
Assignment 9
Lazy Records

15-814: Types and Programming Languages
Frank Pfenning

Due Tuesday, November 26, 2019

Task 1 (L20.1, 30 points) A lazy record is a generalization of a lazy pair where each alternative has
a different label i. For example, potentially infinite streams stream α of elements of some type α
may be defined as

stream α ∼= (hd : α) N (tl : stream α)

As an example of the general syntax 〈|i⇒ ei|〉i∈I for a lazy record with the fields in the finite index
set I , we show how to define a stream of just 0s (omitting the standard definitions of zero and succ):

nat ∼= (z : 1) + (s : nat)

zero : nat
succ : nat→ nat

zeros : stream nat
zeros = fold 〈|hd⇒ zero, tl⇒ zeros|〉

In fully explicit form, the definition of zeros would be a fixed point:

zeros = fix f. fold 〈|hd⇒ zero, tl⇒ f |〉

but we prefer the first form where the recursion is implicit. This definition terminates because the
record with field hd and tl is lazy. We select an element of a lazy record e by writing e · j for a label
j (which is just the postfix version of the injection into a sum j · e). As an example, the following
function adds 1 to every elements of the given stream.

succs : stream nat→ stream nat
succs = λs. fold 〈|hd⇒ succ ((unfold s) · hd), tl⇒ succs ((unfold s) · tl)|〉

ones = succs zeros

Write functions satisfying the following specifications:

1. up from : nat→ stream nat where up from n generates the stream n, n+ 1, n+ 2,

2. alt : ∀α. stream α→ stream α→ stream α which alternates the elements from the two streams,
starting with the first element of the first stream.

ASSIGNMENT 9 DUE TUESDAY, NOVEMBER 26, 2019

Lazy Records HW9.2

3. filter : ∀α. (α→ bool)→ stream α→ stream α which returns the stream with just those elements
of the input stream that satisfy the given predicate.

4. map : ∀α.∀β. (α→ β)→ (stream α→ stream β) which returns a stream with the result of
applying the given function to every element of the input stream.

5. diag : ∀α. stream (stream α)→ stream α which returns a stream consisting of the first element
of the first stream, the second element of the second stream, the third element of the third
stream, etc.

You may use earlier functions in the definition of later ones. To avoid some recomputation, you
may use the syntactic sugar of let x = e in e′ to stand for (λx. e′) e.

Your functions should be such that only as much of the output stream is computed as necessary
to obtain a value of type stream α but not the components contained in the lazy record. For example,
the definition of succs′ below would be still terminating, but slighty too eager (for example, we may
never access the element at the head of the resulting stream) , while the second succs′′ would not
even be terminating any more.

succs′ = λs. let x = succ ((unfold s) · hd)
in fold 〈|hd⇒ x, tl⇒ succs′ ((unfold s) · tl)

succs′′ = λs. let s′ = succs” ((unfold s) · tl)
in fold 〈|hd⇒ succ ((unfold s) · hd), tl⇒ s′|〉

Task 2 (L20.2, 30 points) For lazy records as introduced in Task 1 we introduce the following
syntax in our language of expressions:

Types ::= . . . | Ni∈I(i : τi)
Expressions ::= . . . | 〈|i⇒ ei|〉i∈I | e · j

1. Give the typing rules and the dynamics (stepping rules) for the new constructs.

2. Extend the translation JeK d to encompass the new constructs. Your process syntax should
expose the duality between eager sums and lazy records.

3. Extend the transition rules of the store-based dynamics to the new constructs. The trans-
lated form may permit more parallelism than the original expression evaluation, but when
scheduled sequentially they should have the same behavior (which you do not need to prove).

4. Show the typing rules for the new process constructs.

ASSIGNMENT 9 DUE TUESDAY, NOVEMBER 26, 2019

