
Lecture Notes on
Parametricity

15-814: Types and Programming Languages
Frank Pfenning

Lecture 16
Tuesday, October 29, 2019

1 Introduction

Disclaimer: The material in this lecture is a redux of presenta-
tions by Reynolds [Rey83], Wadler [Wad89], and Harper [Har16,
Chapter 48]. The quoted “theorems” have not been checked
against the details of our presentation of the inference rules and
operational semantics.

As discussed in the previous lecture, parametric polymorphism is the
idea that a function of type ∀α. τ will “behave the same” on all types σ that
might be used for α. This has far-reaching consequences, in particular for
modularity and data abstraction. As we will see in the next lecture, if a client
to a library that hides an implementation type is parametric in this type, then
the library implementer or maintainer has the opportunity to replace the
implementation with a different one without risk of breaking the client code.

The informal idea that a function behaves parametrically in a type vari-
able α is surprisingly difficult to capture technically. Reynolds [Rey83] real-
ized that it must be done relationally. For example, a function f : ∀α. α→ α
is parametric if for any two types τ and σ, and any relation between values
of type τ and σ, if we pass f related arguments it will return related results.
This oversimplifies the situation somewhat, but it may provide the right
intuition. What Reynolds showed is that in a polymorphic λ-calculus with
products and Booleans, all expressions are parametric.

We begin by considering how to define different practically useful no-
tions of equality since, ultimately, parametricity will allow us to prove
program equalities.

LECTURE NOTES TUESDAY, OCTOBER 29, 2019

L16.2 Parametricity

2 Extensional Equality

When reasoning about equality so far, mostly as we were trying to assess if
two functions witness a type isomorphism, we have been using a “simple”
extensional equality. This requires knowledge about their types. We write
e ≡ e′ : τ when two closed expressions e : τ and e′ : τ are equal at type τ .
We use the intuition behind Kleene equality to say that either both diverge
(have no value), or they both reduce to equal values.

(expressions) e ≡ e′ : τ iff both e and e′ diverge (that is, have no value), or
e 7→∗ v and e′ 7→∗ v′ with v = v′ : τ .

To compare values for equality, the definition depends on the type. If it is a
type at which values are observable we examine the structure of the value
and compare the components at their appropriate types.

(×) v = v′ : τ1 × τ2 iff v = 〈v1, v2〉 and v′ = 〈v′1, v′2〉 for some v1, v2, v′1, v′2
and v1 = v′1 : τ1 and v2 = v′2 : τ2.

(1) v = v′ : 1 iff v = 〈 〉 = v′.

(+) v = v′ :
∑

i∈I(i : τi) iff v = j · vj and v′ = j · v′j for some j, vj and v′j
with vj = v′j : τj .

(ρ?) v = v′ : ρα. τ iff v = fold v1 and v′ = fold v′1 and v1 = v′1 : [ρα. τ/α]τ .

In all cases except for the last the type at which two values are compared
becomes smaller, but the value becomes smaller in the last case which can
sometimes help to still make sense of the definition. This is the case when
the type ρα. τ is purely positive, which means it is entirely constructed from
×, 1, +, and ρ.

It becomes even more interesting when types are not observable, like
functions or lazy pairs. In those cases we apply extensionality. For example,
we say two functions are equal if they return equal results when applied to
the same value.

(→) v = v′ : τ1→ τ2 iff for all v1 : τ1 we have v v1 ≡ v′ v1 : τ2.

Two short notes: (1) because we are in a call-by-value language, we quantify
here over values v1, and (2) we do not match against the shape of v and
v′ (which we could, by the canonical forms theorem) but instead probe
its behavior via the elimination rule, comparing the resulting expressions.
Similarly, two lazy pairs are equal if their projections are equal.

LECTURE NOTES TUESDAY, OCTOBER 29, 2019

Parametricity L16.3

(N) v = v′ : τ1 N τ2 iff fst v ≡ fst v′ and snd v ≡ snd v′.

A difficulty arises with polymorphic types. Consider

(∀?) v = v′ : ∀α. τ iff for all closed types σ we have v [σ] = v′ [σ] : [σ/α]τ .

