Lecture Notes on
Data Abstraction

15-814: Types and Programming Languages
Frank Pfenning

Lecture 17
Thursday, October 31, 2019

1 Introduction

Since we have moved from the pure A-calculus to functional programming
languages we have added rich type constructs starting from functions,
disjoint sums, eager and lazy pairs, recursive types, and parametric poly-
morphism. The primary reasons often quoted for such a rich static type
system are discovery of errors before the program is ever executed and the
efficiency of avoiding tagging of runtime values. There is also the value of
the types as documentation and the programming discipline that follows the
prescription of types. Perhaps more important than all of these is the strong
guarantees of data abstraction that the type system affords that are sadly
missing from many other languages. Indeed, this was one of the original
motivation in the development of ML (which stands for MetaLanguage)
by Milner and his collaborators [GMM*78]. They were interested in de-
veloping a theorem prover and wanted to reduce its overall correctness to
the correctness of a trusted core. To this end they specified an abstract type
of theorem on which the only allowed operations are inference rules of the
underlying logic. The connection between abstract types and existential
types was made made Mitchell and Plotkin [MP88].

2 Signatures and Structures
Data abstraction in today’s programming languages is usually enforced

at the level of modules (if it is enforced at all). As a running example we
consider a simple module providing and implementation of a counter with

LECTURE NOTES THURSDAY, OCTOBER 31, 2019

L17.2 Data Abstraction

constant zero and functions inc and dec to increment and decrement the
counter. We will consider two implementations and their relationship. One
is using numbers in unary form (type nat) and numbers in binary form (type
bin), and we will eventually prove that they are logically equivalent. We are
making up some syntax (loosely based on ML), specify interfaces between a
library and its client.

Below we name CTR as the signature that describes the interface of a
module.

CTR = {
type ctr
zero : ctr
inc : ctr -> ctr
dec : ctr -> (None : 1) + (Some : ctr)

}

The function dec returns an optional counter with the new value, since we
consider the predecessor of 0 to be undefined. For the implementations, we
use the following types for numbers in unary and binary representation.

data Nat = Z | S Nat
data Bin = E | BO Bin | Bl Bin

Then we define the first implementation, for which is it helpful to have a
predecessor function on unary numbers.

pred Z = None
pred (S n) = Some n

and then

NCtr : CTIR = {
type ctr = nat

zero = 7
inc = S
dec = pred

}

An interesting aspect of this definition is that, for example, zero : nat
while the interface specifies zero : ctr. But this is okay because the
type ctr is in fact implemented by nat in this version. Next, we show
the implementation using numbers in binary representation. This time, we
define some of the functions directly in the module.

LECTURE NOTES THURSDAY, OCTOBER 31, 2019

Data Abstraction L17.3

BCtr : CTR = {
type ctr = bin

0 x) = Bl x
1 x) = BO (inc x)

inc

inc E = Bl E
(
inc (

dec (Bl x) = Some (BO x)
B0 x) = case dec x (None => None
| Some y => Bl y)

dec E = None
(
(

dec

Now what does a client look like? Assume it has an implemention
C : CTR. It can then “open” or “import” this implementation to use its
components, but it will not have any knowledge about the type of the
implementation. For example, we can write

open C : CTR

isZero : ctr —-> bool
isZero x = case dec x
(None => true
| Some => false)

but not

open C : CTR

isZero : num —-> bool
isZero Z = true % type error here: Nat not equal Ctr
isZero (S n) = false % and here

because the latter supposes that the library C : CTR implements the type
num by nat, which it may not.

3 Formalizing Abstract Types

We will write a signature such as

LECTURE NOTES THURSDAY, OCTOBER 31, 2019

L17.4 Data Abstraction

CTR = {
type ctr
zero : ctr
inc : ctr -> ctr
dec : ctr -> (None : 1) + (Some : ctr)

}

in abstract form as

doa. a X (a— a)x (a— (None: 1)+ (Some : a))
—~ ——
zero inc dec

where the name annotations are just explanatory and not part of the syntax.
Note that a stands for ctr which is bound here by the existential quantifier,
just as we would expect the scope of Ct r in the signature to only include
the three specified components.

Now what should an expression

e:3Jda.ax (o — a) X (o — (None : 1) + (Some :)

look like? It should provide a concrete type (such as nat or bin) for «, as
well as an implementation of the three functions. We obtain this with the
following rule

AFotp A;Tke:[o/alr

ATk {(o,e):Ja.T

exists

Besides checking that o is indeed a type with respect to all the type variables
declared in A, the crucial aspect of this rule is that the implementation e is
at type [o/a]T.

For example, to check that zero, inc, and dec are well-typed we substitute
the implementation type for ctr (namely nat in one case and bin in the
other case) before proceeding with checking the definitions.

The pair (o,) is sometimes referred to as a package, which is opened up
by the destructor. This destructor is often called open, but for uniformity
with all analogous cases we’ll write is as a case.

