
Lecture Notes on
Parametric Polymorphism

15-814: Types and Programming Languages
Frank Pfenning

Lecture 15
Thursday, October 24, 2019

1 Introduction

Polymorphism refers to the possibility of an expression to have multiple types.
In that sense, all the languages we have discussed so far are polymorphic.
For example, we have

λx. x : τ → τ

for any type τ . More specifically, then, we are interested in reflecting this
property in a type itself. For example, we might want to state

λx. x : ∀α. α→ α

to express all the types above, but now in a single form. This means we
could now reason within the type system about polymorphic functions
rather than having to reason only at the metalevel with statements such
as “for all types τ , . . .”. Our system will be slightly different from this, for
reasons that will become apparent later.

Christopher Strachey [Str00] distinguished two forms of polymorphism:
ad hoc polymorphism and parametric polymorphism. Ad hoc polymorphism
refers to multiple types possessed by a given expression or function which
has different implementations for different types. For example, plus might
have type int→ int→ int but als float→float→float with different implemen-
tations at these two types. Similarly, a function show : ∀α. α→ string might
convert an argument of any type into a string, but the conversion function
itself will of course have to depend on the type of the argument: printing
Booleans, integers, floating point numbers, pairs, etc. are all very different

LECTURE NOTES THURSDAY, OCTOBER 24, 2019

L15.2 Parametric Polymorphism

operations. Even though it is an important concept in programming lan-
guages, in this lecture we will not be concerned with ad hoc polymorphism.

In contrast, parametric polymorphism refers to a function that behaves the
same at all possible types. The identity function, for example, is paramet-
rically polymorphic because it just returns its argument, regardless of its
type. The essence of “parametricity” wasn’t rigorously captured the beau-
tiful analysis by John Reynolds [Rey83], which we will sketch in Lecture
16 on Parametricity. In this lecture we will present typing rules and some
examples.

2 Universally Quantified Types

We would like to add types of the form ∀α. τ to our menagerie of types to
express parametric polymorphism. All of our types so far had constructors
and destructors, where computation arises when a destructor meets its
corresponding constructor. So our language design principles suggest that
we should have a constructor for elements of type ∀α. τ and a corresponding
destructor. The at first surprising approach is to think of an expression of
type ∀α. τ as a function that takes a type as an argument.

This is a rather radical change of attitude. So far, our expressions con-
tained no types at all, and suddenly types become embedded in expressions
and are actually passed to functions! Let’s see where it leads us. Now we
could write

λα. λx. x : ∀α. α→ α

but abstraction over a type seems so different from abstraction over a value
that we make up a new notation and instead write

Λα. λx. x : ∀α. α→ α

using a capital lambda (Λ). In order to express the typing rules, we carry an
additional context ∆ which has the form

∆ ::= α1 tp, . . . , αn tp

where each of the αi must be distinct. Our judgment is ∆ ; Γ ` e : τ where

1. all value variables x in e are declared in Γ, and

2. all type variables α in Γ, e, and τ are declared in ∆.

LECTURE NOTES THURSDAY, OCTOBER 24, 2019

Parametric Polymorphism L15.3

Then we have the rule

∆, α tp ; Γ ` e : τ

∆ ; Γ ` Λα. e : ∀α. τ
tplam

We haven’t yet seen how α can actually appear in e, but we can already
verify:

α tp ; x : α ` x : α
var

α tp ; · ` λx. x : α→ α
lam

· ; · ` Λα. λx. x : ∀α. α→ α
tplam

The next question is how do we apply such a polymorphic function to a
type? Again, we could just write e τ for the application of a polymorphic
function e to a type τ , but we would like it to be more syntactically apparent
so we write e [τ]. We would expect, for example, that

(Λα. λx. x) [nat] 3 : nat

and (store this away for later) that this expression evaluates to 3. In order
for this to work out as expected, we require that

(Λα. λx. x) [nat] : nat→ nat

which leads us to the following typing rule.

