Lecture Notes on
Mutable Memory

15-814: Types and Programming Languages
Frank Pfenning

Lecture 22
Tuesday, November 19, 2019

1 Introduction

We have moved from a semantics directly on expressions to one that makes
memory explicit and supports concurrency (at the discretion of the scheduler
or the language designer). Memory is allocated and then written to at most
once; after that it may be read many times.

In imperative languages we can also mutate the contents of a memory
cell by writing a different value to it. In a functional language, this is
typically segregated, either in a monad (as in Haskell) or via a new type of
mutable references (as in ML). We pursue here the latter approach because
there is a slightly lower conceptual overhead.

2 The Type of Mutable References

We introduce one new type constructor and three new forms of expression
into our functional language:

Types T = ... |refr
Expressions e == ...|refe|e; :=ez]le

Operationally, ref e evaluates e to a value v, then create a new mutable
reference m and initializes its value to v. e1 := eq evaluates e; to a mutable
reference m, then e; to a value vy and stores vy in m. It returns just the unit
element, since its principal task is the effect on m. Finally, le (which has
nothing to do with ! to denote persistent semantic objects) evaluates e to a

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

L22.2 Mutable Memory

reference m and returns the current value of m. Based on this description,
we type these new expressions as follows

The: T I'kej:ref7 T'heg: T _
——— ref /create ref /write
I'krefe:refr I'kep:=ey: 1

PEeirel T ot /read
F'Fle: 1

These rules do not fit the previous patterns of constructor and destructors
because of the rule for mutation ref /write.

It seems difficult, if not impossible, to specify the semantics of mutable
references directly on expressions in the style we have done before. Fortu-
nately, we already have a semantics with an explicit store so we can update
that. The textbook instead generalizes the small-step semantics for expres-
sion by adding a single store x and now stepping u || e — ¢/ || ¢/ [Harlé,
Chapters 34 & 35].

3 Translation to Our Concurrent Language

We exploit the fact we already have a representation of memory in this
translation, and only two small twists are necessary. Warning: some of what
is below we will later find out is not quite right. We write m for the address
of a mutable cell.

[ref e] d = m < [e] m ;
d" .addr(m)

Here, we introduce a new form of value, addr(m) which denotes the address
of a mutable cell, here m. This value is deposited in destination d as required.
Reading from a mutable destination is simple.

[le] d = dy < [e] di ;
case d¥ (addr(m) = d" « m®)

Finally, mutating a cell. At first we might try
[e1 :==ea]d=dy < [ei] di1 ;

dz — [[62]] d2 ;
case dff (addr(m) = m" < df) % bug here!

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

Mutable Memory L22.3

The problem here is that the translation of e; := ey is supposed to write to
destination d, but does not do so. Recall that we decreed that the assignment
should return the unit element, so we might write

[er :=ea]d=dy + [e1] d1 ;
do IIGQ]] do ;
case dt (addr(m) = m"W « d¥ ;

d.())

However, this requires a version of the copy process that allows a continua-
tion. Let’s write this as m"W < d%, and we get

[[61 = 62]] d= d1 < [[61]] d1 ;
dg <— [[62]] dg ;
case d (addr(m) = m" < d¥ ;

d.())

The new process expression has the dynamics
Icell m W, Icell c W/, proc d (m" <« cf; P) — Icellm W’ ,procd P % bug!

Writing this out, however, we notice a second problem: the cell m has to be
ephemeral. If it were persistent, then after this transition m would have two
values: W and W'.

We can fix this in two ways. Either we make all cells (mutable or not)
ephemeral. This means we have to revisit all the rules so far and make sure
cell are not consumed when they are read but carried over. Alternatively,
we can make only mutable cells ephemeral and keep all others persistent.
Let’s use the first approach. We modify the rules at the end of Section 1.21.4
by dropping the ! everywhere. Where we match against !cell ¢ W on the
left-hand side, we just replace it by cell ¢ W and repeat it on the right-hand
side. The rule for the new “write” construct becomes

cell m W, cell c W', proc d (m" <= cft; P) s cell m W', cell c W/, proc d P

For the other approach, see Exercise 1.

4 Race Conditions

In the presence of mutable references, sequential computation proceeds as
before, scheduling such that in z <— P ; @) the process P completes (and
therefore writes to z) before) starts. This also means that the read and
write operations on mutable cells have a well-defined order.

