
Lecture Notes on
Memory Safety

15-814: Types and Programming Languages
Frank Pfenning

Lecture 21
Thursday, November 14, 2019

1 Introduction

In the previous lecture we have presented a translation from expressions
in our sequential functional language to processes. The processes access
shared memory, but in a highly disciplined manner: each process has the
responsibility to write to a particular location, while multiple processes
may read from that location. Each location is only written to once, so the
reader must check that the cell has indeed been initialized. This is a form
of synchronization between concurrent processes. When processes are
scheduled to run in a stack-like fashion, then we recover the usual sequential
semantics. Every location will be written before any other process can try to
access it.

Why is all of this safe? We have an obligation to prove properties
of our concurrent operational model that are analogous to progress and
preservation (together called type soundness).

LECTURE NOTES THURSDAY, NOVEMBER 14, 2019

L21.2 Memory Safety

2 Refactoring the Statics and Dynamics

There are many patterns and symmetries in the our process language we
now exploit to simplify the presentation.

Processes P ::= x← P ; Q allocate/spawn
| xW ← yR copy
| xW .〈 〉 | case xR (〈 〉 ⇒ P) (1)
| xW .〈y, z〉 | case xR (〈y, z〉 ⇒ P) (×)
| xW .j(y) | case xR (i(y)⇒ Pi)i∈I (+)
| xW .fold(y) | case xR (fold(y)⇒ P) (ρ)

| xR.〈y, z〉 | case xW (〈y, z〉 ⇒ P) (→)

Cell Contents W ::= 〈 〉 | 〈d1, d2〉 | j(d) | fold(d)
| (〈x, y〉 ⇒ P)

Configurations C ::= · | C1, C2 | proc d P, cell d _ | !cell c W

This table is partially incomplete, for example, omitting lazy records Ni∈I(i :
τi) which is a generalization of lazy pairs and dual to (eager) sums (see
Exercises L20.2–4).

We now refactor the syntax by dividing the cell contents into small
values V and continuations K (different from the continuations k used to
define the K machine).

Values V ::= 〈 〉 | 〈y, z〉 | j(y) | fold(y)

Continuations K ::= (〈 〉 ⇒ P) | (〈y, z〉 ⇒ P) | (i(y)⇒ Pi)i∈I | (fold(y)⇒ P)

Processes P ::= x← P ; Q allocate/spawn
| xW ← yR copy
| xW .V | case xR K positive types
| xR.V | case xW K negative types

Cell Contents W ::= V | K

Configurations C ::= · | C, proc d P, cell d _ | C, !cell c W

This syntax allows some forms (e.g., lazy folds) for which we do not have
corresponding types, although we could (see Exercises L20.2–4).

We have presented configurations in a slightly different style as a list,
which is equivalent to the previous form since we treat the comma operator
as commutative and associative.

LECTURE NOTES THURSDAY, NOVEMBER 14, 2019

Memory Safety L21.3

To type the contents of cells directly, we have two judgments Γ ` V : τ
and Γ ` K : τ .

Γ ` 〈 〉 : 1
val/unit

y : τ ∈ Γ z : σ ∈ Γ

Γ ` 〈y, z〉 : τ × σ
val/prod

y : τj ∈ Γ

Γ ` j(y) :
∑

i∈I(i : τi)
val/sum

y : [ρα. τ/α]τ ∈ Γ

Γ ` fold(y) : ρα. τ
val/fold

Γ, y : τ ` P :: (z : σ)

Γ ` (〈y, z〉 ⇒ P) : τ → σ
cont/fun

Process typing for the positives is now unified, but we still separate out the
negative with some special-purpose rules.

Γ ` V : τ

Γ ` xW .V :: (x : τ)
pos/write

x : τ ∈ Γ Γ ` τ . K :: (z : σ)

Γ ` case xR K :: (z : σ)
pos/read

x : τ → σ ∈ Γ y : τ ∈ Γ

Γ ` xR.〈y, z〉 :: (z : σ)
neg/read

Γ ` K : σ

Γ ` case xW K :: (x : σ)
neg/write

The neg/read rule is somewhat overly specific, but because our only negative
type is τ → σ we did not generalize it further.

For positive types τ we also have a judgment to verify that a value V : τ
is matched against a suitable continuation, Γ ` τ . K :: (z : σ).