Types 7 u= ...|3Jda.T
Expressions e == ...|(o,e)|casee ((o,z) = ¢€)

The elimination form provides a new name « for the implementation types

LECTURE NOTES THURSDAY, OCTOBER 31, 2019

Data Abstraction L17.5

and a new variable z for the (eager) pair making up the implementations.

a & AUFTV(I) UFTV(7)
As;Tre:3a.r Ajatp;Tx:7he 7

case/exists
A;TFcasee ((a,z) =€) : 7 /

The fact that the type o must be new is explicit here in the condition that is
does not already appear in A or the free type variables of I" or 7. Such a
condition is often left implicit, relying on the well-formedness invariants
of the judgments. For example, the presupposition that A may not contain
any repeated variables means that if we happened to have used the name «
before then we can just rename it and then apply the rule. It is crucial for
data abstraction that this variable « is new because we cannot and should
not be able to assume anything about what a might stand for, except the
operations that might be exposed in 7 and are accessible via the name .
Among other things, « may not appear in 7’.

To be a little more explicit about this (because it is critical here), whenever
we write A ; I' - e : 7 we make the following presuppositions:

1. All the type variables in A are distinct.
2. All the variables in I are distinct.

3. AFritpforallz; : 7; € I

4. A+ Ttp.

With these presuppositions the condition on « in the rule is automatically
satisfied. Whenever we write a rule we assume this presuppositions holds
for the conclusion and we have to make sure they hold for all the premises.
Let’s look at case/exists again in this light.

1. We assume all variables in A are distinct, which also means they are
distinct in the first premise. In the second premise they are distinct
because that’s how we interpret A, a tp, which may include an implicit
renaming of the type variable o bound in the the expression («, z) =

e.

2. Similarly for the context I', where the freshness of + might be achieved
by renaming it before applying the rule.

3. By assumption (from the conclusion), every free type variable in T’
appears in A. But what about 7? Actually, it is okay (and in fact mostly
needed) for o to appear in 7.

LECTURE NOTES THURSDAY, OCTOBER 31, 2019

L17.6 Data Abstraction

4. By assumption (from the conclusion), A i 7’ tp. This covers the second
premise. Often, this rule is given with an explicit premise A - 7/ tp to
emphasize 7/ must be independent of «. Indeed, the scope of « is the
type of z and ¢'.

We also see that the client €’ is parametric in o, which means that it cannot
depend on what o might actually be at runtime. It is this parametricity
that will allow us to swap one implementation out for another without
affecting the client as long as the two implementations are equivalent in an
appropriate sense.

The operational rules are straightforward and not very interesting.

v val) e e
—— val/exists —

step/exists
(o, v) val (0,€) > (0, feists:

ep — €

step/case/exists,
case ey ((a,x) = e1) — case ¢ ((a, z) = €1)

case (o.0) ((@,2) = €) s oaofale 0 S

4 Logical Equality for Existential Types

We extend our definition of logical equivalence to handle the case of exis-
tential types. Following the previous pattern for parametric polymorphism,
we cannot talk about arbitrary instances of the existential type, but we must
instantiate it with a relation that is closed under Kleene equality.

Recall from Lecture 16:

(V) v~ € [Va.7]iff for all closed types o and ¢’ and relations R : 0 <+ ¢’
we have v[o]| ~ V'[0’] € [[R/a]T]

(R) v~ €[R]iffv Rv'.

We add

D v~ € [Fa.7]iff v = (o,v1) and v/ = (¢',v]) for some closed types
o, o’ and values vy, v|, and there is a relation R : ¢ <> ¢’ such that
v ~v] € [[R/a]T].

LECTURE NOTES THURSDAY, OCTOBER 31, 2019

Data Abstraction L17.7

In our example, we ask if
NCtr ~ BCtr € [CTR|

which unfolds into demonstrating that there is a relation R : nat <+ bin such
that

(Z,(S,pred)) ~ (E, (inc,dec)) € [R x (R— R) x (R—1+ R)]

Here we have disambiguated the occurrences of the decrement functions as
operating on type nat or bin.

Since logical equality at type 1 x 7 just decomposes into logical equality
at the component types, this just decomposes into three properties we need
to check. The key step is to define the correct relation R.

We will define a relation R and verify the property above in the next
lecture

References

[GMM*78] Michael J.C. Gordon, Robin Milner, L. Morris, Malcolm C.
Newey, and Christopher P. Wadsworth. A metalanguage for
interactive proof in LCF. In A. Aho, S. Zillen, and T. Szyman-
ski, editors, Conference Record of the 5th Annual Symposium on
Principles of Programming Languages (POPL’78), pages 119-130,
Tucson, Arizona, January 1978. ACM Press.

[MP88] John C. Mitchell and Gordon D. Plotkin. Abstract types have
existential type. ACM Transactions on Programming Languages
and Systems, 10(3):470-502, 1988.

LECTURE NOTES THURSDAY, OCTOBER 31, 2019

	Introduction
	Signatures and Structures
	Formalizing Abstract Types
	Logical Equality for Existential Types

