
Lecture Notes on
The K Machine

15-814: Types and Programming Languages
Frank Pfenning

Lecture 12
Thursday, October 10, 2019

1 Introduction

After examining an exceedingly pure, but universal notion of computation
in the λ-calculus, we have been building up an increasingly expressive
language including recursive types. The standard theorems to validate
the statics and dynamics are progress and preservation, relying also on
canonical forms. We have also seen the generic principles such as recursion
and exceptions can be integrated into our language elegantly, with the
necessary modifications of the progress theorem. We have also seen that the
supposed opposition of dynamic and static typing is instead just a reflection
of breadth of properties we would like to enforce statically, and the supposed
opposition of eager (strict) and lazy constructors is just a question of which
types we choose to include in our language.

At this point we briefly turn our attention to defining the dynamics of
the constructs at a lower level of abstraction that we have done so far. This
introduces some complexity in what we call “dynamic artifacts”, that is,
objects beyond the source expressions that help us describe how programs
execute. In this lecture, we show the K machine in which a stack is made
explicit. This stack can also be seen as a continuation, capturing everything
that remains to be done after the current expression has been evaluated. At
the end of the lecture we show an elegant high-level implementation of the
K machine in Haskell.

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

L12.2 The K Machine

2 Introducing the K Machine

Let’s review the dynamics of functions.

λx. e val
val/lam

e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

v1 val e2 7→ e′2

v1 e2 7→ v1 e
′
2

step/app2

(λx. e′1) v2 7→ [v2/x]e′1
step/beta

The rules step/app1 and step/app2 are congruence rules: they descend into an
expression e in order to find a redex, (λx. e′1) v2 in this case. The reduction
rule step/beta is the “actual” computation step, which takes place when a
constructor (here: λ-abstraction) is met by a destructor (here: application).

The rules for all other forms of expression follow the same pattern. The
definition of a value of the given type guides which congruence rules are
required. Overall, the preservation and progress theorems verify that a
particular set of rules for a type constructor was defined coherently.

In a multistep computation

e0 7→ e1 7→ e2 7→ · · · 7→ en = v

each expression ei represents the whole program and v its final value. This
makes the dynamics economical: only expressions are required when defin-
ing it. But a straightforward implementation would have to test whether
expressions are values, and also find the place where the next reduction
should take place by traversing the expression using congruence rules.

It would be a little bit closer to an implementation if we could keep track
where in a large program we currently compute. The key idea needed to
make this work is to also remember what we still have to do after we are done
evaluating the current expression. This is the role of a continuation (read: “how
we continue after this”). In the particular abstract machine we present, the
continuation is organized as a stack, which appears to be a natural data
structure to represent the continuation.

The machine has two different forms of states

k . e evaluate e with continuation k
k / v return value v to continuation k

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

The K Machine L12.3

In the second form, we will always have v val. We call this an invariant or
presupposition and we have to verify that all transition rules of the abstract
machine preserve this invariant.

As for continuations, we’ll have to see what we need as we develop the
dynamics of the machine. For now, we only know that we will need an
initial continuation or empty stack, written as ε.

Continuations k ::= ε | . . .

In order to evaluate an expression, we start the machine with

ε . e

and we expect that it transitions to a final state

ε / v

if and only if e 7→∗ v. Actually, we can immediately generalize this: no
matter what the continuation k, we want evaluation of e return the value of
e to k:

For any continuation k, expression e and value v,
k . e 7→∗ k / v iff e 7→∗ v

We should keep this in mind as we are developing the rules for the K
machine.

3 Evaluating Functions

Just as for the usual dynamics, the transitions of the machine are organized
by type. We begin with functions. An expression λx. e is a value. Therefore,
it is immediately returned to the continuation.

k . λx. e 7→ k / λx. e

It is immediate that the theorem we have in mind about the machine is
satisfied by this transition.