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

L22.4 Mutable Memory

Under the concurrent semantics, however, the picture is more compli-
cated. Consider the following expression:

(Az. (x := succ x, (x := succ x,!z))) (ref zero)

The value of this expression will be

(s {0 m))

where n € {0,1,2}. For example, we obtain 0 if !z executes before the
increments. Note also that either increment or dereference of the value might
have to wait until the initialization of the mutable cell with 0 completes
because the body of the function can execute in parallel with the argument.

Despite these difficulties, progress and preservation theorems continue
to hold, but it becomes much more difficult to reason about the correctness of
programs. Similarly, we don’t lose all of parametricity, but logical equality
(and, more generally, logical relations) now require step-indexing [AMO1,
TTA*13].

5 Linearity

Now that we (provisionally) decided to make all cells ephemeral, we can
wonder if we really need to carry over all cells during a transition, or if we
may be able to drop some if they can no longer be accessed. As an example,
let’s examine the translation for function application.

[[61 62]} d= d1 < [[61]] dl ;
d2 < [[62]] d2 ;
d{%'<d27 d>

The destination d; will be written by the translation [e;] d; and is then read
by the last line. But it could not be used beyond that because it can not occur
elsewhere in the program since d; is fresh not passed to anywhere.

The situation is different for dz. Even though it is freshly allocated here
it is passed on to the function stored in d; so it “escapes its lexical scope”
and we cannot deallocate it here.

Methodologically, we should now examine various constructs to see
which destinations we may be able to “deallocate” by not copying them
from the left-hand sides of transition rule to the right. But this is compli-
cated, so first we examine what would be required so that we would never
have to copy cells that are being read from (excluding mutable cells from
consideration for the moment, for simplicity). Essentially, can we delineate

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

Mutable Memory L22.5

a subsect of the language so that every cell will not only be written to once,
but also read from once. Of course, as you might expect in this course after
all we have been through together, this is expressed as a type system! Every
memory cell will have not only a unique provider (to write it) but also a
unique client (to read from it). We call a type system that enforces this
property linear, after Girard’s linear logic [Gir87].

We start with some intuition. We say a function is linear in one of its
arguments if it uses that argument exactly once. The notion of “usage” here
is a dynamic one; it doesn’t mean that the variable occurs exactly once, as
we will see.

Az. T (linear)

This is linear in x and therefore the whole expression is linear.
AT AY. (not linear)

This expression is linear in but not linear in y and therefore not linear.
It’s not linear in y because y is not used, but linearity requires a single use.
Related to linearity is the is the notion of affine. A function is affine in a
variable if it is used at most once. So the function above is affine but not linear.
The notion of affine has recently received a lot of attention because the Rust
programming language treats memory references as affine.

Ax. (x,x) (not linear)

This expression is not linear because z is used twice and hence more than
once. Functions that use their argument at least once are called strict. The
notion of strictness is important because it is useful in the optimization of
call-by-need languages such as Haskell. If we have a function application
e1 ez and we can tell that e; denotes a strict function we can safely evaluate
ep rather than waiting until e; might need its argument.

Ax. if @ false x (not linear)

This function is not linear in z. It uses x the first time to decide the condition,
and then again when z is false. However, if z is false this returns « which is
false, so extensionally equal would be

Az.if x false false (linear)

which is linear. These two examples show that linearity is an intensional
property of expressions (how do they compute) and not an extensional
property (what do they compute).

Az. Ay. if x y (not y) (linear)

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

L22.6 Mutable Memory

This function is linear: z is used once as subject of the conditional. The
variable y occurs twice, but whenever this expression is executed it is used
exactly once: if y is true then in the first branch, and if y is false then in the
second branch.

Az. (Ay.()) x (not linear)

It shouldn’t be suprising by now that this is not linear, since y is not linear
in (). But, moreover, the whole expression is not linear in z, even though z
occurs exactly once. That’s because = occurs in a position where it will be
dropped. On the other hand

Az. (A\y. (y, () = (linear)

6 Linear Typing of Expressions

With these examples, we now work through the inference rules for expres-
sions and classify those that are linear. We use a different notation for
functions, eager pairs, sums, etc. since the connectives are subtly different
from the regular ones. Our judgment has the form

Abe:T
where A is a context of variables, each of which must be used once in e.
Linear Functions 7 — 0. A function is linear just if its parameter is used

linearly in its body.
Ax:The:o

—o]
AFXx.e:7—o0

When applying a function we have to divide up the variables among those
that occur in the function (A;) and those that occur in the argument (Az).

