
Lecture Notes on
Linear Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 23
Thursday, November 21, 2019

1 Introduction

We have already seen linear types for expressions in the last lecture. We
didn’t prove preservation and progress, and they are still satisfied, but not
satisfying: we haven’t changed any of the dynamics of programs! Linear
types, so far, “don’t buy us anything”.

In this lecture we assign linear types to processes, so that the translation
of a linearly typed functional expression becomes a linearly typed process.
Then we show that executing a linearly typed process does not require a
garbage collector since we can eagerly deallocate cells when they are read.
In other words, the right level of abstraction to benefit from linear typing is
at a level where memory is made explicit.

Linear typing, though, is too restrictive so what we actually want is a
language that combines linear with nonlinear typing. In this combination,
linearly typed cells are ephemeral, while other cells remain persistent as in
our original semantics for processes. We probably will not have time to cover
such a language in this course, but refer you to a recent draft paper [PP19].

2 Linear Typing of Processes

Our judgment is
Γ ; ∆ ` P :: (z : σ)

where Γ contains recursion variables/destinations and ∆ contains linear
variables/destinations. The destination z in the succedent is written to

LECTURE NOTES THURSDAY, NOVEMBER 21, 2019

L23.2 Linear Types

exactly once (as before), but it will also be read exactly once. Therefore, the
rule for spawn/allocate is

Γ ; ∆ ` P :: (x : τ) Γ ; ∆, x : τ ` Q :: (z : σ)

Γ ; ∆,∆′ ` x← P ; Q :: (z : σ)
spawn

In the computation rule, we just create a fresh cell as before.

proc d (x← P ; Q) 7→ proc c ([c/x]P), cell c _, proc d ([c/x]Q) (c fresh)

We have two rules for variables: one that reads from an ephemeral
(linear) cell and one that reads from a persistent (recursive) cell.

Γ ; y : τ ` xW ← yR :: (x : τ)
move

f : τ ∈ Γ

Γ ; · ` xW ← fR :: (x : τ)
copy

Computationally, this first rule moves while the second one copies.

cell c W, proc d (d← c), cell d _ 7→ cell d W (move)
!cell f W, proc d (d← f), cell d _ 7→ cell d W (copy)

There should also be rules to write to a persistent cell, but we take a small
shortcut here and restrict ourselves to top-level recursion between closed
functions. Such functions can be compiled and become “read-only memory”
at the time of translation, before the program is executed.

Eager Linear Pairs. As an example for linear typing, we use pairs. In
general, we write linear typing rules as left rules (if the type constructor
appears in the antecedent) and right rules (if the type constructor appears in
the succedent). Note that left rules always read from memory, while right
rules always write to memory.

Γ ; x1 : τ1, x2 : τ2 ` zW .〈x1, x2〉 :: (z : τ1 ⊗ τ2)
⊗R0

Γ ; ∆, x1 : τ1, x2 : τ2 ` P :: (z : σ)

Γ ; ∆, x : τ1 ⊗ τ2 ` case xR (〈x1, x2〉 ⇒ P) :: (z : σ)
⊗L

Operationally, the case rule reads from memory and passes it to the continu-
ation. These rules are general for all positive types. The only difference from
before is that the cell that is read is ephemeral and therefore “deallocated”.

LECTURE NOTES THURSDAY, NOVEMBER 21, 2019

Linear Types L23.3

proc d (dW .V), cell d _ 7→ cell d V (write/pos)
cell c V, proc d (case cR K) 7→ proc d (V . K) (read/pos)

where
Values V ::= 〈d1, d2〉 | . . .
Conts K ::= (〈x1, x2〉 ⇒ P) | . . .

with
〈d1, d2〉 . (〈x1, x2〉 ⇒ P) = [d1/x1, d2/x2]P

Linear Sums. They follow the pattern of the eager pairs, since they are a
positive type.

j ∈ I

Γ ; y : τj ` xW .j(y) :: (x : ⊕i∈I(i : τi))
⊕R0

(for all i ∈ I) Γ ; ∆, y : τi ` Pi :: (z : σ)

Γ ; ∆, x : ⊕i∈I(i : τi) ` case xR (i(y)⇒ Pi)i∈I :: (z : σ)
⊕L

where
j(d) . (i(y)⇒ Pi)i∈I = [d/y]Pj

Linear functions. Since functions are a negative type, the case constructs
writes a continuation to memory.

