Lecture Notes on
Parametric Polymorphism

15-814: Types and Programming Languages
Frank Pfenning, lecture by David Kahn

Lecture 6
Thursday, September 16, 2021

1 Introduction

Polymorphism refers to the possibility of an expression to have multiple types.
In that sense, the simply-typed A-calculus is polymorphic. For example, we
have

Ae.x:T—>T

for any type 7. More specifically, then, we are interested in reflecting this
property in a type itself. For example, we might want to state

.z Va.a—«

to express all the types above, but now in a single form. This means we
could now reason within the type system about polymorphic functions
rather than having to reason only at the metalevel with statements such
as “for all types T, ...”. Our system will be slightly different from this, for
reasons that will become apparent later.

Christopher Strachey [Str00] distinguished two forms of polymorphism:
ad hoc polymorphism and parametric polymorphism. Ad hoc polymorphism
refers to multiple types possessed by a given expression or function which
has different implementations for different types. For example, plus might
have type int — int — int but also float — float — float with different implemen-
tations at these two types. Similarly, a function show : Va. oo — string might
convert an argument of any type into a string, but the conversion function
itself will of course have to depend on the type of the argument: printing
Booleans, integers, floating point numbers, pairs, etc. are all very different

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

L6.2 Parametric Polymorphism

operations. Even though it is an important concept in programming lan-
guages, in this lecture we will not be concerned with ad hoc polymorphism.

In contrast, parametric polymorphism refers to a function that behaves the
same at all possible types. The identity function, for example, is paramet-
rically polymorphic because it just returns its argument, regardless of its
type. The essence of “parametricity” wasn’t rigorously captured until the
beautiful analysis by John Reynolds [Rey83], which we will sketch in a later
lecture on parametricity. In this lecture we will present typing rules and
some examples.

Slightly different systems for parametric polymorphism were discovered
independently by Jean-Yves Girard [Gir71] and John Reynolds [Rey74]. Gi-
rard worked in the context of logic and developed System F, while Reynolds
worked directly on type systems for programming language and designed
the polymorphic A-calculus. With minor syntactic changes, we will follow
Reynolds’s presentation.

2 Universally Quantified Types

We would like to add types of the form Ya. 7 to express parametric poly-
morphism. The fundamental idea is that an expression of type Va.7 is a
function that takes a type as an argument.

This is a rather radical change of attitude. So far, our expressions con-
tained no types at all, and suddenly types become embedded in expressions
and are actually passed to functions! Let’s see where it leads us. Now we
could write

Ao Az Voo — «a

but abstraction over a type seems so different from abstraction over a ex-
pressions that we make up a new notation and instead write

Ao z.z:Va.a— «

using a capital lambda (A). In order to express the typing rules, our contexts
carry two different forms of declarations: x : 7 (as we had so far) and now
also a type, expressing that « is a type variable. The typing judgment then is
still I" - e : 7, without repeated variables or type variables in I'. There will
be some further presuppositions mentioned later. For type abstractions, we
have the rule

Iatypere:t

I'-Aa.e:Va.1

tp/tplam

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

Parametric Polymorphism L6.3

Here, o is a bound variable in Aa. e and Ya. 7 so we allow it to be silently
renamed if it conflicts with any variable already declared in I'.

We haven’t yet seen how « can actually appear in e, but we can already
verify:

var
atype,x o+ xT:a
lam
atype = Ar. v a—
tp/tplam

‘Aoz z:Va.a— o

The next question is how do we apply such a polymorphic function to a
type? Again, we could just write e 7 for the application of a polymorphic
function e to a type 7, but we would like it to be more syntactically apparent
so we write e [T].

Let’s return to Church’s representation of natural numbers. With the
quantifier, we now have

nat =Vo.(a—a) > a—«
Then we can verify with typing derivations as above:

zero : nat
zero = Aa.)s.M\z.z

We also expect the successor function to have type nat — nat, but there is one
slightly tricky spot. We start:

succ : nat— nat
succ = /\n.Aa.)\s.)\z.s(nI:b

Before, we just applied n to s and z, but now n : nat, which means that it
expects a type as its first argument! At this point (in a hypothetical typing
derivation we did not write out) we have the context

n:nat,atype,s:a—>a,z: «

so we need to instantiate the quantifier with «, which next requires argu-
ments of type o - a and a (which we have at hand with s and z).