The problem here is that among the possible types σ we find ∀α. τ itself,
which means that the definition would be circular. This is similar to the issue
with recursive types, but there we had a way out by considering purely
positive types only. For polymorphism, that does not help. However, we
could stratify the language of types, as is done in languages such as ML or
Haskell. For example, in ML the type α with so-called prefix polymorphism
the type variable α can be instantiated only with quantifier-free types. In
the next section we see another more general way out which also allows us
to capture the notion of parametricity.

We can also observe that the clauses in the definition of equality except
the (discarded) one for universal quantification depend only on components
of the given type. So we can easily consider subsets or future extensions of
the language without changing the structure of the definition. We would
like to preserve this positive property while repairing the issue with poly-
morphic types.

3 Logical Equality

The notion of extensional equality (and the underlying Kleene equality) are
almost sufficient, but it is insufficient when we come to parametricity. The
problem is that we want to compare expressions not at the same, but at
related types. This means, for example, that in comparing e and e′ and type
∀α. τ we cannot apply e and e′ to the exact same type σ. Instead, we must
apply them to related types. This in turn means that the two expressions we
are comparing may not have the same type but related types. The notion
of equality we derive from this is called logical equality because it is based
on logical relations [Sta85], one of the many connections between logic and
computation. We write

e ≈ e′ ∈ JτK

if the expressions e and e′ stand in the relation designated by τ . This is a
slight abuse of notation because, as we will see, τ can be more than just a
type. Also, we no longer require that e and e′ should have type τ . For the
reason explained above, they may not have the same type. Furthermore,
they may not even be well-typed anymore which allows a richer set of

LECTURE NOTES TUESDAY, OCTOBER 29, 2019

L16.4 Parametricity

applications for logical equality. We also have a second relation, designated
by [τ] that applies only to values. We write v ∼ v′ ∈ [τ] if the values v and v′

are related by [τ]. We define

(expressions) e ≈ e′ ∈ JτK iff e 7→∗ v and e′ 7→∗ v′ and v ∼ v′ ∈ [τ].

We assume here, to keep the development simple, that all expressions termi-
nate. The clauses for the positive types remain essentially the same as for
extensional equality, where we restrict recursive types to be purely positive.

(×) v = v′ ∈ [τ1 × τ2] iff v = 〈v1, v2〉 and v′ = 〈v′1, v′2〉 for some v1, v2, v′1, v′2
and v1 = v′1 ∈ [τ1] and v2 = v′2 ∈ [τ2].

(1) v = v′ ∈ [1] iff v = 〈 〉 = v′.

(+) v = v′ ∈ [
∑

i∈I(i : τi)] iff v = j · vj and v′ = j · v′j for some j, vj and v′j
with vj = v′j ∈ [τj].

(ρ+) v = v′ ∈ [ρα+. τ+] iff v = fold v1 and v′ = fold v′1 and v1 = v′1 ∈
[[ρα+. τ+/α+]τ+].

To be explicit, we define the purely positive types as

τ+ ::= τ+1 × τ
+
2 | 1 |

∑
i∈I

(i : τ+i) | ρα+. τ+ | α+

Even though the type becomes larger in the last clause, the definition is not
circular because the values we are comparing get smaller.

Even the case for lazy pairs mirror what we had before.

(N) v ∼ v′ ∈ [τ1 N τ2] iff fst v ≈ fst v′ ∈ Jτ1K and snd v ≈ snd v′ ∈ Jτ2K

The definition becomes different when we come to universal quantification,
where we need to be careful to (a) avoid circularity in the definition, and (b)
capture the idea behind parametricity. We write R : σ ↔ σ′ for a relation
between values v : σ and v′ : σ′, and v R v′ if R relates v and v′. In some
situation when we would like to reason about parametricity using logical
relations, we may need to put some conditions on R, but here we think of it
as an arbitrary relation on values. We then define

(∀) v ∼ v′ ∈ [∀α. τ] iff for all closed types σ and σ′ and relations R : σ ↔ σ′

we have v[σ] ≈ v′[σ′] ∈ J[R/α]τK

(R) v ∼ v′ ∈ [R] iff v R v′.

LECTURE NOTES TUESDAY, OCTOBER 29, 2019

Parametricity L16.5

The second clause here is a new base case in the definition of [τ], in addition
to the type 1. It is needed because we substitute an arbitrary relation R for
the type variable α in the clause for universal quantification. So when we
encounter R we just use it to compare v and v′.