Γ ` P :: (z : σ)

Γ ` 1 . (〈 〉 ⇒ P) :: (z : σ)

Γ, x1 : τ1, x2 : τ2 ` P :: (z : σ)

Γ ` τ1 × τ2 . (〈x1, x2〉 ⇒ P) : (z : σ)

(for all i ∈ I) Γ, y : τi ` Pi :: (z : σ)

Γ `
∑

i∈I(i : τi) . (i(y)⇒ Pi) :: (z : σ)

Γ, y : [ρα. τ/α]τ ` P :: (z : σ)

Γ ` ρα. τ . (fold(y)⇒ P) :: (z : σ)

We could refactor the rules for the positive types further by using the idea
behind pattern matching as introduced in Lecture 10.

A key operation in the operational semantics is passing a value to a
continuation, written as V . K. It is defined as follows:

〈 〉 . (〈 〉 ⇒ P) = P
〈d1, d2〉 . (〈x1, x2〉 ⇒ P) = [d1/x1, d2/x2]P
j(d) . (i(y)⇒ Pi)i∈I = [d/y]Pj

fold(d) . (fold(y)⇒ P) = [d/y]P

LECTURE NOTES THURSDAY, NOVEMBER 14, 2019

L21.4 Memory Safety

The operational rules can be reduced to the following:

proc d (x← P ; Q) 7→ proc c ([c/x]P), cell c _, proc d ([c/x]Q)
(alloc/spawn)

!cell c W, proc d (dW ← cR), cell d _ 7→ !cell d W (copy)

proc d (dW .V), cell d _ 7→ !cell d V (1,×,+, ρ)R0

!cell c V, proc d (case cR K) 7→ proc d (V . K) (1,×,+, ρ)L

proc d (case dW K), cell d _ 7→ !cell d K (→)R
!cell c K, proc d (cR.V) 7→ proc d (V . K) (→)L0

3 Typing Configurations

It is relatively straightforward to preservation in analogy with the usual
preservation theorem, so we focus here on progress. Intuitively, progress
comes down to two factors. The first is the canonical form theorem. In
this context it guarantees, for example, that a cell !cell c W with c : τ1 × τ2
must contain a pair W = 〈c1, c2〉 (where c1 : τ1 and c2 : τ2). The second
factor is that there no cyclic dependencies among the process that would
form a deadlock. The simplest case of that would be where process P with
destination d waits for cell c to be filled by Q which in turns waits for d, but
there could be multiple processes in a cycle. Such a deadlock might look
like

proc d (case cR K), cell d _,
proc c (case dR K ′), cell c _

where P = (case cR K) and Q = (case dR K ′).
It turns out that if we start with a single well-typed initial process any

configuration we might reach can progress and is therefore deadlock-free
(no cyclic dependencies). This is ensured by an intrinsic ordering among
the destinations which is acyclic, defined as follows:

c < d if either c occurs in a process that has destination d
or c occurs in the contents of the cell d.

In our typing rules this dependency relation is emergent rather than pos-
tulated a priori. In other words, when we can type a configuration we can
read off this relation from the typing derivation.

Our typing judgment has the form ` C :: Γ which means that for each
address c : τ in Γ, C either has a cell !cell c W , or proc c P, cell c _. We define

LECTURE NOTES THURSDAY, NOVEMBER 14, 2019

Memory Safety L21.5

it with the following rules, referring back to the typing of processes, values,
and continuations.

` (·) :: (·)

` C :: Γ Γ ` P :: (c : τ)

` (C, proc c P, cell c _) :: (Γ, c : τ)

` C :: Γ Γ `W : τ

` (C, !cell c W) :: (Γ, c : τ)

In the second and third rules, the context Γ, c : τ must be well-formed, so
c must be fresh. This judgment never has an antecedent, since we only
type complete configurations to get the simplest progress and preservation
theorems.

4 Preservation and Progress

We only state preservation here, since its proof is somewhat tedious but not
essentially different from prior proofs.

Theorem 1 (Preservation) If ` C :: Γ and C 7→ C′ then ` C′ :: Γ′ for Γ′ ⊇ Γ.