succ : nat—nat
succ = Mn.Aa.As.Az.s(nfa]sz)

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

L6.4 Parametric Polymorphism

It becomes more interesting with the addition function. Recall that in the
untyped setting we had

plus = An. A\k.n succ k

iterating the successor function n times on argument k. The start of the
typed version is again relatively straightforward: the only difference is that
we need to apply n first to a type.

plus : nat— nat - nat

plus = An.\k.n [I:'] succ k

But what type do we need? We have that the next argument has type
nat - nat and the following one nat, so that we need to instantiate o with

nat!
plus : nat— nat — nat

plus = An.\k.n [nat] succ k

So we need that
n:Vo.(a—a)—>a—«

and then
n [nat] : (nat - nat) - nat - nat

We should point out that this definition of addition cannot be typed in the
simply-typed A-calculus. In that setting, n can only be applied to functions
s of type o — « to iterate starting from z : a. This means that very few
functions are actually definable—essentially only functions like successor
and addition, but not exponentiation, or predecessor (see Exercise 2).

A significant aspect of this is that we instantiate the quantifier in nat =
Va. (o — a) > a — a with nat itself.

These considerations lead us to a rule where we substitute into the type:

'~e:Va.r I'+otype

F'relo]:[o/a]r

tp/tpapp

The second premise is there to check that the type o which is part of the
expression e [o] is valid. At this point in the course, this just means that all
the type variables occurring in o are declared in I' (just like all the expression
variables in e must be declared in I).

Here is a small sample derivation, assuming we have defined

id : Va.a-«
id = Aoz x

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

Parametric Polymorphism L6.5

Then we can typecheck:

‘+id:Va.a—a -+ nat type

: tpapp
-+ id [nat] : nat - nat -+ 3 :nat

— app
-+ id [nat] 3 : nat

where we need some rules to verify that nat is a closed type (that is, has no
free type variables). Fortunately, that’s easy: we just check all the compo-
nents of a type.

I'+~71type T+ 7o type atype el
tp/arrow —— tp/tpvar
'~ 71— 7 type I'+ o type

I', a type - T type

tp/forall

I' = Vo. T type

3 Summary: Typing Rules

For the “official” typing rules it is convenient to assume that A-abstractions
are annotated with the type of the bound variable. In practice, we use a
more flexible set of rules where A-abstractions do not necessarily have to be
annotated.

Here is the summary of the language of the polymorphic A-calculus:

Types T = a|m->n| VYo
Expressions e = z|AzT.e|eie|Aa.e|e[T]

Contexts r | T,x:7|T,a type
We assume that all variables and type variables in a context are distinct, and
rename bound variable or type variables to maintain this invariant.

In order to avoid any “loopholes” in typing derivations we would like to
presuppose that the context is well-formed, which comes down to ensuring
that all the types occurring in them are valid. We did not discuss this
somewhat technical point in lecture, but for completness’ sake we provide
the rules. The judgment I' ctx means that I' is a valid (or well-formed)
context.

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

L6.6 Parametric Polymorphism
T ctx [ctx I'+7 type
ctx/emp ——————— ctx/tpvar ctx/var
() ctx (T, o type) ctx (T2 :7) ctx

We now assume that whenever we write I' - e : 7 or I'' = 7 type then
I ctx. In type theory we call this a presupposition and we are always careful
to maintain this presupposition.

I'=1itype T'yz1:7m+-e2:72 z:7€el
tp/lam — tp/var
FI—)\.%'llTl.egiTl—>T2 'rx:7
I'ceirtmm—->m TI'Hes:im
tp/app

PI—€162:7'1

I'ce:Va.r TI'+otype
T'+elo]:[o/a]T

INoatyper-e:t

tp/tplam tp/tpapp

I'-Aa.e:Va. 1

We then have the property (called regularity in the textbook) that if
I' - e : 7 under the presupposition that I' ctx then I" - 7 type. This is easy to
verify by rule induction (see Exercise 3).

4 Typing Self-Application Polymorphically

As an exercise in building a typing derivation, we provide a polymorphic
type for self-application Az. x x. We accomplish this by allowing = to have
a polymorphic types Ya. a - o. We call this type u because there is exactly
one normal term of this type: the polymorphic identity function. Applying
the identity to itself seems plausible in any case. So we claim:

u = Ya.a—-a
w u—>u
w = Ar.zu]x

This is established by the following typing derivation. When you want to
build such a derivation yourself, you should always built it “bottom-up”,
starting with the final conclusion. The fact that the rules are syntax-directed

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

Parametric Polymorphism L6.7

means you have no choice which rule to choose, but some parts of the type
may be unknown and may need to be filled in later.