How do we evaluate an application e1 e2? We start by evaluating e1 until
it is a value, then we evaluate e2, and then we perform a β-reduction. When
we evaluate e1 we have to remember what remains to be done. We do this
with the continuation

(_ e2)

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

L12.4 The K Machine

which has a blank in place of the expression that is currently being evaluated.
We push this onto the stack, because once this continuation has done its
work, we still need to do whatever remains after that.

k . e1 e2 7→ k ◦ (_ e2) . e1

When the evaluation of e1 returns a value v1 to the continuation k ◦ (_ e2)
we evaluate e2 next, remembering we have to pass the result to v1.

k ◦ (_ e2) / v1 7→ k ◦ (v1 _) . e2

Finally, when the value v2 of e2 is returned to this continuation we can carry
out the β-reduction, substituting v2 for the formal parameter x in the body e′1
of the function. The result is an expression that we then proceed to evaluate.

k ◦ ((λx. e′1) _) / v2 7→ k . [v2/x]e′1

The continuation for [v2/x]e′1 is the original continuation of the application,
because the ultimate value of the application is the ultimate value of [v2/x]e′1.

Summarizing the rules pertaining to functions:

k . λx. e 7→ k / λx. e
k . e1 e2 7→ k ◦ (_ e2) . e1

k ◦ (_ e2) / v1 7→ k ◦ (v1 _) . e2
k ◦ ((λx. e′1) _) / v2 7→ k . [v2/x]e′1

And the continuations required:

Continuations k ::= ε
| k ◦ (_ e2) | k ◦ (v1 _)

4 A Small Example

Let’s run the machine through a small example,

((λx. λy. x) v1) v2

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

The K Machine L12.5

for some arbitrary values v1 and v2.

ε . ((λx. λy. x) v1) v2
7→ ε ◦ (_ v2) . (λx. λy. x) v1
7→ ε ◦ (_ v2) ◦ (_ v1) . λx. λy. x
7→ ε ◦ (_ v2) ◦ (_ v1) / λx. λy. x
7→ ε ◦ (_ v2) ◦ ((λx. λy. x) _) . v1
7→∗ ε ◦ (_ v2) ◦ ((λx. λy. x) _) / v1
7→ ε ◦ (_ v2) . λy. v1
7→ ε ◦ (_ v2) / λy. v1
7→ ε ◦ ((λy. v1) _) . v2
7→∗ ε ◦ ((λy. v1) _) / v2
7→ ε . v1
7→∗ ε / v1

If v1 and v2 are functions, then the multistep transitions based on our desired
correctness theorem are just a single step each.

We can see that the steps are quite small, but that the machine works as
expected. We also see that some values (such as v1) appear to be evaluated
more than once. A further improvement of the machine would be to mark
values so that they are not evaluated again.

5 Eager Pairs

Functions are lazy in the sense that the body of a λ-abstraction is not eval-
uated, even in a call-by-value language. As another example we consider
eager pairs τ1 × τ2. In lecture we actually did sums, but the same pattern
emerges for both. Recall the rules:

v1 val v2 val

〈v1, v2〉 val
val/pair

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

v1 val e2 7→ e′2

〈v1, e2〉 7→ 〈v1, e′2〉
step/pair2

e0 7→ e′0

case e0 (〈x1, x2〉 ⇒ e) 7→ case e′0 (〈x1, x2〉 ⇒ e)
step/case/pair0

v1 val v2 val

case 〈v1, v2〉 (〈x1, x2〉 ⇒ e) 7→ [v1/x1, v2/x2]e
step/case/pair

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

L12.6 The K Machine

We develop the rules in a similar way. Evaluation of a pair begins by
evaluating the first component.

k . 〈e1, e2〉 7→ k ◦ 〈_, e2〉 . e1

When the value is returned, we start with the second component.

k ◦ 〈_, e2〉 / v1 7→ k ◦ 〈v1,_〉 . e2

When the second value is returned, we can immediately form the pair (a
new value) and return it to the continuation further up the stack.

k ◦ 〈v1,_〉 / v2 7→ k / 〈v1, v2〉

For a case expression, we need to evaluate the subject of the case.

k . case e0 (〈x1, x2〉 ⇒ e) 7→ k ◦ case _ (〈x1, x2〉 ⇒ e) . e0

When e0 has been evaluated, a pair should be returned to this continuation,
and we can carry out the reduction and continue with evaluating e after
substitution.

k ◦ case _ (〈x1, x2〉 ⇒ e) / 〈v1, v2〉 7→ k . [v1/x1, v2/x2]e

To summarize:

k . 〈e1, e2〉 7→ k ◦ 〈_, e2〉 . e1
k ◦ 〈_, e2〉 / v1 7→ k ◦ 〈v1,_〉 . e2
k ◦ 〈v1,_〉 / v2 7→ k / 〈v1, v2〉

k . case e0 (〈x1, x2〉 ⇒ e) 7→ k ◦ case _ (〈x1, x2〉 ⇒ e) . e0
k ◦ case _ (〈x1, x2〉 ⇒ e) / 〈v1, v2〉 7→ k . [v1/x1, v2/x2]e

Continuations k ::= ε
| k ◦ (_ e2) | k ◦ (v1 _) (→)
| k ◦ 〈_, e2〉 | k ◦ 〈v1,_〉 | k ◦ case _ (〈x1, x2〉 ⇒ e) (×)

6 Typing the K Machine

We postpone a correctness proof for the K machine to the beginning of next
lecture. For now, we study the statics of the machine.

