
Lecture Notes on
Representation Independence

15-814: Types and Programming Languages
Frank Pfenning

Lecture 18
Tuesday, November 5, 2019

1 Introduction

In this lecture we prove that we can replace the unary implementation
of counters with the binary one without breaking any clients. This is a
consequence of parametricity, and the definition of logical equality we
developed in the previous two lectures. Since this lecture is a continuation
of the previous one, we do not repeat the definitions here, but ask you to
refer to them.

2 Defining a Relation Between Implementations

Recall that we are trying to show

BCtr ∼ NCtr ∈ [CTR]

which, by definition, comes down to defining a relation R : bin↔ nat such
that

〈E, 〈inc, dec〉〉 ∼ 〈Z, 〈S, pred〉〉 ∈ [R× (R→R)× (R→ 1 +R)]

The relation R : bin ↔ nat we seek needs to relate natural numbers in
two different representations. It is convenient and general to define such
relations by using inference rules. In particular, this will allow us to prove
properties by rule induction. An alternative approach would be to define
such relations as functions, but because representations are often not unique
this is not quite as general.

LECTURE NOTES TUESDAY, NOVEMBER 5, 2019



L18.2 Representation Independence

Once we have made this decision, the relation could be based on the
structure of x : bin or on the structure of x : nat. The latter may run into
difficulties because each number actually corresponds to infinitely many
numbers in binary form: just add leading zeros that do not contribute to its
value. Therefore, we define it based on the binary representation. In order
to define it concisely, we use a representation function for (mathematical)
natural numbers k into our language of values defined by

0 = Z
n+ 1 = S n

We then define:

E R 0
Re

n R k

(B0 x) R 2k
R0

x R k

(B1 x) R 2k + 1
R1

As usual, we consider x R n to hold if and only if we can derive it using
these rules.

3 Verifying the Relation

Because our signature exposes three constants, we now have to check three
properties:

E ∼ Z ∈ [R]
inc ∼ S ∈ [R→R]
dec ∼ pred ∈ [R→ 1 +R]

We already have by definition that v ∼ v′ ∈ [R] iff v R v′. For convenience,
we also define the notation e R e′ to stand for e ≈ e ∈ JRK

Lemma 1 E ∼ Z ∈ [R].

Proof: By definition Z ∼ E ∈ [R] is equivalent to Z R E, which follows
immediately from rule Re. �

Lemma 2 inc ∼ S ∈ [R→R].

Proof: By definition of logical equality, this is equivalent to showing

For all values x : bin and n : nat with x R n we have (inc x) R (S n).

LECTURE NOTES TUESDAY, NOVEMBER 5, 2019



Representation Independence L18.3

Since R is defined inductively by a collection of inference rules, the natural
attempt is to prove this by rule induction on the given relation, namely
x R n.

Case: Rule

E R 0
Re

with x = E and n = 0. We have to show that (inc E) R 1.

inc E 7→∗ B1 E By defn. of inc
B1 E R 1 By rules R1 and Re

(inc E) R (S Z) Since 1 = S Z

Case: Rule
x1 R k

(B0 x1) R 2k
R0

where x = B0 x1 and n = 2k. To prove is (inc (B0 x1)) R 2k + 1.

inc (B0 x1) 7→∗ B1 x1 By defn. of inc
x1 R k Premise in this case
B1 x1 R 2k + 1 By rule R1

Case: Rule
x1 R k

B1 x1 R 2k + 1
R1

where x = B1 x1 and n = 2k + 1. To show: inc (B1 x1) R 2k + 2.

inc (B1 x1) 7→∗ B0 (inc x1) By defn. of inc
x1 R k Premise in this case
(inc x1) R k + 1 By ind. hyp.
inc x1 7→∗ x2 and x2 R k + 1 By defn. of R
(B0 x2) R 2(k + 1) By rule R1

(B0 (inc x1)) R 2k + 2 By defn. of R

�

In order to prove the relation between the implementation of the prede-
cessor function we should write out the interpretation of the type (None :
1) + (Some : R)

LECTURE NOTES TUESDAY, NOVEMBER 5, 2019



L18.4 Representation Independence

v ∼ v′ ∈ [(None : 1) + (Some : R)] iff (v = None · 〈 〉 and v = None · 〈 〉)
or (v = Some · v1 and v′ = Some · v′1 and v1 R v′1.