Γ ; ∆, y : τ ` P :: (z : σ)

Γ ; ∆ ` case xW (〈y, z〉 ⇒ P) :: (x : τ → σ)
(R

Γ ; x : τ → σ, y : τ ` xR.〈y, z〉 :: (z : σ)
(L0

This time, we have to provide a second set of rules since the roles of values
and continuations are flipped.

proc d (case dW K), cell d _ 7→ cell d K (write/neg)
cell c K, proc d (dR.V) 7→ proc d (V . K) (read/neg)

where the reduction 〈d1, d2〉 . (〈y, z〉 ⇒ P) has already been defined.

LECTURE NOTES THURSDAY, NOVEMBER 21, 2019

L23.4 Linear Types

Recursion. We assume all functions can be mutually recursive and are
defined at the top level and have no other free variables. Then we translate
each definition

func = λx. e

as
!cell func (〈x, z〉 ⇒ JeK z)

where
JfuncK d = (dW ← funcR)

Slightly more generally, if we want to allow mutually recursive definitions
for arbitrary negative types constructed at the top level, we would translate
each definition

f = e

to
!cell f K for JeK d0 = case d0 K

3 Example: Bit Flipping Revisited

With the treatment of recursion from the end of the previous section, the
(linear) bit flipping program becomes:

flip proc = (〈x, z〉 ⇒ case xR (B0(y)⇒ d1 ← (d2 ← (dW2 ← flipR) ;
d3 ← (dW3 ← yR) ;
dR2 .〈d3, d1〉)

zW .B1(d1)
| B1(y)⇒ . . .
| E(y)⇒ zW .E(y)))

where the initial state of running the program contains

!cell flip flip proc

This is now entirely linearly typed, except that the destination flip must be
available to check its contents (in a recursion context Γ).

When looking at this program we observe some obvious opportunities
for optimization. For example, we notice the pattern

x← (xW ← cR) ; Q

which seems equivalent to
[c/x]Q

LECTURE NOTES THURSDAY, NOVEMBER 21, 2019

Linear Types L23.5

In order to see whether this might be a valid optimization, let’s assume cell
c has been filled so our configuration contains

cell c W, proc d (x← (xW ← cR) ; Q), proc d _

Stepping from this initial configuration (and ignoring the empty cell d):

cell c W, proc d (x← (xW ← cR) ; Q)
7→ cell c W, proc d1 (dW1 ← cR), cell d1 _, proc d ([d1/x]Q)
7→ cell d1 W, proc d ([d1/x]Q)

On the other hand, the relevant part of the initial configuration after opti-
mization is just

cell c W, proc d ([c/x]Q)

These two configurations differ only in the name of the cell, d1 in the
original configuration and c in the optimized one. In this dynamics we have
the principle of equivariance, which means that two configurations that differ
only in the names of their cells are indistinguishable. This is a generalization
of the principle of α-conversion which states that two expressions that
differ only in the names of their bound variables are indistinguishable.
This important principle imposes some restriction on language extensions.
For example, we cannot allow casts from destinations to natural numbers
because that might allow us to distinguish the two programs above and we
wouldn’t be allowed to optimize.

Along similar lines, we briefly return to the dynamics where all cells
are persistent. The same optimization above should still be valid. Before
optimization we obtain the state

!cell c W, !cell d1 W, proc d ([d1/x]Q)

and after optimization

!cell c W, proc d ([c/x]Q)

Because cells are not ephemeral and processes may not be linear, [d1/x]Q
(before optimization) might contain both c and d1, while after optimization
they are conflated to just c.

Now even an apparently harmless language extension such as allowing
comparison of addresses (or “pointer comparison” in a function language)
would destroy equivariance! This is because Q could contain a comparison
c == x which returns false in the unoptimized program (since c 6= d1), but
true in the optimized program (since [c/x](c == x) = (c == c)). Consider
that a library may have the flip program originally implemented as

LECTURE NOTES THURSDAY, NOVEMBER 21, 2019

L23.6 Linear Types

flip proc = (〈x, z〉 ⇒ case xR (B0(y)⇒ d1 ← (d2 ← (dW2 ← flipR) ;
d3 ← (dW3 ← yR) ;
dR2 .〈d3, d1〉)

zW .B1(d1)
| B1(y)⇒ . . .
| E(_)⇒ d1 ← dW1 .〈 〉

zW .E(d1))) % change here!