∆ ; Γ ` e : ∀α. τ ∆ ` σ tp

∆ ; Γ ` e [σ] : [σ/α]τ
tpapp

The second premise is there to check that all type variables in σ are among
the variables in ∆. We only pass in ∆ because value variables can not appear
in σ, only type variables. Now assume we have

id : ∀α. α→ α
id = Λα. λx. x

Then we can typecheck:

· ; · ` id : ∀α. α→ α

...
· ` nat tp

· ; · ` id [nat] : nat→ nat
tpapp

· ; · ` 3 : nat

· ; · ` id [nat] 3 : nat
app

LECTURE NOTES THURSDAY, OCTOBER 24, 2019

L15.4 Parametric Polymorphism

where it only remains to be seen how to verify that nat is a closed type (that
is, has no free type variables). Fortunately, that’s easy: we just check all the
components of a type. We only give the rules for type variables, function
types, recursive types, and universal types since the others are analogous
and straightforward.

∆ ` τ1 tp ∆ ` τ2 tp

∆ ` τ1→ τ2 tp
tp/arrow

α tp ∈ ∆

∆ ` α tp
tp/var

∆, α tp ` τ tp

∆ ` ρα. τ tp
tp/rho

∆, α tp ` τ tp

∆ ` ∀α. τ tp
tp/forall

In summary, what we have is the following:

Types τ ::= . . . | ∀α. τ
Expressions e ::= . . . | Λα. e | e [τ]

3 Dynamics of Polymorphism

Now that we have settled the statics, we should decide on the dynamics:
how do polymorphic functions execute. We begin with a decision on what a
value is and specify, in analogy with the usual λ-abstraction:

Λα. e val
val/tplam

So a type abstraction is always a value. We then have two rules for applying
functions to types.

e 7→ e′

e [τ] 7→ e′ [τ]
step/tpapp0

(Λα. e)[τ] 7→ [τ/α]e
step/tpapp

In the second rule, we do need to substitute τ for α in e, because α may
actually occur in e. For example, in the first reduction below we need to
substitute nat for β.

(Λβ. id [β]) [nat] 3 7→ id [nat] 3 = (Λα. λx. x) [nat] 3 7→ (λx. x) 3 7→ 3

We also substitute in the second step, but since α does not occur in λx. x it
has no effect.

LECTURE NOTES THURSDAY, OCTOBER 24, 2019

Parametric Polymorphism L15.5

We have already used type substitution (for example, for recursive types
as [ρ. τ/α]τ), and it is the usual capture-avoiding substitution. The only
thing new here is that we substitute into an expression e, where we need to
avoid capture by the type abstractions present in e.

Other choices regarding the dynamics are possible. For example, we
could declare that only Λα. v is a value. But this does not seem to fit as well
with our structure, and pattern matching against a Λ-abstraction seems like
a strange construct.

4 Some Examples

We can draw on examples from the pure λ-calculus encodings to write some
polymorphic functions. For example, what do we expect the functions of
type

∀α. α→ α→ α

to be? Traversing this type and postulating the right form of abstraction, we
arrive at

Λα. λx. λy.

where
x : α, y : α ` : α

that is, the expression to fill the hole has type α and we know that x and y
both have type α. We might suspect that the only normal forms we can put are
x or y (we proved a theorem of this kind in Lecture 4 for the simply-typed
λ-calculus). So we get two functions

f : ∀α. α→ α→ α

f1 = Λα. λx. λy. x
f2 = Λα. λx. λy. y

and we might suspect in some way these are the only functions of this type.
Or at least all other functions should be equal to one of these two. Our earlier
proof does not apply here: at that time we only had functions and nothing
else—now we have products, sums, recursive types, and also universal
types. Also, our λ-expressions are now no longer observable, so it seems
wrong to argue about normal forms rather than with evaluation.