For functions, we apply them to related arguments and check that their
results are again related.

(→) v ∼ v′ ∈ [τ1→ τ2] iff for all v1 ∼ v′1 ∈ [τ1] we have v v1 ≈ v′ v′1 ∈ Jτ2K

We have taken a big conceptual step, because what we write as type τ
actually now contains relations instead of type variables, as well as ordinary
type constructors.

The quantification structure should make it clear that logical equality in
general is difficult to establish. It requires a lot: for two arbitrary types and
an arbitrary relation between values, we have to establish properties of e
and e′. It is an instructive exercise to check that

Λα. λx. x ∼ Λα. λx. x ∈ [∀α. α→ α]

To check: Λα. λx. x ∼ Λα. λx. x ∈ [∀α. α→ α]
This holds if λx. x ≈ λx. x ∈ JR→RK for arbitrary σ, σ′ and R : σ ↔ σ′

This holds if λx. x ∼ λx. x ∈ [R→R]
This holds if (λx. x) v1 ≈ (λx. x) v′1 ∈ JRK for arbitrary v1 ∼ v′1 ∈ [R]
This holds if v1 ∼ v′1 ∈ [R], which is true by assumption

There is nothing wrong with this proof, but let’s turn this reasoning around
and present it in the “forward” direction, just to see it in a different form.

Let σ, σ′, R : σ ↔ σ′ be arbitrary Assumption
v1 R v′1 for some arbitrary v1 and v′1 Assumption
v1 ∼ v′1 ∈ [R] By defn. of ∼ at [R]
(λx. x) v1 ≈ (λx. x) v′1 ∈ JRK By defn. of ≈ at JRK
λx. x ∼ λx. x ∈ [R→R] By defn. of ∼ at [R→R]

since v1 and v′1 were arbitrary
λx. x ≈ λx. x ∈ JR→RK By defn. of ≈ at JR→RK
Λα. λx. x ∼ Λα. λx. x By defn. of ∼ at [∀α. α→ α]

since R was arbitrary

Conversely, we can imagine that knowing that two expressions are para-
metrically equal is very powerful, because we can instantiate this with
arbitrary types σ and σ′ and relations between them. The parametricity
theorem now states that all well-typed expressions are related to themselves.

LECTURE NOTES TUESDAY, OCTOBER 29, 2019

L16.6 Parametricity

Theorem 1 (Parametricity [Rey83]) If · ; · ` e : τ then e ≈ e : τ

We will not go into the proof of this theorem, but just explore its conse-
quences.

4 Some Useful Properties

In a couple of places we will use the following properties, which follow
directly from small-step determinacy and the definition of JτK.

(Closure under Expansion) If e ≈ e′ ∈ JτK and e0 7→∗ e and e′0 7→∗ e′ then
e0 ≈ e′0 ∈ JτK.

(Closure under Reduction) If e ≈ e′ ∈ JτK and e 7→∗ e0 and e′ 7→∗ e′0 then
e0 ≈ e′0 ∈ JτK.

Also, the call-by-value strategy entails the following properties for reasoning
about logical equality.

(Closure under Application) If e1 ≈ e′1 ∈ Jτ2→ τ1K and e2 ≈ e′2 ∈ Jτ2K then
e1 e2 ≈ e′1 e′2 ∈ Jτ2K.

(Closure under Type Application) If e ≈ e′ ∈ J∀α. τK and R : σ ↔ σ′ then
e[σ] ≈ e′[σ′] ∈ J[R/α]τK.

5 Exploiting Parametricity

Parametricity allows us to deduce information about functions knowing
only their (polymorphic) types. For example, with only terminating func-
tions, the type

f : ∀α. α→ α

for a value f implies that f is (logically) equivalent to the identity function

f ∼ Λα. λx. x ∈ [∀α. α→ α]

Let’s prove this. Unfortunately, the first few steps are the “difficult” direction
of the parametricity.

By definition, this means to show that

For every pair of types σ and σ′ and relation R : σ ↔ σ′, we have
f [σ] ≈ (Λα. λx. x) [σ′] ∈ JR→RK

LECTURE NOTES TUESDAY, OCTOBER 29, 2019

Parametricity L16.7

Now fix arbitrary σ, σ′ and R. By definition of logical equivalence at R→R,
this holds iff

For all v0 ∼ v′0 ∈ [R] we have f [σ] v0 ≈ (λα. λx. x) [σ′] v′0 ∈ JRK

By definition of logical equality at R, this is equivalent to showing that

v0 R v′0 implies f [σ] v0 7→∗ w, (Λα. λx. x)[σ′] v′0 7→∗ w′ and w R w′.

