
Lecture Notes on
Negative Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 20
Tuesday, November 12, 2019

1 Introduction

We continue the investigation of shared memory concurrency by adding
negative types. In our language so far they are functions τ → σ, lazy pairs
τ N σ, and universal types ∀α. τ .

2 Review of Positives

We review the types so far, with a twist: we annotate every address that
we write to with a superscriptW and every address we read from with a
superscriptR.

Processes P ::= x← P ; Q allocate/spawn
| xW ← yR copy
| xW .〈 〉 | case xR (〈 〉 ⇒ P) (1)
| xW .〈y, z〉 | case xR (〈y, z〉 ⇒ P) (×)
| xW .j(y) | case xR (i(y)⇒ Pi)i∈I (+)
| xW .fold(y) | case xR (fold(y)⇒ P) (ρ)

Cell Contents W ::= 〈 〉 | 〈d1, d2〉 | j(d) | fold(d)

Configurations C ::= · | C1, C2 | proc d P, cell d _ | !cell c W

The configurations are unordered and we think of “,” as an associative and
commutative operator with unit “.”. Since we have changed our notation a
few times, we summarize the translation and the transition rules. We also

LECTURE NOTES TUESDAY, NOVEMBER 12, 2019

L20.2 Negative Types

throw in sums, but we do not explicitly write out the case for recursive
types, which follows the pattern established by the other cases.

JxK d = dW ← xR

J〈 〉K d = dW .〈 〉
Jcase e (〈 〉 ⇒ e′)K d = d1 ← JeK d1 ;

case dR1 (〈 〉 ⇒ Je′K d)

J〈e1, e2〉K d = d1 ← Je1K d1 ;
d2 ← Je2K d2 ;
dW .〈d1, d2〉

Jcase e (〈x1, x2〉 ⇒ e′)K d = d1 ← JeK d1 ;
case dR1 (〈x1, x2〉 ⇒ Je′K d)

Jj · eK d = d1 ← JeK d1 ;
dW .j(d1)

Jcase e (i · x⇒ ei)i∈IK d = d1 ← JeK d1 ;
case dR1 (i(x)⇒ JeiK d)i∈I

And the computation rules for configurations:

proc d′ (x← P ; Q) 7→ proc d ([d/x]P), cell d _, proc d′ ([d/x]Q) (d fresh)
(alloc/spawn)

!cell c W, proc d (d← c), cell d _ 7→ !cell d W (copy)

proc d (d.〈 〉), cell d _ 7→ !cell d 〈 〉 (1R0)
!cell c 〈 〉, proc d (case c (〈 〉 ⇒ P)) 7→ proc d P (1L)

proc d (d.〈c1, c2〉), cell d _ 7→ !cell d 〈c1, c2〉 (×R0)
!cell c 〈c1, c2〉, proc d (case c (〈x1, x2〉 ⇒ P)) 7→ proc d ([c1/x1, c2/x2]P) (×L)

proc d (d.j(c)), cell d _ 7→ !cell d (j(c)) (+R0)
!cell c (j(c1)), proc d (case c (i · x⇒ Pi)i∈I 7→ proc d ([c1/x]Pj) (+L)

3 Functions

As the first negative type we consider function τ → σ. How do we translate
an abstraction λx. e? The translation must actually take two arguments: one
is the original argument x, the other is the destination where the result of
the functional call should be written to. And the process Jλx. eK d must write
the translation of the function to destination d.

LECTURE NOTES TUESDAY, NOVEMBER 12, 2019

Negative Types L20.3

Before we settle on the syntax for this, consider how to translate function
application.

Je1 e2K d = d1 ← Je1K d1 ;
d2 ← Je2K d2 ;

How should we complete this translation?
We know that after Je1K d1 has completed the cell e1 will contain a function

of two arguments. The first argument is the original argument x, which we
find in d2 after Je2K d2 has completed. The second argument is the destination
for the result of the functional application, which is d. So we get:

Je1 e2K d = d1 ← Je1K d1 ;
d2 ← Je2K d2 ;
dR1 .〈d2, d〉

This looks just like eager pairs, except that we read from d1 instead of writing
to it. To retain the analogy, we write the translation of a function using case,
but writing the (single) branch of the case expression to memory.