Lemma 3 dec ∼ pred ∈ [R→ ((None : 1) + (Some : R))]

Proof: By definition of logical equality, this is equivalent to show

For all x : bin and n : nat with x R n we have dec x ≈ pred n ∈
[(None : 1) + (Some : R)].

We break this down into two properties, based on n.

(i) For all x R 0 we have dec x ≈ pred 0 ∈ JNone : 1K.

(ii) For all x R k + 1 we have dec x ≈ pred k + 1 ∈ JSome : RK.

For Part (i), we note that pred 0 7→∗ None · 〈 〉, so all that remains to show is
that dec x 7→∗ None · 〈 〉 for all x R 0. We prove this by rule induction on the
derivation of x R 0.
Case(i):

E R 0
Re

where x = E. Then dec x = dec E 7→∗ None · 〈 〉.

Case(i):

x1 R k

B0 x1 R 2k
R0

where x = B0 x1 and 2k = 0 and therefore also k = 0. Then

dec (B0 x1) 7→∗ case (dec x1) (None · _⇒ None · 〈 〉 | Some y ⇒ B1 y)
dec x1 7→∗ None · 〈 〉 By ind. hyp.
case (dec x1) (None · _⇒ None · 〈 〉 | Some y ⇒ B1 y) 7→∗ None · 〈 〉

Case(i):

x1 R k

B1 x1 R 2k + 1
R1

This case is impossible since 2k + 1 6= 0.

LECTURE NOTES TUESDAY, NOVEMBER 5, 2019



Representation Independence L18.5

Now we come to Part (ii). We note that pred k + 1 7→∗ Some · k so what we
have to show is that

(ii)’ For all x R k with k > 0 we have dec x 7→∗ Some y with y R k − 1.

We prove this by rule induction on the derivation of x R k + 1.

Case(ii):

E R 0
Re

for x = E and k = 0 > 0, which is impossible.

Case(ii):

x1 R k

(B0 x1) R 2k
R0

where x = B0 x1 and n = 2k for 2k > 0.

dec x1 7→∗ Some · y1 for some y1 R k − 1 By ind. hyp. since k > 0
dec (B0 x1) 7→∗ Some · (B1 y1) By defn. of dec
(B1 y1) R 2(k − 1) + 1 By rule R1

(B1 y1) R 2k − 1 By arithmetic

Case(ii):

x1 R k

(B1 x1) R 2k + 1
R1

for x = B1 x1 and 2k + 1 > 0. Then

dec (B1 x1) 7→∗ Some · (B0 x1) By defn. of dec
x1 R k Premise in this case
(B0 x1) R 2k By rule R0

(B0 x1) R 2k + 1− 1 By arithmetic

�

LECTURE NOTES TUESDAY, NOVEMBER 5, 2019



L18.6 Representation Independence

4 The Upshot

Because the two implementations are logically equal we can replace one
implementation by the other without changing any client’s behavior. This is
because all clients are parametric, so their behavior does not depend on the
library’s implementation.

