the important theorems
showing that they cohere. Before that, we’ll complete our discuss of pattern
matching.

2 Dynamics of Pattern Matching

We recall the critical rule in the dynamics of pattern matching, where we
make a small change in case there is no match: instead of simply stating
that we have a MatchException we actually raise the exception Match. We

LECTURE NOTES TUESDAY, OCTOBER 8, 2019

L11.2 Exceptions

postpone further discussion of this to the next section.

ep — €,
step/case,,
case ey B+ case ¢ B
voal v=[nlp
step/case/match

casev (p = e | B) — [ne

voal thereis no n with v = [n]p

step/case/nomatch
casev (p=e| B) > casev B

v val

. step/case/none
case v (+) — raise Match

The two rules step/case/match and step/case/nomatch are distinguished by
whether or not there is a simultaneous substitution 7 for all the variables in
the pattern p such that v = [n]p. This raises the excellent question if we can
actually decide between these two rules and how to effectively compute the
substitution.

We define a (simultaneous, dropping this adjective from now on) substi-
tution 7 of values for variables. As for contexts, the variables v; must all be
distinct.

Substitution 7 = (vi/x1,...,0,/%y)

Following our general strategy to communicate via inferences rules, we now
define a judgment

v=[nlp

Declaratively, it means that applying 7 to p yields v. Algorithmically, we
assume we are given v and p and try to compute 7, if it exists, or fail
otherwise. So, viewed as an algorithm the rules take a (closed) value v and
a pattern p and compute an optional 7). The easiest case are variables.

match /var
v=[v/z]x

Algorithmically, matching a value v against a variable x yields the singleton
substitution v/x.

For pairs, both the value and the pattern must be pairs, and the com-
ponents must again match. Note that typing (discussed below) should

LECTURE NOTES TUESDAY, OCTOBER §, 2019

Exceptions L11.3

guarantee that both the value and the pattern have this form.

v = [771]951 V2 = [772]$2

match/prod
(v, v2) = [, m2) (@1, 22)

Algorithmically, this makes sense. In the conclusion, we are given (vy, v2)
and (pi,p2) so the premises have the right information to either fail (in
which case we also have no match) or compute 7; and 75.

But we need to be concerned about whether the two substitutions 7; and
72 might have a variable in common, in which case (71, 72) would violate
our presupposition that all variables are distinct. Fortunately, we assumed
earlier that the variables in a pattern must all be distinct, usually stated as
“patterns are linear”. This is implied in the following crucial typing rule for
patterns:

z:_¢l Dx:7;PFe:0o

F;(z:7)®Pke:o

pat/var

Typing with a pattern context ® would eventually fail if a variable occurred
more than once. Because the variables are already in the context, we cannot
simply rename them in the same way we do for bound variable, say, in the
rule for A-abstraction.

The remaining rules are now straightforward.

——— match/unit v =l match /rec
(=110 fold v = [](fold p)
- UU::[L] 21) match/sum

The match/sum rule is the only one that can fail if the value v and pattern p
have the same type, which you can derive from the canonical form theorem.
The way it would fail is if the label in the value did not match the label in
the pattern. This is of course the point and the core of pattern matching.
Now it should be clear that the two conditions for the rules step/case/match

and step/case/nomatch in the dynamics can be effectively decided by the
algorithmic interpretation of these rules. So we can execute our dynamics.
Moreover, the expense of matching is linear in the size of the pattern, since
we only have to break down the values to the extent prescribed by the
pattern. If we had nonlinear patterns, then matching, for example, (v1,v2)
against (z,z) would require deciding v; = v2. Besides the fact that this
make no sense for functions, it is also a linear time in the size of the values.

LECTURE NOTES TUESDAY, OCTOBER 8, 2019

L11.4 Exceptions

3 Preservation for Pattern Matching

From looking at the rules for substitution and considering the typing of
the collected variables, we see that a substitution 7 is typed by a context I,
written as 7 : I, requiring that for each v/x in 1), the value v has the type
prescribed by z : 7in I".

voal -Fwv:T
———————— subst/var

(v/x): (2 :7) (): ()
m Ty ne:Te dom(lp) Ndom(Ty) =0
(m1,7m2) = (I'1, I'2)

subst/empty

subst/join

Here, we made the disjointness conditions explicit, writing dom(I') = {z |
x : _ € I'}. This notation arises from the view of I" as a function from
variables to their types. With this definition, we get the following version of
the substitution property.