Jλx. eK d = case dW (〈x, y〉 ⇒ JeK y)

The transition rules for these new constructs just formalize the explanation.

proc d (case d (〈x, y〉 ⇒ P)), cell d _ 7→ !cell d (〈x, y〉 ⇒ P) (→R)
!cell c (〈x, y〉 ⇒ P), proc d (c.〈c1, c2〉) 7→ proc d ([c1/x, c2/y]P) (→L0)

As an example, we consider the expression (λx. x) 〈 〉.

J(λx. x) 〈 〉K d0 = d1 ← Jλx. xK d1 ;
d2 ← J〈 〉K d2 ;
dR1 .〈d2, d0〉

= d1 ← case dW1 (〈x, y〉 ⇒ JxK y) ;
d2 ← dW2 .〈 〉 ;
dR1 .〈d2, d0〉

= d1 ← case dW1 (〈x, y〉 ⇒ yW ← xR) ;
d2 ← dW2 .〈 〉 ;
dR1 .〈d2, d0〉

Let’s execute the final process from with the initial destination d0.

LECTURE NOTES TUESDAY, NOVEMBER 12, 2019

L20.4 Negative Types

proc d0 (d1 ← case dW1 (. . .) ; d2 ← dW2 .〈 〉 ; . . .), cell d0 _

7→ proc d1 (case dW1 (〈x, y〉 ⇒ yW ← xR), cell d1 _,
proc d0 (d2 ← dW2 .〈 〉 ; dR1 .〈d2, d0〉), cell d0 _

7→2 !cell d1 (〈x, y〉 ⇒ yW ← xR),
proc d2 (d

W
2 .〈 〉), cell d2 _,

proc d0 (d
R
1 .〈d2, d0〉), cell d0 _

7→2 !cell d1 (〈x, y〉 ⇒ yW ← xR),
!cell d2 〈 〉
proc d0 (d

W
0 ← dR2), cell d0 _ (from [d2/x, d0/y](y

W ← xR))

7→ !cell d1 (〈x, y〉 ⇒ yW ← xR),
!cell d2 〈 〉
!cell d0 〈 〉

In the final state we have cell d0 holding the final result 〈 〉, which is indeed
the result of evaluating (λx. x) 〈 〉. We also have some newly allocated in-
termediate destinations d1 and d2 that are preserved, but could be garbage
collected if we only retain the cells that are reachable from the initial desti-
nation d0 which now holds the final value.

4 Store Revisited

In our table of process expression, two things stand out. One is that functions
are exactly like pairs, except that the role of reads and writes are reversed.
The other is that a cell may now contain something of the form (〈y, z〉 ⇒ P).

Processes P ::= x← P ; Q allocate/spawn
| xW ← yR copy
| xW .〈 〉 | case xR (〈 〉 ⇒ P) (1)
| xW .〈y, z〉 | case xR (〈y, z〉 ⇒ P) (×)
| xW .j(y) | case xR (i(y)⇒ Pi)i∈I (+)
| xW .fold(y) | case xR (fold(y)⇒ P) (ρ)

| xR.〈y, z〉 | case xW (〈y, z〉 ⇒ P) (→)

Cell Contents W ::= 〈 〉 | 〈d1, d2〉 | j(d) | fold(d)
| (〈x, y〉 ⇒ P)

Configurations C ::= · | C1, C2 | proc d P, cell d _ | !cell c W

LECTURE NOTES TUESDAY, NOVEMBER 12, 2019

Negative Types L20.5

There is now a legitimate concern that the contents of cells in memory is
no longer “small”, because a program P could be of arbitrary size. We
call expressions following “case x” continuations K (which are different
from the continuations in the K Machine). A continuation will be actually
implemented as a closure, that is, a pair consisting of an environment and the
address of code to be executed. The translation to get us to this form is called
closure conversion, which we might discuss in a future lecture. For now, we
are content with the observation that, yes, we are violating a basic principle
of fixed-size storage and that it can be mitigated (but is not completely
solved) through the introduction of closures.

In our example of (λx. x) 〈 〉 the continuation has the form (〈x, y〉 ⇒
yW ← xR) which is a closed expression in that has no free variables. This
can be directly compiled to a function that takes two addresses x and y and
writes the contents of x into y. So at least in this special case the contents of
the cell d1 could simply be the address of this piece of code.

The symmetry between eager pairs (positive) and functions (negative)
stems from the property that in logic we have A ` B ⊃ C if and only if
A×B ` C (where × is a particular form of conjunction). Or, we can chalk it
up to the isomorphism τ → (σ→ ρ) ∼= (τ × σ)→ ρ: an arrow on the right
behaves like a product on the left.