A1|—61:7’2—0T1 A2|—622T2
Al,A2|—€16217‘1

—o

Our usual presupposition regarding contexts kicks in and we implicit require
the dom (A1) N dom(Ag) = 0.

When we look up variables, there cannot be other variables in the context
because they would not be used and therefore not be linear.

—_ var
r:Thx:T

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

Mutable Memory L22.7

Eager Linear Pairs 7 ® 0. Eager linear pairs are written as 7 ® . The rules
are straightforwardly patterned after previous rules, keeping in mind that
for the destructor (case), the variables standing for the components of the
pair must be linear.

AilFer:m Aybey:m Are:m®@m Az :m,m0: ke 7

®
Ay, Aok (eg,e9) 1 71 @ T A A'Fcase e ({(x1,29) =€) : 7/
The nullary version of pairs, the unit is written as 1 and the rules are the

nullary version of the binary rules above (see Section 7).

Linear Sums 7 @ 0. Actually, we will show the labeled, n-ary version
@ier(i : 7). In the constructor rule &1, there is not much to consider.

AFe:T;

- - eI
AFj-e:ier(i:m)

For the destructor (case) we need to consider the same as for the conditional
if in the last section: only one branch of the case will be taken, so all branches
must be checked with the same linear context.

AbFe:®ier(i:m) (foralliel) Az:mke, 7

A A'Fcasee (i-x=él)jer: 7 or
) i)iel + T

Recursion. The remaining type constructors follow similar patterns so
we omit the details (see Section 7 for a listing). Recursion, however, is
interesting. The computation rule for fixed points it

fix f.e — [fix f.e/f]e

This already departed from the pattern of the other rules. For one, we
substitute an expression (fix f. e) for a variable f in an expression e, while
all the other rules just substitute values for variables. For another, it is not
attached to a particular type constructor and can always be applied.

There are several sources of operational “nonlinearity” in this rule. First,
even if f occurs only once in e, it is replaced by another expression (fix f. e)
containing e, thereby duplicating e. Also, when we define a recursive
function we would like to make multiple recursive calls and still consider
the function linear.

For example, the function that takes a bit string (usually considered just
a binary number) and flips every bit (see Lecture L20.5) should be linear:

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

®QF

L22.8 Mutable Memory

each bit of the input string is read and a corresponding bit written to the
output.

bits ~ (0 : bits) @ (bl : bits) ® (e : 1)

flip : bits —o bit

flip = Az. case (unfold x) (b0 - y = fold (b1 - flip y)
| b1 -y = fold (b0 - flip y)
|e-y=fold (e-y))

Note that there is no recursive call to flip in the third branch and yet we
should consider the function linear. In order to formally represent this, we
have to add a second, nonlinear context to our judgment and populate it with
recursively defined variables. Moreover, since the body of the recursively
defined expression is duplicated when it is unwound, it may not depend on
any linear variables.

If:7;-Fe:7

;- -FHfixfe:r

rec

With these rules (and the straightforward ones for fold and unfold) the flip
function can indeed be checked as linear.

Now we need to generalize all the other rules, adding the nonlinear
context I' and propagating it to all premises, allowing it for variables, etc.
You can find a listing in Section 7.

This example is also remarkable because a tiny change in the last branch
of the conditional

flip : bits —o bit

flip = Az. case (unfold) (b0 -y = fold (b1 - flip y)
| bl -y = fold (b0 - flip y)
le-y=fold (e-())) % bug here!

makes this function now nonlinear: y is not used. Besides the code shown
earlier, we can also fix the problem by using y : 1.

flip : bits —o bit

flip = Az. case (unfold x) (b0 - y = fold (b1 - flip y)
| b1 -y = fold (b0 - flip y)
|e-y=casey ({) = fold (e-())))

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

Mutable Memory L22.9

7 Linear Rule Summary

The syntax for the language of expression does not change, but the language
of types is new.

Lineartypes 7 = 71— |11 Qm|1|®ir(i:n)|pa.1|a

The definition of values and the rules for evaluation remain the same as for
our nonlinear functional language.