But if there are morally only two functions inhabiting this type, maybe
we could prove:

∀α. α→ α→ α
?∼= 1 + 1

LECTURE NOTES THURSDAY, OCTOBER 24, 2019

L15.6 Parametric Polymorphism

As a preliminary exercise, and also an exercise in writing polymorphic
functions, let’s try it. One really has to write these kind of functions in a
type-directed way, building them up based on the type.

Forth : (∀α. α→ α→ α)→ (1 + 1)

Forth = λf.

This gap is typed with

f : (∀α. α→ α→ α) ` : 1 + 1

Looking at the type of f , we eventually want something of type 1 + 1, which
we can achieve if we apply f to the type 1 + 1.

Forth = λf. f [1 + 1]︸ ︷︷ ︸
: (1 + 1)→ (1 + 1)→ (1 + 1)

We obtained the type of f [1+1] from the type of f , instantiated at type 1+1.
Recall how f1 and f2 worked: they are the two projection functions we used
to call true and false in the pure λ-calculus. So if we apply f [1 + 1] to ` · 〈 〉
and r · 〈 〉, we should receive one of these two back, depending on whether
f = f1 or f = f2.

Forth = λf. f [1 + 1] (` · 〈 〉) (r · 〈 〉)

Moving on to the Back function

Back : (1 + 1)→ (∀α. α→ α→ α)

Back = λs. ︸ ︷︷ ︸
: (∀α. α→ α→ α)

At this point we want to return f1 or f2, depending on whether s is ` · 〈 〉 or
r · 〈 〉.

Back = λs. case s (` · _⇒ f1 | r · _⇒ f2)

We would like to check that these two functions form an isomorphism, but
we’ll postpone this question until the next lecture.

In lecture we also considered a simpler potential isomorphism:

∀α.∀β. α→ β→ α
?∼= ∀α. α→∀β. α→ β→ α

LECTURE NOTES THURSDAY, OCTOBER 24, 2019

Parametric Polymorphism L15.7

We constructed, following the structure of the type

Forth : (∀α.∀β. α→ β→ α)→∀α. α→∀β. β→ α
Forth = λf.Λα. λx.Λβ. λy. f [α] [β]x y

Back : (∀α. α→∀β. β→ α)→∀α.∀β. α→ β→ α
Back = λg.Λα.Λβ. λx. λy. g [α]x [β] y

We didn’t check, but it was a good bet that these two would compose to the
identity in both directions.

5 Example: Natural Numbers

Recall from Lecture 4 that in the pure λ-calculus we found that normal forms
of type (α→α)→ (α→α) corresponded to the natural numbers. So we may
conjecture:

∀α. (α→ α)→ (α→ α)
?∼= nat

where

nat = ρα. (zero : 1) + (succ : α) ∼= (zero : 1) + (succ : nat)

Again, let’s write the two potential witnesses of the isomorphism.

Forth : (∀α. (α→ α)→ (α→ α))→ nat
Forth = λf. f [nat]︸ ︷︷ ︸

(nat→ nat)→ (nat→ nat)

How do we fill the box? Because the representation of a number is an
iterator, it seems clear we should apply it to the successor function and zero.

zero : nat
zero = fold (zero · 〈 〉)

succ : nat→ nat
succ = λn. fold (succ · n)

Forth : (∀α. (α→ α)→ (α→ α))→ nat
Forth = λf. f [nat] succ zero

The other direction is trickier. We want to build the right functional repre-
sentation of the number from it representation as a member of a recursive

LECTURE NOTES THURSDAY, OCTOBER 24, 2019

L15.8 Parametric Polymorphism

type. We didn’t do this in lecture, but to understand this code better, let’s
recall the λ-calculus representation of zero and successor.

lzero : ∀α. (α→ α)→ (α→ α)
lzero = Λα. λs. λz. z
lsucc : (∀α. (α→ α)→ (α→ α))→ (∀α. (α→ α)→ (α→ α))
lsucc = λk.Λα. λs. λz. s (k [α] s z)

Now we can implement Back as a recursive function

Back : nat→∀α. (α→ α)→ (α→ α)
Back = fix B. λn. case (unfoldn) (zero · _⇒ lzero

| succ ·m⇒ lsucc (Bm))

You should convince yourself that this is type-correct and represents the
intuitively correct function. We don’t have the tools yet to prove that these
two really constitute an isomorphism, though.