One can ask if similarly symmetric constructors exists for 1 and + and
the answer is yes. It turns out that lazy pairs are symmetric to sums and
there is a type ⊥ that is symmetric to 1 (see Exercises 2 and 3). There may
even be a lazy analogue of recursive types that exhibits the same kind
of symmetry and maybe useful to model so-called corecursive types (see
Exercise 4).

We postpone discussion on the typing of process expression, cells, and
configurations until the next lecture when we consider analogues of the
progress and preservation theorems.

5 Example: A Pipeline

As a simple example for concurrency in this language we consider setting
up a (very small) pipeline. We consider a sequence of bits

bits ∼= (b0 : bits) + (b1 : bits) + (e : 1)

(which also happen to be isomorphic to binary numbers). Here is a function
flip : bits→ bit that just flips every bit. We use our pattern matching syntax

LECTURE NOTES TUESDAY, NOVEMBER 12, 2019

L20.6 Negative Types

with constructors
B0 : bits→ bits
B1 : bits→ bits
E : bits

flip : bits→ bits
flip (B0 y) = B1 (flip y)
flip (B1 y) = B0 (flip y)
flip E = E

In preparation for translation to process form, we write it out in more explicit
notation. For the sake of brevity, we skip the fold/unfold constructors,
which can easily be added.

JflipK d = case dW (〈x, z〉 ⇒ case xR (B0 · y ⇒ d1 ← (d2 ← JflipK d2 ;
d3 ← (dW3 ← yR) ;
dR2 .〈d3, d1〉)

zW .B1(d1)
| B1 · y ⇒ . . .
| E · y ⇒ E · y))

Rather than addressing how fixed points are translated in their full general-
ity, we merely derived a recursive specification for the process JflipK.

We didn’t do this in lecture, but we can apply some optimizations to see
more easily how this process executes. First, since the definition of flip is
closed, we assume its definition is stored in a fixed cell f0 (never mind that
the store is then circular). Also, we can replace the left-hand side below with
the right-hand side

d3 ← (dW3 ← yR) ; P ≡ [y/d3]P

to arrive at

!cell f0 (〈x, z〉 ⇒ case xR (B0 · y ⇒ d1 ← fR0 .〈yR, d1〉 ;
zW .B1(d1)

| B1 · y ⇒ d1 ← fR0 .〈yR, d1〉 ;
zW .B0(d1)

| E · y ⇒ d1 ← (d1 ← y) ;
zW .E(y))

Now imagine we would like to compute flip (B0(B1(E))) The argument
will be represent in memory by (again ignoring folds)

LECTURE NOTES TUESDAY, NOVEMBER 12, 2019

Negative Types L20.7

!cell c2 〈 〉
!cell c1 (B1(c2))
!cell c0 (B0(c2))

The call to flip with destination d0 would be

proc d0 (f
R
0 .〈c0, d0〉), cell d0 _

When this process reads the contents c0 and takes the B0 branch, it allocates
a new destination d1 for the result of the recursive call, but meanwhile it can
already write B0(d1) into the destination d0. So we have

!cell f0 (. . .)

!cell c2 〈 〉
!cell c1 (B1(c2))
!cell c0 (B0(c2))

!cell d0 (B1(d1))
cell d1 _

proc d1 (f
R
0 .〈c1, d1))

The significance in this state is that the process has already written part
of the output (into destination d0) before having read all of the input. For
example, if this where the inner flip of of flip (flip (B0(B1(E)))) then the
outer flip could now read the destination d0 and output B1(a1) while the
inner flip had only read one bit of input.

So we see that under a concurrent interpretation the composition flip◦flip
behaves like a pipeline with two processes, flip ◦ flip ◦ flip behaves like a
pipeline with three processes, etc.

Under a sequential interpretation, where x ← P ; Q waits until P has
written to destination x before Q starts executing, all recursive calls in flip
would have to be finished before the first bit of output is written. When
we compose two, the inner one has to finish entirely, writing out the whole
sequence of bits before the outer one can start.

