
Final Exam

15-814 Types and Programming Languages
Frank Pfenning

December 13, 2019

Name: Andrew ID:

Instructions

• This exam is closed-book, closed-notes.

• You have 180 minutes to complete the exam.

• There are 6 problems.

• For reference, on pages 12–17 there is an appendix with sections on the syntax, statics, and
dynamics.

Propositions Polymorphic

as Types Bisimulation Isomorphisms Parametricity Sequentiality Concurrency

Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Total

Score

Max 45 50 40 50 30 35 250

1

1 Propositions as Types (45 pts)

Consider the following natural deduction (where we have abbreviated A true by just A):

(A⊃B)⊃ C
x

B
y

A⊃B
⊃Iz

C
⊃E

B ⊃ C
⊃Iy

((A⊃B)⊃ C)⊃ (B ⊃ C)
⊃Ix

Task 1 (5 pts). Write out the type corresponding to the proposition whose truth is established by
this deduction, using α for A, β for B, and γ for C.

Task 2 (5 pts). Write out the functional expression that can be extracted from the given natu-
ral deduction. Your variable names should correspond to the variable names introduced in the
deduction.

Task 3 (5 pts). Is this expression linear? Indicate ’yes’ or ’no’, and in case it is not, list the variables
that are not linear.

2

Task 4 (10 pts). Write a functional expression of type

((α+ γ) N (β→ γ))→ ((α→ β)→ γ)

where α, β, and γ are type variables. You do not need to write a typing derivation.

Task 5 (5 pts). Is this expression linear? Indicate ’yes’ or ’no’ and in case it is not, list the variables
that are not linear.

Task 6 (5 pts). Show the proposition of intuitionistic logic that corresponds to the type above,
using A for α, B for β, and C for γ.

Task 7 (10 pts). Write a natural deduction that corresponds to your expression. The name of
the variables introduced in ⊃I and ∨E (in case you use them) should match the names of the
corresponding variables in your functional expression. For reference, the inference rules of natural
deduction are shown in the Appendix on page 12.

3

2 Bisimulation (50 pts)

In implementations of functional languages types are generally erased from expressions before
they are evaluated. This can be justified if we agree that types cannot be observed in the outcome
of computations.

Task 1 (5 pts). In our language, where do types occur in values in positions where we would expect
to observe them? Give all such constructs.

Task 2 (15 pts). The intuition behind the erasure is that we replace type abstraction by a suitable
λ-abstraction and every type τ by the unit element. To formalize this, we define a translation
(e)∗ on expressions such that e is bisimilar to (e)∗. We show the cases for functions and one case
regarding the quantifiers. Complete the definition.

(x)∗ = x
(λx. e)∗ = λx. e∗

(e1 e2)
∗ = e∗1 e

∗
2

(Λα. e)∗ =

(e [τ])∗ = e∗ 〈 〉

(〈τ, e〉)∗ =

(case e (〈α, x〉 ⇒ e′))∗ =

Task 3 (10 pts). The translation (e)∗ is a rare example where the result is not necessarily well-typed
even if e is. Give an example of a closed e that has some type τ (that is, · ` e : τ) but the translation
has no type (that is, there is no type σ such that · ` e∗ : σ). You do not need to show a typing
derivation for e, nor prove that there is none for (e)∗.

4

Task 4 (20 pts). Nevertheless, the translation defines a bisimulation R if we define e R e∗. This
bisimulation is strong in the sense that a single step in e is simulated by a single step in e∗ and vice
versa. We consider one case in one direction of this proof. Complete the text.

We prove that if e R e∗ and e 7→ e′ then e∗ 7→ e0 for some e0 with e′ R e0. The proof

proceeds by .

Consider all the relevant cases in the proof when e = e1 [τ] for some e1 and τ . One of the cases
will require a simple lemma regarding the behavior of (−)∗ which you should state explicitly at
the end.

5

3 Isomorphisms (40 pts)

Task 1 (10 pts). Consider the following proposed isomorphism (where α does not occur in τ).

τ
?∼= ∀α. ((τ → α)→ α)

Define functions Forth and Back between these types.

Forth :

Forth =

Back :

Back =

Task 2 (10 pts). Prove that Back ◦ Forth = λx. x for your definitions of Back and Forth.

Task 3 (20 pts). Provide functions Forth and Back for the following proposed isomorphism (where,
again α does not appear in τ).

∃β. τ
?∼= ∀α. ((∀β. τ → α)→ α)

You do not need to prove that they form an isomorphism.