In general, it is informative to maintain static typing to the extent possible
when we transform the dynamics. If there is a new language involved we
might say we have a typed intermediate language, but even if in the case of the

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

The K Machine L12.7

K machine where we still evaluate expressions and just add continuations,
we still want to maintain typing.

We type a continuation as receiving a value of type τ and eventually
producing the final answer for the whole program of type σ. That is, k ÷
τ ⇒ σ. Continuations are always closed, so there is no context Γ of free
variables. We use a different symbol ÷ for typing and⇒ for the functional
interpretation of the continuation so there is no confusion with the usual
notation.

The easiest case is

ε÷ τ ⇒ τ

since the empty continuation ε immediately produces the value that it is
passed as the final value of the computation.

We consider k ◦ (_ e2) in some detail. This is a continuation that takes a
value of type τ2→ τ1 and applies it to an expression e2 : τ2. The resulting
value is passed to the remaining continuation k. The final answer type of
k ◦ (_ e2) and k are the same σ. Writing this out in the form of an inference
rule:

k ÷ τ1 ⇒ σ · ` e2 : τ2

k ◦ (_ e2)÷ (τ2→ τ1)⇒ σ

The order in which we develop this rule is important: when designing or
recalling such rules yourself we strongly recommend you fill in the various
judgments and types incrementally, as we did in lecture.

The other function-related continuations follows a similar pattern. We
arrive at

k ÷ τ1 ⇒ σ · ` v1 : τ2→ τ1 v1 val

k ◦ (v1 _)÷ τ2 ⇒ σ

Pairs follow a similar pattern and we just show the rules.

k ÷ (τ1 × τ2)⇒ σ · ` e2 : τ2

k ◦ 〈_, e2〉 ÷ τ1 ⇒ σ

k ÷ (τ1 × τ2)⇒ σ · ` v1 : τ1 v1 val

k ◦ 〈v1,_〉 ÷ τ2 ⇒ σ

k ÷ τ ′ ⇒ σ x1 : τ1, x2 : τ2 ` e′ : τ ′

k ◦ case _ (〈x1, x2〉 ⇒ e′)÷ (τ1 × τ2)⇒ σ

With these rules, we can state preservation and progress theorems for the K
machine, but their formulation and proof entirely follow previous develop-
ments so we elide them here.

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

L12.8 The K Machine

7 Implementing the K Machine

The K machine can be extended to encompass all the type constructors we
have introduced so far. Both statics and dynamics (almost) write themselves,
following the same ideas we have presented in this lecture. During lecture,
we also live-coded an elegant implementation of the K-machine, adding the
unit type 1 for good measure.

The first question is how to implement the source expressions. We use a
deep embedding in the sense that both constructors and destructors of each
type have an explicit representation. But we nevertheless use functions in
the metalanguage to represent bound variables together with their scope
in the object language, a technique called higher-order abstract syntax. In the
textbook, at the level of mathematical discourse, expressions with bindings
are represented as abstract binding trees.

In Haskell, we write

data E = Lam (E -> E)
| App E E
| Pair E E
| CasePair E (E -> E -> E)
| Unit
| CaseUnit E E

Note that λ-abstraction binds one variable and the case construct over pairs
binds two.

The second question is how we represent the continuation stack. The
idea suggested by the analysis in the previous section is that the continuation
stack itself might be represented as a function. We represent k . e by eval e k
and k / v by retn v k. Writing the continuation as a second argument aids in
the readability of the code.

eval :: E -> (E -> E) -> E
retn :: E -> (E -> E) -> E

Now we transcribe the rules. For example,

k . λx. e 7→ k / λx. e

Since a λ-expression is a value, evaluating it immediately returns it to the
continuation. This becomes

eval (Lam f) k = retn (Lam f) k

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

The K Machine L12.9

Also, returning a value to a continuation simply applies the continuation
(which is a function) to the value.

retn v k = k v

Application e1 e2 is a bit more complicated. First, we evaluate e1, returning
its value to the continuation.

eval (App e1 e2) k = eval e1 (\v1 -> ...)