By the rules of evaluation, this is the case if and only if

f [σ] v0 7→∗ w0 and w0 R v′0, assuming v0 R v′0

So our proof would be complete if we could show that f [σ′] v0 7→∗ v0. To
prove this, we exploit the parametricity of f (by the parametricity theorem),
using the a well-chosen relation S.

f ∼ f ∈ [∀α. α→ α] by parametricity.

Now define a new relation S : σ ↔ σ such that v0 S v0 for the specific v0
from the first half of the argument. Then

f [σ] ≈ f [σ] ∈ JS→ SK by definition of ∼ at polymorphic type.

Applying the definition of logical equality at function type and the assump-
tion that v0 S v0 we conclude

f [σ] v0 ≈ f [σ] v0 ∈ JSK

which is the same as saying

f [σ] v0 7→∗ w0 and w0 S w0

By definition, S only relates v0 to itself, so w0 = v0.

w0 = v0 and therefore f [σ] v0 7→∗ v0

This completes the proof.
Similar proofs show, for example, that f : ∀α. α→α→αmust be equal to

the first or second projection function. It is instructive to reason through the
details of such arguments, but we move on to a different style of example.

LECTURE NOTES TUESDAY, OCTOBER 29, 2019

L16.8 Parametricity

6 Theorems for Free!

A slightly different style of application of parametricity is laid out in Philip
Wadler’s Theorems for Free! [Wad89]. Let’s see what we can derive from

f : ∀α. α→ α

for a value f . First, parametricity tells us

f ∼ f ∈ [∀α. α→ α]

This time, we pick types τ and τ ′ and a relation R which is in fact a function
R : τ → τ ′. Evaluation of R has the effect of closing the corresponding
relation under Kleene equality. Then

f [τ] ≈ f [τ ′] ∈ JR→RK

Now, for arbitrary values v : τ and v′ : τ ′, v R v′ actually means Rv 7→∗ v′.
Using the definition of ∼ at function type we get

f [τ] v ≈ f [τ ′] (Rv) ∈ JRK

but this in turn means

R (f [τ] v) 7→∗ w and f [τ ′] (Rv) 7→∗ w for some value w

Wadler summarizes this by stating that for any function R : τ → τ ′,

R ◦ f [τ] = f [τ ′] ◦R

that is, f commutes with any function R. If τ is non-empty and we have
v0 : τ and choose τ ′ = τ and R = λx. v0 we obtain

R (f [τ] v0) 7→∗ v0
f [τ] (Rv0) 7→∗ f [τ] v0

so we find f [τ] v0 7→∗ v0 which, since v0 was arbitrary, is another way of
saying that f behaves like the identity function.

Exercises

Exercise 1 Prove that ∀α. α→ α ∼= 1. You may use the results of Sections 3
and Section 5.

LECTURE NOTES TUESDAY, OCTOBER 29, 2019

Parametricity L16.9

Exercise 2 Prove, using parametricity, that if we have f : ∀α. α→α→α for a
value f then either f ∼ Λα. λx. λy. x ∈ [∀α. α→α→α] or f ∼ Λα. λx. λy. y ∈
[∀α. α→ α→ α].

Exercise 3 Prove, using parametricity, that there cannot be a closed value
f : ∀α. α.

References

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymor-
phism. In R.E.A. Mason, editor, Information Processing 83, pages
513–523. Elsevier, September 1983.

[Sta85] Richard Statman. Logical relations and the typed λ-calculus. Infor-
mation and Control, 65:85–97, 1985.

[Wad89] Philip Wadler. Theorem for free! In J. Stoy, editor, Proceedings of the
4th International Conference on Functional Programming Languages
and Computer Architecture (FPCA’89), pages 347–359, London, UK,
September 1989. ACM.

LECTURE NOTES TUESDAY, OCTOBER 29, 2019

	Introduction
	Extensional Equality
	Logical Equality
	Some Useful Properties
	Exploiting Parametricity
	Theorems for Free!