Theorem 1 (Simultaneous Substitution)
Ifn:TandT k- e:othen -+ [ne:o

We prove this by generalizing to allow I',T' F e : ¢, yielding I - []e : o
and then proceeding by rule induction on the typing derivation of e.
Now we are (almost) ready for the preservation theorem.

Theorem 2 (Type Preservation, for Pattern Matching)
If-Fe:oande— e then-+eé :o

Proof: As before, by rule induction on e — ¢, applying inversion on - - e.

Case:

ey — €

step/case,
/
case g B — case ey B

Straightforward: by inversion we obtain a type 7 of eg which is pre-
served by induction hypothesis. From that we can type ¢'.

Case:

voal v =[np

step/case/match
case v (p = e1 | B) — [n]e

LECTURE NOTES TUESDAY, OCTOBER 8§, 2019

Exceptions L11.5

Case:

Case:

This is the most interesting case. There is one typing rule of case,
which, by inversion, must have the form

‘Fv:r Fro(p=e1|B):o

case
I'kcasev(p=e1|B):o

We again apply inversion to the second premise, whose typing deriva-
tion must look like

s(p:7)Feg:0 -FT>B:o

branch/alt
‘Fro(p=e1|B):o

Assembling the relevant information, we have

v val

ot
v=nlp
s(p:m)kFer:o

To Show: - - [n]e; : o

We would get this from simultaneous substitution (Theorem 1) if the
information we have implied that there exists a I such that n : IT”
and I - e; : 0. This is indeed the case, but is a bit painful to show
because of the way we defined I' ; ® - e : 0. Inductively, we have a
substitution v; = [n;/x;]p; for every p; : 7, € ® with v; : 7, which give
use the above property. We do not formalize this further, but see the
remark after this proof.

voal thereis no n with v = [n|p

step/case/nomatch
casev (p = ey | B) — casev B

This follows by two inversions on the giving typing derivation fol-
lowed by a reapplication of the tp/case rule.

v val

: step/case/none
case v () + raise Match

Here we realize that we need a type for raise Match. But this expression
is not a value and never returns a value, so like L it can have any type
(see the next section). Therefore the type is preserved trivially.

LECTURE NOTES TUESDAY, OCTOBER 8, 2019

L11.6 Exceptions

O

From the proof we need

——— tp/raise
I'traise B : 1 P/

where I is an arbitrary exception. So far, we only have Match but will
consider more in the next section.

Also, we realize we would have been better off if our typing rules for a
branch in a pattern match had been:

IMkp:7 INI"kFe:o T'H7>B:o
'Fro(p=e|B):o

branch/alt’

where I" I+ p : 7 forces each variable in I to have exactly one occurrence in p.
But since we made this decision in the last lecture, we leave this exploration
to Exercise 1.

4 Progress for Pattern Matching

We can immediately see that the progress theorem will have to be modi-
tied, since the outcome of a computation could be either a value or a raise
exception, when no pattern applies. We could avoid this superficially, for
example, by simply requiring that the patterns are always exhaustive, that
is, capture all the possible values of the given type. In practice, though,
we often have property we know but the type system does not understand
which make some cases impossible. So, like some compiler, one could al-
ways add a “catch-all” case at the end that would raise an exception. But
this then also requires us to treat exceptions in the language. Instead of
raising an exception, we could also just not terminate using fix f. f or L (as
introduced in Exercise L6.2), but from a pragmatic perspective this would
be unfortunate.

The good news is that the rest of the progress theorem follows entirely
familiar patterns, so we are moving on to the treatment of exceptions.

5 Progress for Exceptions

We are aiming at the following version of the progress theorem.

LECTURE NOTES TUESDAY, OCTOBER §, 2019

Exceptions L11.7

Theorem 3 (Progress with Exceptions, v1) If - - e : 7 then
(i) either e — €’ for some €',
(ii) or e val,

(iii) or e = raise E for an exception E.
Here we imagine that we extended the syntax of expressions

Expressions e := ...|casee B |raise E
Exceptions FE := Match|...

where there may be other (for now unspecified) exceptions such as DivByZero.

Trying to prove this will uncover the fact that, currently, this theorem
is false for our language. Consider, as a simple example, (raise Match, ()).
This has type 7 x 1 for any 7, and yet it is stuck: it can not transition, it is not
a value, and it is not of the form raise E. To remedy this shortcoming, we
need to add rules to the dynamics to propagate an exception to the top level.
This is awkward, because we need to do it for every kind of expression we
already have! This is a shortcoming of this particular style of defining the
dynamics of our language, compounded by the fact that exceptions are a
control construct, in some sense unrelated to our type structure.