The continuation (here ...) that expects v1 has to evaluate e2 next and pass
its value to a further continuation.

eval (App e1 e2) k = eval e1 (\v1 -> eval e2 (\v2 -> ...))

Now we have to perform the actual reduction, substituting v2 in the body of
the λ-expression that is v1. In order to be able to write that, we pattern-match
against a λ-value when we receive v1.

eval (App e1 e2) k = eval e1 (\(Lam f) -> eval e2 (\v2 -> ...))

Since the constructor Lam :: (E -> E) -> E, we see that f :: E -> E.
Applying f to e2 will effectively substitute e2 into the body of f.

eval (App e1 e2) k =
eval e1 (\(Lam f) -> eval e2 (\v2 -> ... (f v2) ...))

That will result in an expression representing [v2/x]e′1, which we need to
evaluate further.

eval (App e1 e2) k =
eval e1 (\(Lam f) -> eval e2 (\v2 -> eval (f v2) ...))

Finally, we have to pass the original continuation to this evaluation.

eval (App e1 e2) k =
eval e1 (\(Lam f) -> eval e2 (\v2 -> eval (f v2) k))

The remaining cases in evaluation are derived from the transition rules of
the abstract machine in a similar manner. We do not make continuations or
stacks explicit as a data structure, but represent them as functions. We show
the completed code.

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

L12.10 The K Machine

data E = Lam (E -> E)
| App E E
| Pair E E
| CasePair E (E -> E -> E)
| Unit
| CaseUnit E E

eval :: E -> (E -> E) -> E
retn :: E -> (E -> E) -> E

eval (Lam f) k = retn (Lam f) k
eval (App e1 e2) k = eval e1 (\(Lam f) ->

eval e2 (\v2 -> eval (f v2) k))
eval (Pair e1 e2) k = eval e1 (\v1 ->

eval e2 (\v2 -> retn (Pair v1 v2) k))
eval (CasePair e f) k = eval e (\(Pair v1 v2) -> eval (f v1 v2) k)
eval (Unit) k = retn (Unit) k
eval (CaseUnit e f) k = eval e (\(Unit) -> eval f k)

retn v k = k v

This interpreter can fail with an error because we have not implemented
a type-checker. Such as error could arise because pattern-matching against
(Lam f), (Pair v1 v2), and (Unit) in the cases for App, CasePair,
and CaseUnit may fail to match the value returned if the expression is not
well-typed. Writing a type-checker on this representation is a bit tricky, and
we might discuss it at a future lecture.

A more complete implementation, including fixed points, recursive
types, and sums can be found on the course schedule page. There, you can
also find the live-coded file from lecture where we implemented sums so
we could represent the “and” function on booleans and execute it.

This form of continuation-passing interpreter has been proposed by
Reynolds [Rey72] as a means of language definition. The K machine can be
seen as a “defunctionalization” of such a higher-order interpreter.

Exercises

Exercise 1 Extend the K Machine for the following constructs, in each case
writing out new continuations as necessary and giving both stepping and
typing rules.

1. Constructor and destructor for the unit type 1.

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

http://www.cs.cmu.edu/~fp/courses/15814-f19/lectures/12-kmachine/

The K Machine L12.11

2. Constructor and destructor for the sum type
∑

i∈I(i : τi).

3. Constructor and destructor for recursive types ρα. τ .

4. The fixed point expression fix f. e.

5. Constructor and destructors for lazy pairs τ1Nτ2 (see Exercise L7.1).

References

[Rey72] John C. Reynolds. Definitional interpreters for higher-order pro-
gramming languages. In Proceedings of the ACM Annual Conference,
pages 717–740, Boston, Massachusetts, August 1972. ACM Press.
Reprinted in Higher-Order and Symbolic Computation, 11(4), pp.363–
397, 1998.

LECTURE NOTES THURSDAY, OCTOBER 10, 2019

	Introduction
	Introducing the K Machine
	Evaluating Functions
	A Small Example
	Eager Pairs
	Typing the K Machine
	Implementing the K Machine