The reason we have to allow for Γ′ to be a superset of Γ is that the
allocate/spawn step may allocate a fresh cell which then becomes visible
not only to its immediate client, but also shows up in the type of the whole
configuration.

To state the progress theorem we need to characterize final states that
correspond to values in a functional language. Fortunately, that’s easy: a
state is final exactly if it consists only of memory cells of the form !cell c W !
We usually start with a “main” process P with · ` P :: (d0 : τ), encapsulated
in the initial configuration as C0 = (proc d0 P, cell d0 _). Following the given
typing rules, this means we have ` C0 :: (d0 : τ).

Theorem 2 (Progress) If ` C :: Γ then either C 7→ C′ for esome C′ or C is final.

Proof: By induction on the structure of the given typing derivation.

Case:

` (·) :: (·)

where C = (·) and Γ = (·). Then C final.

LECTURE NOTES THURSDAY, NOVEMBER 14, 2019

L21.6 Memory Safety

Case:
` C1 :: Γ1 Γ1 `W : τ

` C1, !cell c W :: (Γ1, c : τ)

where C = (C1, !cell c W) and Γ = (Γ1, c : τ).

Either C1 7→ C′1 for some C′1 or C1 final By i.h.
If C1 7→ C′1 then also (C1, !cell c W) 7→ (C′1, !cell c W) First subcase
If C1 final then also (C1, !cell c W) final Second subcase

Case:

` C1 :: Γ1 Γ1 ` P :: (d : τ)

` C1, proc d P, cell d _ :: (Γ1, d : τ)

where C = (C1, proc d P, cell d _) and Γ = (Γ1, d : τ).

Either C1 7→ C′1 for some C′1 or C1 final By i.h.
If C1 7→ C′1 then also (C1, proc d P, cell d _) 7→ (C′1, proc d P, cell d _)

First subcase

Assume C1 final Second subcase

Now we distinguish cases on the typing of P . If P = dW .V or P =
case dW K then proc d P, cell d _ 7→ !cell d W (for W = V or W = K)
and C 7→ C1, !cell d W .
Subcase:

Γ1 ` P1 :: (x : σ) Γ1, x : σ ` P2 :: (d : τ)

Γ1 ` x← P1 ; P2 :: (d : τ)

for some σ where P = (x← P1 ; P2). Then

C = (C1, proc d (x← P1 ; P2), cell d _
7→ (C1, proc c ([c/x]P1), cell c _, proc d ([c/x]P2), cell d _) = C′.

Subcase:
c : τ ∈ Γ1

Γ1 ` d← c :: (d : τ)

where P = d ← c. Because c : τ ∈ Γ1 and C1 is final, there must be a
!cell c W ∈ C1. Therefore

LECTURE NOTES THURSDAY, NOVEMBER 14, 2019

Memory Safety L21.7

C = (C1, proc d (d← c), cell d _) 7→ (C1, !cell d W) = C′

Subcase:

c : σ ∈ Γ1 Γ1 ` τ . K :: (d : τ)

Γ1 ` case cR K :: (d : τ)

where P = case cR K. Because c : σ ∈ Γ1 and C1 is final, there must
be a !cell c V ∈ C1 with Γ2 ` V : σ where Γ2 ⊂ Γ1. By weakening, also
Γ1 ` V : σ. By Lemma 3 (stated below) we know that V .K is defined
and C = (C1, proc d P, cell d _) 7→ (C1, proc d (V . K), cell d _) = C′.

Subcase:

c : σ→ τ ∈ Γ1 c1 : σ ∈ Γ1

Γ1 ` cR.〈c1, c2〉 :: (c2 : τ)

where P = cR.〈c1, c2〉 and d = c2. Then we reason by inversion in a
similar way to the previous case, identifying a cell !cell c K that must
contain a K of the right form so that 〈c1, c2〉 . K is defined.

�

Lemma 3 If Γ ` V : σ and Γ ` σ . K :: (d : τ) then V . K = Q for some Q.

Proof: By inversion on the given typing derivations. �

In lecture we also began a discussion of mutable store, the notes on
which we added to the beginning of the notes for the next lecture.

LECTURE NOTES THURSDAY, NOVEMBER 14, 2019

	Introduction
	Refactoring the Statics and Dynamics
	Typing Configurations
	Preservation and Progress