We only show the rules for pairs.

step/pair/raise step/pair/raise
(raise F,e) — raise E ! (v, raise E') — raise E ?

. step/case/raise
case (raise E') B + raise E

It is insignificant here whether we have general pattern matching, or pattern
matching specialized to pairs as in earlier versions of our language.
Now we can prove the progress theorem as usual.

Proof: (Progress with Exceptions, Theorem 3) By rule on induction on the
derivation of - I~ e : 7. In comparison with earlier proofs, when we apply
the induction hypothesis we obtain three cases to distinguish. In case a
subexpression raises an exception, the expression does as well (as long as it
is not a value) because we have added enough rules to propagate exception
to the top level. O

LECTURE NOTES TUESDAY, OCTOBER 8, 2019

L11.8 Exceptions

6 Catching Exceptions

Most languages allow programs not only to raise exceptions but also to catch
them. Let’s consider the simplest such construct, try e; e2. The intention is
for it to evaluate e; and return its value if that is successful. If it raises an
exception, evaluate e instead. This time, we begin with the dynamics.

/
€1 € vy val
—— step/tryg ————— step/try/success
try e1 e — try e; e2 try v1 e2 = 11
step/try/fail

try (raise E) ea — e

What type do we need to assign to try e; ep in order to guarantee type
preservation. We start with what we know:

T'Ftrye; e

tp/try

We should be able to “try” an expression of arbitrary type 7, so

The :r rkeQ;I:|

Because of the rule step/try/success, the type of the overall expression needs
to be equal to 7 as well.

The :r erQ;I:|

FFtryeieo: T

tp/try

tp/try

Finally, in case e; fails we step to ez, so we also must have ey : 7.

I'ter:m T'hey: 7
I'Htryeres:m

tp/try

One issue here is that in e we cannot tell which exception may have been
raised, even if we may want to take different actions for different exceptions.
That is, we would like to be able to match against different exceptions. The

LECTURE NOTES TUESDAY, OCTOBER §, 2019

Exceptions L11.9

generalizations do not introduce any new ideas, so we leave it to Exercise 2
to work out the details.

Exceptions in this lecture and Exercise 2 are not first class, which means
that exceptions are not values. This in turn means that functions cannot
take exceptions as arguments or return them as well. If we want exceptions
to carry values (for example, error messages) then either exceptions and
expression will be mutually recursive syntactic classes, or we lift exceptions
and make them first class. The merits of this approach are debatable, but its
formalization is not much more difficult than what we have already done
(see [Har16, Chapter 29]).

Exercises

Exercise 1 We would like I I p : 7 (as introduced at the end of Section 3)
to express that I" F p : 7 but also that every variable in I'" has exactly one
occurrence in p.

1. Define the judgment I'" I~ p : 7 by inference rule so it has the stated
properties. In additional your rules should have the following algo-
rithmic interpretation: Given p and T either compute I or fail.

2. Redo the case for the rule step/case/match in the proof of preserva-
tion (Theorem 2) using the following alternative rule for typing an
alternative in a branch expression:

I'ktp:7 ILTVFe:o T'HT>B:o
'Fro(p=e|B):o

branch/alt’

Carefully state any additional lemmas you might need over and above
simultaneous substitution (Theorem 1).

Exercise 2 We would like to generalize the try construct to so it can branch
on the exception that may have raised. So we have

Expressions e u= ...|raiseE|tryeM
Exceptions E == Match | DivByZero | ...
Exception Handlers M := -|(E=¢e|M)

Note that exception handlers are not already covered by regular pattern
matching, because exceptions are neither values nor patterns.

LECTURE NOTES TUESDAY, OCTOBER 8, 2019

L11.10 Exceptions

1. Write out typing rules for the generalized try construct and exception
handlers.

2. Write out the dynamics for the new constructs. Exception handlers
should be tried in order.

You do not have to prove preservation or progress, but you should make sure
your rules posses these properties (when taken together with the language
we have developed in the course so far).

References

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

LECTURE NOTES TUESDAY, OCTOBER 8§, 2019

	Introduction
	Dynamics of Pattern Matching
	Preservation for Pattern Matching
	Progress for Pattern Matching
	Progress for Exceptions
	Catching Exceptions