Now the programmer might decide do avoid building a “new” 〈 〉 on the
right-hand side and replace the last line with

| E(y)⇒ zW .E(y)))

This change in the library could now break the application code because
two different addresses (the address of 〈 〉 at the end of the input sequence of
bits and the address of 〈 〉 at the end of the output sequence of bits) are now
equal since we no longer allocate a new one. This breaks some form of data
abstraction and complicates reasoning about programs.

In ocaml there is a such an address-comparison operator == which,
unfortunately, violates equivariance. As a library writer you cannot know
what uses of the operator a client might make so you cannot safely replace
the first version of flip with the second. This violates basic principles of
modularity and data abstraction and therefore I consider it a design mistake
(which is not present in Standard ML).

This is distinct from the comparison of mutable references. For mutable
references we cannot apply a similar optimization since the identity (but
not the actual address) of mutable references is important. When reason-
ing about programs with mutable references we need to be aware which
references may alias each other and which not.

With this simple optimization we can simplify our flip process as

flip proc = (〈x, z〉 ⇒ case xR (B0(y)⇒ d1 ← flipR.〈y, d1〉
zW .B1(d1)

| B1(y)⇒ d1 ← flipR.〈y, d1〉
zW .B0(d1)

| E(y)⇒ zW .E(y)))

4 Look Ma, No Garbage!

With linear typing, cells are deallocated as they are used. For example, the
flip program started with a state such as

LECTURE NOTES THURSDAY, NOVEMBER 21, 2019

Linear Types L23.7

!cell flip flip proc,
cell c4 〈 〉, cell c3 (E · c4), cell c2 (fold c3),
cell c1 (B0 · c2), cell c0 (fold c1),

proc d0 (flipR.〈c0, d0〉)

will end with a state

!cell flip flip proc,
cell c4 〈 〉, cell d3 (E · c4), cell d2 (fold d3),
cell d1 (B1 · d2), cell d0 (fold d1)

We have executed here the version that does not explicitly copy the unit
element to a new cell. Note that all cells, except for flip, are reachable from
d0, the initial destination of the call.

In general, if we started with an empty configuration (again, excepting
only the recursive functions), as would be the case for the translation of

Jflip (fold (B0 · (fold (E · 〈 〉))))K d0

all cells in the resulting state would be reachable from d0 as shown in this
example.

In order to prove such a result we need to make the typing of config-
urations explicit and then examine the change in configurations during
computation. We have:

Configurations C ::= · | C, proc d P, cell d _ | C, cell c W | C, !cell f K

where the persistent cells are only for closed, top-level functions. We imagine
they are defined in a global context In the typing judgment, the antecedents
are always persistent because, as in the previous lecture, we are only inter-
ested in typing closed configurations (the analogue of closed expressions).

Γ ; · ` C :: ∆

The point here is that C will write or has written to all the destinations in ∆.

Γ ; · ` (·) :: (·)

Γ ; · ` C :: ∆,∆′ Γ ; ∆′ ` P :: (d : τ)

Γ ; · ` C, proc d P, cell d _ :: ∆, d : τ

In the second rule, we divide all the ephemeral destinations into ∆′ (read by
P) and ∆ (not read by P). Because cells are read only once, ∆′ is consumed
here and is not visible in the outside interface, which includes ∆ and the

LECTURE NOTES THURSDAY, NOVEMBER 21, 2019

L23.8 Linear Types

cell d that’s defined by the execution of P . The rule for ephemeral cells is
analogous.

Γ ; · ` C :: ∆,∆′ Γ ; ∆′ `W : τ

Γ ; · ` C, cell d W :: ∆, d : τ

For the persistent cells, we have a slightly different judgment

Γ ` C :: Γ′

called at the top level with
Γ ` C :: Γ

which means that every recursive function is (a) defined, and (b) can use
any other function in mutual recursion.