Exercises

Exercise 1 A lazy record is a generalization of a lazy pair where each alterna-
tive has a different label i. For example, potentially infinite streams stream α
of elements of some type α may be defined as

stream α ∼= (hd : α) N (tl : stream α)

LECTURE NOTES TUESDAY, NOVEMBER 12, 2019

L20.8 Negative Types

As an example of the general syntax 〈|i⇒ ei|〉i∈I for a lazy record with the
fields in the finite index set I , we show how to define a stream of just 0s
(omitting the standard definitions of zero and succ):

nat ∼= (z : 1) + (s : nat)

zero : nat
succ : nat→ nat

zeros : stream nat
zeros = fold 〈|hd⇒ zero, tl⇒ zeros|〉

In fully explicit form, the definition of zeros would be a fixed point:

zeros = fix f. fold 〈|hd⇒ zero, tl⇒ f |〉

but we prefer the first form where the recursion is implicit. This definition
terminates because the record with field hd and tl is lazy. We select an
element of a lazy record e by writing e · j for a label j (which is just the
postfix version of the injection into a sum j ·e). As an example, the following
function adds 1 to every elements of the given stream.

succs : stream nat→ stream nat
succs = λs. 〈|hd⇒ succ ((unfold s) · hd), tl⇒ succs ((unfold s) · tl)|〉

ones = succs zeros

Write functions satisfying the following specifications:

1. up from : nat→ stream nat where up from n generates the stream n, n+
1, n+ 2,

2. alt : ∀α. stream α→ stream α→ stream α which alternates the elements
from the two streams, starting with the first element of the first stream.

3. filter : ∀α. (α→ bool)→ stream α→ stream α which returns the stream
with just those elements of the input stream that satisfy the given
predicate.

4. map : ∀α.∀β. (α→ β)→ (stream α→ stream β) which returns a stream
with the result of applying the given function to every element of the
input stream.

5. diag : ∀α. stream (stream α)→ stream α which returns a stream consist-
ing of the first element of the first stream, the second element of the
second stream, the third element of the third stream, etc.

LECTURE NOTES TUESDAY, NOVEMBER 12, 2019

Negative Types L20.9

You may use earlier functions in the definition of later ones. To avoid some
recomputation, you may use the syntactic sugar of let x = e in e′ to stand
for (λx. e′) e.

Your functions should be such that only as much of the output stream
is computed as necessary to obtain a value of type stream α but not the
components contained in the lazy record. For example, the definition of
succs′ below would be still terminating, but slighty too eager (for example,
we may never access the element at the head of the resulting stream) , while
the second succs′′ would not even be terminating any more.

succs′ = λs. let x = succ ((unfold s) · hd)
in 〈|hd⇒ x, tl⇒ succs′ ((unfold s) · tl)

succs′′ = λs. let s′ = succs” ((unfold s) · tl)
in 〈|hd⇒ succ ((unfold s) · hd), tl⇒ s′|〉

Exercise 2 For lazy records as introduced in Exercise 1 we introduce the
following syntax in our language of expressions:

Types ::= . . . | Ni∈I(i : τi)
Expressions ::= . . . | 〈|i⇒ ei|〉i∈I | e · j

1. Give the typing rules and the dynamics (stepping rules) for the new
constructs.

2. Extend the translation JeK d to encompass the new constructs. Your
process syntax should expose the duality between eager sums and
lazy records.

3. Extend the transition rules of the store-based dynamics to the new
constructs. The translated form may permit more parallelism than the
original expression evaluation, but when scheduled sequentially they
should have the same behavior (which you do not need to prove).

4. Show the typing rules for the new process constructs.

Exercise 3 Explore what the rules and meaning of ⊥ as the formal dual of
1 in the process language should be, including whichever of the following
you find make sense. If something does not make sense somehow, please
explain.

1. Write out the new forms of process expressions.

LECTURE NOTES TUESDAY, NOVEMBER 12, 2019

L20.10 Negative Types

2. Provide the store-based dynamics for the new process expressions.

3. Show the typing rules for the new process expressions.

4. Reverse-engineer new functional expressions in our original language
so they translate to your new process expression. Show the rules for
typing and stepping the new constructs.

5. Summarize and discuss what you found.

Exercise 4 In our expression language the fold e constructor for elements of
recursive type is eager. Explore a new lazy ravel e constructor, providing:

1. Typing rules for knit and a corresponding destructor (presumably an
unravel or a case construct).

2. Stepping rules for the new forms of expressions.

3. A translation from the new forms of expressions to processes, extend-
ing the language of processes as needed

4. Transition rules for the new forms of processes.

LECTURE NOTES TUESDAY, NOVEMBER 12, 2019

	Introduction
	Review of Positives
	Functions
	Store Revisited
	Example: A Pipeline