6 Theory

We did not discuss this in lectures, but of course we should expect preser-
vation and progress, as well as some substitution properties and canonical
form theorems. We will talk about these at the beginning of the next lecture.

Bidirectional type checking continues to work well, but it requires the
programmer to supply a lot of types. For the fully general system, many
problems (such as type inference, carefully defined) will be undecidable.
Some languages such as ML have adopted a restricted form of parametric
polymorphism where the quantifiers can occur only on the outside, and can
only be instantiated with quantifier-free types. In that case, type inference
can remain more or less what it is for the language without parametric
polymorphism: we construct the skeleton of a typing derivation, solve all
the equations that arise from when we fill in the holes. The most general
solution will have some free variables that we then explicit quantify over.
We may talk about this aspect of elaboration in a future lecture.

Exercises

Exercise 1 Find closed types τ and σ such that

· ; · ` λx. x [τ]x : σ

LECTURE NOTES THURSDAY, OCTOBER 24, 2019

Parametric Polymorphism L15.9

Exercise 2 Extend the K Machine with additional continuations and transi-
tions to implement polymorphism.

Exercise 3 For each of the following potential isomorphisms, fill in the
missing entry and write down properly typed candidate functions Forth and
Back to witness an isomorphism. You do not need to prove the isomorphism
property. On the left side of each candidate isomorphism, we have a type
with only universal quantification and function types. On the right side we
have a type using any of the type constructors from this course (functions,
eager products, lazy products, unit, sum, recursive types, lazy products)
but not universally quantified types. We have filled in the first line for you,
and you can find the Forth and Back functions in Section 4 (no need to repeat
them).

∀α. α→ α→ α ∼= 1 + 1

(1) ∀α. α→ α ∼=

(2) ∀α. α ∼=

(3) ∼= ρα. (e : 1) + (b0 : α) + (b1 : α)

(4) ∼= nat× nat

The type nat = ρα. (zero : 1) + (succ : α). You may use the functions from
Section 5 in your solution to Part 4.

Exercise 4 In the presented formulation of polymorphism, we have to carry
type information at runtime. But we also said that polymorphism should
be parametric, that is, the behavior of the function should not depend on its
type. We want to take advantage of that by “erasing” the types before a
(closed, well-typed) program is executed. For this exercise, we remain in the
fragment with only functions, unit, and parametric polymorphism.

1. Consider the following replacements in the types and expressions,
written as #(τ) and #(e):

(a) Replace ∀α. τ by τ everywhere

(b) Replace Λα. e by e everywhere

(c) Replace e [τ] by e everywhere

LECTURE NOTES THURSDAY, OCTOBER 24, 2019

L15.10 Parametric Polymorphism

If · ; · ` e : τ then · ; · ` #(e) : #(τ), but e is not bisimilar to #(e).
Give a counterexample to bisimilarity.

2. Find alternative translations $(τ) and $(e) from the language with
parametric polymorphism to the language without such that e is bisim-
ilar to $(e) under the usual small-step dynamics e 7→ e′ for both source
and target. You do not need to prove this result.

References

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymor-
phism. In R.E.A. Mason, editor, Information Processing 83, pages
513–523. Elsevier, September 1983.

[Str00] Christopher Strachey. Fundamental concepts in programming lan-
guages. Higher-Order and Symbolic Computation, 13:11–49, 2000.
Notes for lecture course given at the International Summer School
in Computer Programming at Copenhagen, Denmark, August
1967.

LECTURE NOTES THURSDAY, OCTOBER 24, 2019

	Introduction
	Universally Quantified Types
	Dynamics of Polymorphism
	Some Examples
	Example: Natural Numbers
	Theory