Γ ` (·) :: (·)

Γ ` C :: Γ′ Γ ; · ` P :: (f : τ)

Γ ` C, !cell f P :: Γ′, f : τ

Now a whole configuration is well-typed if we can divide it into a persistent
part C1 and an ephemeral part C2, and there is some typing Γ for the recursive
variables that works for both parts (the definition as well as the use of the
recursive variables).

Γ ` C1 :: Γ Γ ; · ` C2 :: ∆

` C1, C2 :: ∆

During the computation, only C2 will change.

5 Progress and Preservation

Progress is essentially unchanged from before.

Theorem 1 If ` C :: ∆ then either C is final (consists only of cells) or C 7→ C′ for
some C′.

The preservation theorem is the interesting one. In case of linearly typed
processes, the cells defined (or promised to be defined by a process) does
not change throughout the computation!

Theorem 2 If ` C :: ∆ and C 7→ C′ then ` C :: ∆.

LECTURE NOTES THURSDAY, NOVEMBER 21, 2019

Linear Types L23.9

Contrast this with the statement from Lecture 21 (Theorem 21.1) where
the context can grow when the configuration takes a step. The proof here
proceeds along the lines of the last lecture, with one interesting twist: when
computation creates a fresh cell, it will always be together with a process
that reads from it. Therefore, this cell does not show up in the interface on
the right! Specifically:

Γ ; · ` C :: ∆,∆′1,∆
′
2

Γ ; ∆′1 ` P :: (x : τ) Γ ; ∆′2, x : τ ` Q :: (d : σ)

Γ ; ∆′1,∆
′
2 ` (x← P ; Q) :: (d : σ)

Γ ; · ` C, proc d (x← P ; Q), cell d _ :: ∆, d : σ

evolves to

Γ ; · ` C :: ∆,∆′1,∆
′
2 Γ ; ∆′1 ` [c/x]P :: (c : τ)

Γ ; · ` C, proc c ([c/x]P), cell c _ :: ∆,∆′2, c : τ Γ ; ∆′2, c : τ ` [c/x]Q :: (d : σ)

Γ ; · ` C, proc c ([c/x]P), cell c _, proc d ([c/x]Q), cell d _ :: ∆, d : σ

The form of the preservation theorem now means that if we start, for
example, with ` C :: (d0 : 1) then any resulting final configuration C 7→∗ C′
still has the same type. The persistent part is unchanged, and the linear part
has type Γ ; · ` C2 :: (d0 : 1). Since there are only ephemeral cells in C2, it
must be of the form C2, cell d0 W for some C2 and W . Since d0 : 1, it follows
by inversion that W = 〈 〉. Moreover, Γ ` · ` C2 :: (·). Again by inversion
we find C2 = (·), so the whole configuration consists of just cell d0 〈 〉.

Looking at the typing rules we can see that in general the context ∆ acts
like a frontier for an algorithm to traverse a tree with root d0, the initial
destination. It must eventually be empty which shows that every ephemeral
cell is reachable and no garbage is created.

Exercises

Exercise 1 Prove that Γ ; ∆ ` e : τ implies Γ ; ∆ ` JeK d :: (d : τ). You only
need to show the cases relevant for functions (λx. e, e1 e2 and variables x).

Exercise 2 Write a linear function inc on the binary representation of natural
numbers.

1. Provide the code as a functional expression.

LECTURE NOTES THURSDAY, NOVEMBER 21, 2019

L23.10 Linear Types

2. Following the conventions of this lecture, show the result of the trans-
lation into a process expression. You may use the optimization we
presented here. Concretely, define inc proc and inc so that the program
representation as a configuration would be !cell inc inc proc.

3. Show the initial and final configuration of computation for increment-
ing the number 1 represented as fold (B1 · (fold (E · 〈 〉))).

References

[PP19] Klaas Pruiksma and Frank Pfenning. Back to futures. Under sub-
mission, October 2019.

LECTURE NOTES THURSDAY, NOVEMBER 21, 2019

	Introduction
	Linear Typing of Processes
	Example: Bit Flipping Revisited
	Look Ma, No Garbage!
	Progress and Preservation