Forth =

Back =

6

4 Parametricity (50 pts)

Recall the type of natural numbers in binary representation

bin ∼= (B0 : bin) + (B1 : bin) + (E : 1)

We consider a (drastically simplified) library CRYPT to encrypt and decrypt binary numbers.

CRYPT = {

type cipher

encrypt : bin -> cipher

decrypt : cipher -> bin

}

A desired property is that decrypt (encrypt v) 7→∗ v for all values v : bin.

Task 1 (5 pts). Express this library signature as an existential type Crypt.

Task 2 (5 pts). Provide a reference implementation Id : Crypt in which the “encrypted” form of a
binary number x is just x itself.

Task 3 (10 pts). Provide an alternative implementation Flip : Crypt where each bit in the encrypted
value is the opposite of the bit in original value. For this purpose, you should first define a function
flip : bin→ bin. Your function(s) should be precise regarding the uses of fold and unfold.

7

Task 4 (5 pts). State the definition of v ∼ v′ ∈ [∃α. τ]

Task 5 (5 pts). Complete the statement of the following lemma:

Lemma. For any purely positive type τ+ we have v ∼ v′ ∈ [τ+] iff .

Task 6 (20 pts). Prove that Id ∼ Flip ∈ [Crypt]. You will need to use the definition from Task 4
and the property from Task 5. If you need some properties of the flip function, please state them
without proof.

8

5 Sequentiality (30 pts)

We have translated expressions e that are evaluated sequentially to processes P that compute con-
currently. To simulate sequential evaluation we follow a particular schedule that completes com-
putation of P before starting the computation of Q for a spawn x ← P ; Q. In this problem
we formalize this computation strategy. A summary of the process language can be found in the
Appendix on page 17.

We add a new kind of process expression called sequential composition

Processes P ::= . . . | x⇐ P ; Q

and also a new form of semantic object
cont c d Q

which waits for the cell c to be filled and then continues with the computation of process Q with
destination d. One critical rule connecting the two is

proc d (x⇐ P ; Q) 7→ proc c ([c/x]P), cell c _, cont c d ([c/x]Q) (c fresh)

Task 1 (5 pts). Write a rule to “wake up” a continuation object cont c d Qwhen the cell it is waiting
on has been filled.

Task 2 (10 pts). Using the new process construct, rewrite the translations for eager pairs so they can
only be evaluated sequentially in the process language, just as they are in the functional expression
language. Make sure to annotate each destination that is written to (with ()W) or read from (with
()R).

J〈e1, e2〉K d =

Jcase e (〈x1, x2〉 ⇒ e′)K d =

9

Task 3 (15 pts). Write the translations for parallel pairs, where 〈〈e1, e2〉〉 evaluates e1 and e2 in
parallel but waits for both to finish before continuing with other computation. Specifically, 〈〈v1, v2〉〉
is a value only if both v1 and v2 are. Note that this behavior is different from concurrent pairs in
the process language in which computation referencing the components of a concurrent pair can
continue without either of them finishing. For example, we expect the following properties (where
⊥with ⊥ 7→ ⊥ is a convenient nonterminating expression):

Jcase 〈〈v1, v2〉〉 (〈〈x1, x2〉〉 ⇒ 〈〈x2, x1〉〉)K d writes a pair 〈d2, d1〉 to d
Jcase 〈〈e1,⊥〉〉 (〈〈x1, x2〉〉 ⇒ x1)K d never writes to d
Jcase 〈〈⊥, e2〉〉 (〈〈x1, x2〉〉 ⇒ x2)K d never writes to d

Complete the following definition, again annotating each destination that is written to (with ()W)
or read from (with ()R), for clarity. You should exploit sequential composition, rather than intro-
ducing any new values or continuations in the process language

J〈〈e1, e2〉〉K d =

Jcase e (〈〈x1, x2〉〉 ⇒ e′)K d =

10

6 Polymorphic Concurrency (35 pts)

In this problem we explore an extension of our process language with universal and existential
types.

Task 1 (5 pts). State briefly what we mean when we say that two types are dual in the process
language.

Task 2 (5 pts). Fill in the following table with examples of dual types in our language already.

positive negative

τ → σ

τ + σ

∃α. τ ∀α. τ

Task 3 (25 pts). We add new values 〈τ, c〉 and new continuations (〈α, x〉 ⇒ P) to the process lan-
guage so we can define the translations of expressions for universal and existential types. Com-
plete the following definitions. Take care to annotate addresses we write to or read from with ()W

and ()R respectively so that the dynamics of the result is as clear as possible.