It may seem strange that this is possible because we have picked a
particular relation to make this proof work. Let us reexamine the case/exists
rule:

∆ ; Γ ` e : ∃α. τ ∆, α tp ; Γ, x : τ ` e′ : τ ′

∆ ; Γ ` case e (〈α, x〉 ⇒ e′) : τ ′
case/exists

In the second premise we see that the client e′ is checked with a fresh type α
and x : τ which may mention α. If we reify this into a function, we find

Λα. λx. e′ : ∀α. τ → τ ′

where τ ′ does not depend on α.
By Reynolds’s parametricity theorem we know that this function is

parametric. This can now be applied for any σ and σ′ and relation R :
σ ↔ σ′ to conclude that if v0 ∼ v′0 ∈ [[R/α]τ ] then (Λαλx. e′)[σ] v0 ≈
(Λα. λx. e′)[σ′] v′0 ∈ J[R/α]τ ′K. But α does not occur in τ ′, so this is just
saying that [σ/α, v0/x]e′ ≈ [σ′/α, v′0/x]e′ ∈ Jτ ′K. So the result of substituting
the two different implementations is equivalent.

Exercises

Exercise 1 We can represent integers a as pairs 〈x, y〉 of natural numbers
where a = x− y. We call this the difference representation and call the repre-
sentation type diff.

nat ∼= (Z : 1) + (S : nat)
diff = nat× nat

In your answers below you may use constructors Z : nat and S : nat→ nat to
construct as well as pattern-match subjects of type nat. If you need auxiliary
functions on natural numbers, you should define them.

1. Define a function nat2diff : nat→ diff that, when given a representation
of the natural number n returns an integer representing n.

2. Define a constant d zero : diff representing the integer 0 as well as a
function dminus : diff→ diff→ diff representing subtraction on integers.

LECTURE NOTES TUESDAY, NOVEMBER 5, 2019



Representation Independence L18.7

3. Consider the type

ord = (Lt : 1) + (Eq : 1) + (Gt : 1)

that represents the outcome of a comparison (Lt = “less than”, Eq =
“equal”, Gt = “greater than”). Define a function dcompare : diff→ diff→
ord to compare the two integer arguments. Again, you may use Lt, Eq
and Gt as constructors.

Exercise 2 We consider an alternative signed representation of integers where

sign = (Pos : nat) + (Neg : nat)

where Pos · x represents the integer x and Neg · x represents the integer
−x. In your answers below you may use Pos and Neg as data constructors,
both to construct elements of type sign and for pattern matching. Define the
following functions in analogy with Exercise 1:

1. nat2sign : nat→ sign

2. s zero : sign

3. s minus : sign→ sign→ sign

4. s compare : sign→ sign→ ord

Exercise 3 In this exercise we pursue two different implementations of
an integer counter, which can become negative (unlike the natural number
counter in this lecture). The functions are simpler than the ones in Exercises 1
and 2 so that the logical equality argument is more manageable. We specify
a signature

INTCTR = {
type ictr
zero : ictr
inc : ictr -> ictr
dec : ictr -> ictr
is0 : ictr -> bool

}

where zero, inc, dec and is0 have their obvious specification with respect to
integers.

1. Write out the definition of INTCTR as an existential type.

LECTURE NOTES TUESDAY, NOVEMBER 5, 2019



L18.8 Representation Independence

2. Define the constants and functions d zero, d inc, d dec and d is0 for the
implementation where type ictr = diff from Exercise 1.

3. Define the constants and functions szero, s inc, s dec and s is0 for the
implementation where type ictr = sign from Exercise 2.

Now consider the two definitions

DCtr : INTCTR = 〈diff, 〈d zero, 〈d inc, 〈d dec, d is0〉〉〉〉
SCtr : INTCTR = 〈sign, 〈s zero, 〈s inc, 〈s dec, s is0〉〉〉〉

4. Prove that DCtr ∼ SCtrin[INTCTR] by defining a suitable relation
R : diff↔ sign and proving that

〈d zero, 〈d inc, 〈d dec, d is0〉〉〉 ∼ 〈s zero, 〈s inc, 〈s dec, s is0〉〉〉
∈ [R× (R→R)× (R→R)× (R→ bool)]

LECTURE NOTES TUESDAY, NOVEMBER 5, 2019


	Introduction
	Defining a Relation Between Implementations
	Verifying the Relation
	The Upshot

