Assignment 5
Mutual Recursion

15-814: Types and Programming Languages
Frank Pfenning

Due Tuesday, October 15, 2019

1 Mutually Recursive Types

Task 1 (L10.1, 30 points) It is often intuitive to define types in a mutually recursive way. As a
simple example, consider how to define binary numbers in standard form, that is, not allowing
leading zeros. We define binary numbers in standard form (std) mutually recursively with strictly
positive binary numbers (pos).

std
pos

(E: 1)+ (BO : pos) + (B1 : std)
(BO : pos) + (B1 : std)

111

1. Using only std, pos, and function types formed from them, give all types of E, B0, and Bl
defined as follows:
E = fold (E-())
B0 = Mz.fold (BO-x)

Bl = Mz.fold (B1-x)

2. Define the types std and pos explicitly in our language using the p type former so that the
isomorphisms stated above hold.

3. Does the function inc from Section L10.6 have type std — pos? Rewrite it in the syntax from
Section L10.4, where you may use the function Unfold (defined in that section). Then either
explain where the typing fails or indicate that it has that type. You do not need to write out a
typing derivation.

4. Write a function pred : pos — std that returns the predecessor of a strictly positive binary
number. You may use pattern matching to define your function, but you must make sure it is
correctly typed.

ASSIGNMENT 5 DUE TUESDAY, OCTOBER 15, 2019



Mutual Recursion HWS5.2

2 Mutually Recursive Functions

Task 2 (L10.2, 30 points) It is often convenient to define functions by mutual recursion. As a simple
example, consider the following two functions on bit strings determining if it has even or odd parity.

bin >~ (E:1)+ (BO:bin) + (B1: bin)
even : bin — bool

odd : bin — bool

even E = true

even (B0 x) = evenx

even (B1x) = oddzx

odd E = false

odd (BOx) = oddz

odd (Bl z) = evenx

1. Write a function parity with a single fixed point constructor and use it to define even and odd.
You may use pattern matching, but the pattern of recursion (and the fact you only need one
fixed point) should be clear. Also, state the type of your parity function explicitly.

2. More generally, our simple recipe for implementing a recursively specified function using the
fixed point constructor in our call-by-value language goes from the specification

f T — T

fx = hfzx

to the implementation
f = fixg.\x.hgx

It is easy to misread these, so remember that by our syntactic convention, i f x stands for
(h f) x and similarly for h g x. Give the type of h and show by calculation that f satisfies the
given specification by considering f v for an arbitrary value v of type 7.

3. A more general, mutually recursive specification would be

f DT T
g L 01— 02
fz = hfgx
gy = hafgy

Give the types of hy and hs.

4. Show how to explicitly define f and ¢ in our language from h; and hs using the fixed point
constructor and verify its correctness by calculation as in part 2. You may use any other types
in the language introduced so far (pairs, unit, sums, and recursive types).

ASSIGNMENT 5 DUE TUESDAY, OCTOBER 15, 2019



	Mutually Recursive Types
	Mutually Recursive Functions