〈τ, d〉 . (〈α, x〉 ⇒ P) =

J〈τ, e〉K d =

Jcase e (〈α, x〉 ⇒ e′)K d =

JΛα. eK d =

Je [τ]K d =

11

Appendix: Natural Deduction

Propositions

Propositions A ::= A ∧B | > | A⊃B | A ∨B | ⊥

Rules of Natural Deduction

Introduction Rules Elimination Rules

A true B true
A ∧B true

∧I
A ∧B true
A true

∧E1
A ∧B true
B true

∧E2

> true
>I

no >E rule

A true
x

...
B true

A⊃B true
⊃Ix

A⊃B true A true
B true

⊃E

A true
A ∨B true

∨I1
B true

A ∨B true
∨I2

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w

no ⊥I rule
⊥ true
C true

⊥E

12

Appendix: Expression Language Reference

Language

Types τ ::= α | τ1→ τ2 | τ1 × τ2 | 1 |
∑

i∈I(i : τi) | Ni∈I(i : τi) | ρα. τ | ∀α. τ | ∃α. τ

Expressions e ::= x (variables)
| λx. e | e1 e2 (→)
| 〈e1, e2〉 | case e (〈x1, x2〉 ⇒ e′) (×)
| 〈 〉 | case e (〈 〉 ⇒ e′) (1)
| j · e | case e (i · xi ⇒ ei)i∈I (

∑
)

| 〈|i⇒ ei|〉i∈I | e · j (N)
| fold e | unfold e (ρ)
| f | fix f. e (recursion)
| Λα. e | e [τ] (∀)
| 〈τ, e〉 | case e (〈α, x〉 ⇒ e′) (∃)

Contexts Γ ::= x1 : τ1, . . . , xn : τn (all xi distinct)
Type Contexts ∆ ::= α1 tp, . . . , αn tp (all αi distinct)

Statics and Dynamics

Functions.

∆ ; Γ, x1 : τ1 ` e2 : τ2

∆ ; Γ ` λx1. e2 : τ1→ τ2
lam

x : τ ∈ Γ

∆ ; Γ ` x : τ
var

∆ ; Γ ` e1 : τ2→ τ1 ∆ ; Γ ` e2 : τ2

∆ ; Γ ` e1 e2 : τ1
app

λx. e val
val/lam

e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

v1 val e2 7→ e′2

v1 e2 7→ v1 e
′
2

step/app2

v2 val

(λx. e1) v2 7→ [v2/x]e1
beta

Products.

∆ ; Γ ` e1 : τ1 ∆ ; Γ ` e2 : τ2

∆ ; Γ ` 〈e1, e2〉 : τ1 × τ2
pair

∆ ; Γ ` e : τ1 × τ2 ∆ ; Γ, x1 : τ1, x2 : τ2 ` e′ : τ ′

∆ ; Γ ` case e (〈x1, x2〉 ⇒ e′) : τ ′
case/pair

13

v1 val v2 val

〈v1, v2〉 val
val/pair

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

v1 val e2 7→ e′2

〈v1, e2〉 7→ 〈v1, e′2〉
step/pair2

e0 7→ e′0

case e0 (〈x1, x2〉 ⇒ e3) 7→ case e′0 (〈x1, x2〉 ⇒ e3)
step/case/pair0

v1 val v2 val

case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ [v1/x1, v2/x2]e3
step/case/pair

Unit.

∆ ; Γ ` 〈 〉 : 1
unit

∆ ; Γ ` e0 : 1 ∆ ; Γ ` e′ : τ

∆ ; Γ ` case e0 (〈 〉 ⇒ e′) : τ
case/unit

〈 〉 val
val/unit

e0 7→ e′0

case e0 (〈 〉 ⇒ e1) 7→ case e′0 (〈 〉 ⇒ e1)
step/case/unit0

case 〈 〉 (〈 〉 ⇒ e1) 7→ e1
step/case/unit

Sums.

j ∈ I ∆ ; Γ ` e : τj

∆ ; Γ ` j · e :
∑

i∈I(i : τi)
sum

∆ ; Γ ` e0 :
∑

i∈I(i : τi) ∆ ; Γ, xi : τi ` ei : τ for all i ∈ I

∆ ; Γ ` case e0 (i · xi ⇒ ei)i∈I : τ
case/sum

v val
j · v val

val/sum

e 7→ e′

j · e 7→ j · e′
step/sum

e0 7→ e′0

case e0 (i · xi ⇒ ei)i∈I 7→ case e′0 (i · xi ⇒ ei)i∈I
step/case/sum0

v val
case (j · v) (i · xi ⇒ ei)i∈I 7→ [v/xj]ej

step/case/sum

14

Lazy Records.