We name the propositional rules I (for introduction, representing a
constructor for a type) and E (for elimination, representing a destructor
for a type). Missing here are lazy pairs (left for a future lecture) and the
universal and existential quantifiers. The latter are orthogonal, but would
introduce even further syntactic overhead since we would have to track type
variables in addition to ordinary linear variables and recursion variables.

f:Tel Lf:ir;-Fe:r
_ var — recvar —_ rec
T'iz:7khax:7 r;-+f:r I';-Ffixfie:r
' Azx:7Fe:o I';AibFerimm—om T';Askes:m
—of —oF
T';AFXMx.e:7—o0 I'; A1, Asbejes:m
T;AiFer:mn I';Askey:m I Abe:m®m ;A z:m,20: ke 7
®1 QF
T A Ax b {er,e2) : 11 @7 [A A Fcasee ({1, 22) =€) : 7/
' Akte:1 T ;A Fe 7
— 11 1F
r;-F():1 I';AJA'Fcasee (() =€) 7

(jel) T;AkFe:Ty
F;AFj-e:®@ier(i:m)

@I

F';AkFe:®per(i:n) (foralliel) T A z:mbe): 7

] B) N SF
I;AA' Fcasee (i-x=€l)ier: T

F;Abe:pa.m/alr F';Ake:pat
I

P pE
P;Akfolde: pa.t I; At unfold e: [pa.7/alr

Exercises

Exercise 1 Provide an alternative dynamics for our language with mutable
cells, where regular cells become persistent once written, while mutable

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

L22.10 Mutable Memory

cells are ephemeral. You may have to introduce some new kinds of semantic
objects or some new forms of process expression, or both.

Exercise 2 Write a linear increment function on natural numbers in binary
representation.

Exercise 3 Recall the definition of a purely positive type, updated to reflect
the notation for linear types.

=11 @ | @i) | pat. 7T |t

Even in the purely linear language, it is possible to copy a value of purely
linear type. Define a family of functions

copy 7T — (T @7h)

such that copy_. v —* (v, v) for every v : 7F. You do not need to prove this
property, just give the definitions of the copy functions. Your definitions may
be mutually recursive.

Exercise 4 A type isomorphism is linear if the functions Forth and Back are
both linear. For each of the following pairs of types provide linear functions
witnessing an isomorphism if they exist, or indicate no linear isomorphism
exists. You may assume all functions terminate and use either extensional
or logical equality as the basis for your judgment.

1. 7— (0 —op)and o —o (7 —o p)
2. 7—(0c—op)and (T®0c) —op

3. 7o (c®p)and (T —0) ® (T —o p)
4. (1@ o) —opand (T —p) @ (0 — p)
5. 1®1) —o7and 7@ 7

Exercise 5 Write out the following theorems, updated to the purely linear
language (where only recursively defined variables are nonlinear). We
change neither the definition of value nor the rules for stepping from our
previous language that does not employ linearity.

1. Canonical forms for types —, ®, 1, ®, and p. No proofs are needed.
2. The substitution properties, in a form sufficient needed for preserva-

tion. No proofs are needed.

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

Mutable Memory L22.11

3. The preservation property for evaluation of closed linear expressions.
Show the proof cases for linear functions.

4. The progress property for closed linear expressions. Show the proof
cases for linear functions.

5. Where do these properties and their proofs differ when compared to
our language that does not enforce linearity?

References

[AMO1] Andrew W. Appel and David A. McAllester. An indexed model of
recursive types for foundational proof-carrying code. Transactions
on Programming Languages and Systems, 23(5):657-683, 2001.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1—
102, 1987.

[Harl6] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

[TTA*13] Aaron Joseph Turon, Jacob Thamsbord, Amal Ahmed, Lars
Birkedal, and Derek Dreyer. Logical relations for fine-grained
concurrency. In R. Giacobazzi and R. Cousot, editors, Symposium
on Principles of Programming Languages (POPL’13), pages 343-356,
Rome, Italy, January 2013. ACM.

LECTURE NOTES TUESDAY, NOVEMBER 19, 2019

	Introduction
	The Type of Mutable References
	Translation to Our Concurrent Language
	Race Conditions
	Linearity
	Linear Typing of Expressions
	Linear Rule Summary