∆ ; Γ ` ei : τi (for all i ∈ I)

∆ ; Γ ` 〈|i⇒ ei|〉i∈I : Ni∈I(i : τi)
lrec

∆ ; Γ ` e : Ni∈I(i : τi) (j ∈ I)

∆ ; Γ ` e · j : τj
lproj

〈|i⇒ ei|〉i∈I val
val/lrec

e 7→ e′

e · j 7→ e′ · j
step/case/lrec0 〈|i⇒ ei|〉i∈I · j 7→ ej

step/case/lrec

Recursive Types.

∆ ; Γ ` e : [ρα. τ/α]τ

∆ ; Γ ` fold e : ρα. τ
fold

∆ ; Γ ` e : ρα. τ

∆ ; Γ ` unfold e : [ρα. τ/α]τ
unfold

v val
fold v val

val/fold

e 7→ e′

fold e 7→ fold e′
step/fold

e 7→ e′

unfold e 7→ unfold e′
step/unfold0

v val
unfold (fold v) 7→ v

step/unfold

Fixed Point Expressions.

∆ ; Γ, f : τ ` e : τ

∆ ; Γ ` fix f. e : τ
fix

fix f. e 7→ [fix f. e/f]e
step/fix

Universal Quantification.

∆, α tp ; Γ ` e : τ

∆ ; Γ ` Λα. e : ∀α. τ
tplam

∆ ; Γ ` e : ∀α. τ ∆ ` σ tp

∆ ; Γ ` e [σ] : [σ/α]τ
tpapp

Λα. e val
val/tplam

e 7→ e′

e [τ] 7→ e′ [τ]
step/tpapp0

(Λα. e)[τ] 7→ [τ/α]e
step/tpapp

15

Existential Quantification.

∆ ` σ tp ∆ ; Γ ` e : [σ/α]τ

∆ ; Γ ` 〈σ, e〉 : ∃α. τ
exists

∆ ; Γ ` e : ∃α. τ ∆, α tp ; Γ, x : τ ` e′ : τ ′

∆ ; Γ ` case e (〈α, x〉 ⇒ e′) : τ ′
case/exists

v val
〈σ, v〉 val

val/exists
e 7→ e′

〈σ, e〉 7→ 〈σ, e′〉
step/exists1

e0 7→ e′0

case e0 (〈α, x〉 ⇒ e1) 7→ case e′0 (〈α, x〉 ⇒ e1)
step/case/exists0

v val
case 〈σ, v〉 (〈α, x〉 ⇒ e) 7→ [σ/α, v/x]e

step/case/exists

16

Appendix: Process Language Reference

Syntax

Processes P ::= x← P ; Q allocate/spawn
| xW ← yR copy

| xW .〈 〉 | case xR (〈 〉 ⇒ P) (1)
| xW .〈y, z〉 | case xR (〈y, z〉 ⇒ P) (×)
| xW .j(y) | case xR (i(y)⇒ Pi)i∈I (+)
| xW .fold(y) | case xR (fold(y)⇒ P) (ρ)

| xR.〈y, z〉 | case xW (〈y, z〉 ⇒ P) (→)
| xR.j(y) | case xW (i(y)⇒ Pi)i∈I (N)

Dynamics

Values V ::= 〈 〉 | 〈c, d〉 | j(c) | fold(c)

Continuations K ::= (〈 〉 ⇒ P) | (〈y, z〉 ⇒ P) | (i(y)⇒ Pi)i∈I | (fold(y)⇒ P)

Cell Contents W ::= V | K

Configurations C ::= · | C, proc d P, cell d _ | C, !cell c W

Passing Values to Continuations

〈 〉 . (〈 〉 ⇒ P) = P
〈d1, d2〉 . (〈x1, x2〉 ⇒ P) = [d1/x1, d2/x2]P
j(d) . (i(y)⇒ Pi)i∈I = [d/y]Pj

fold(d) . (fold(y)⇒ P) = [d/y]P

Computation Rules

proc d (x← P ; Q) 7→ proc c ([c/x]P), cell c _, proc d ([c/x]Q)
(alloc/spawn)

!cell c W, proc d (dW ← cR), cell d _ 7→ !cell d W (copy)

proc d (dW .V), cell d _ 7→ !cell d V (1,×,+, ρ)
!cell c V, proc d (case cR K) 7→ proc d (V . K) (1,×,+, ρ)

proc d (case dW K), cell d _ 7→ !cell d K (→,N)
!cell c K, proc d (cR.V) 7→ proc d (V . K) (→,N)

17