$:ul—x[u]:|:| a::ul—x:I:|

tp/app
rxiurz[u]z:iu

tp/lam
FAx.x[u]lziu—>u /

As a rule of thumb, it seems to work best to first fill in the first premise of an
application (rule tp/app) and then the second. Continuing in the left branch
of the derivation (and remembering that u = Va. oo — o

T u, o type = a— o type
tp/var tp/forall
T:u b utype
tp/tpapp

riurz[ul:u—u Tiukx:

rT:ukFExT:U

tp/app
rxiurz[u]z:iu

tp/lam
‘FAr.z[u]lziu—>u /

The type emphasized in red arises as [u/a](a - a) = © — u. The second
premise of the application is immediate by the typing rule for variables and
we obtain

T u, o type - o — o type
tp/var tp/forall

T:ubutype
tp/tpapp —— tp/var
riurx[u]:u->u TiurFTiU
tp/app

rT:ukEITUu

riurx[u]lziu

tp/lam
‘FAr.z[u]lziu—>u /

The fact that a—« is a valid type follows quickly by the tp/arrow and tp/tpvar
rules. There are more types that work for self-application (see Exercise 4).
Crucial in this example is that we can instantiate the quantifier in
u = V. a — a with v itself. This “self-referential” nature of the type quanti-
fier is called impredicativity because it quantifies not only over types already
defined, but also itself. Some systems of type theory reject impredicative
quantification because the meaning of the quantified type is not constructed
from the meaning of types we previously understand. Impredicativity was

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

O ® N G e W N e

[T S
S 0 e N e W= O

L6.8 Parametric Polymorphism

also seen as a source of paradoxes, although Girard did give a syntactic
argument for the consistency of System F [Gir71] with impredicative quan-
tification.

5 Church Numerals Revisited

We can now revisit the representation of Church numerals and express
them and functions on them in the polymorphic A-calculus. We present
the definitions in the language LAMBDA, which uses polymorphic types
when files have extension .poly or the command line argument -1 poly.
We use !a as concrete syntax for Ya, and /\a for Aa. Type definitions
are preceded by the keyword type, and type declarations for variable
definitions are preceded by the keyword dec1.

type nat = la. (a —> a) -> a —> a

decl zero : nat
decl succ : nat —-> nat

defn zero = /\a. \s. \z. z
defn succ = \n. /\a. \s. \z. s (n [a] s z)

decl plus : nat —-> nat -> nat
defn plus = \n. \k. n [nat] succ k

decl times : nat -> nat -> nat

defn times = \n. \k. n [nat] (plus k) zero
norm _0 = zero

norm _1 = succ _0

norm _2 = succ _1

norm _3 = succ _2

norm _6 = times _2 _3

Listing 1: Polymorphic natural numbers in LAMBDA
So far, this straightforwardly follows the structure of the motivating
examples. In order to represent the predecessor function, we require pairs
of natural numbers. But what are their types? Recall:

pair = x. \y. \k. kxy

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

© ® N G R W N =

O
N =]

Parametric Polymorphism L6.9

from which conjecture something like
pair : nat - nat - (nat > nat - 7) -> 7

where 7 is arbitrary. So we realize that this function is polymorphic and we
abstract over the result type of the continuation. We call the type of pairs of
natural numbers nat2. In the type of the pair function it is then convenient to
place the type abstraction after the two natural numbers have been received.

nat2 = Vo.(nat—nat - a) >«

pair : nat — nat — nat2
pair = Az.\y.Aoa.Ak.kxy

Now we can define the pred2, with the specification that pred2 n = pair v n = 1.
We leave open the two places we have to provide a type.

pred2 : nat - nat — nat
pred2 = An.n [I:'] (Ap.p [I:'] (Az. Ay. pair (succ x) x)) (pair zero zero)

In the first box, we need to fill in the result type of the iteration (which is the
type argument to 1), and this is nat2. In the second box we need to fill in the
result type for the decomposition into a pair, and that is also nat2. Then, for
the final definition of pred we only extract the second component of the pair,
so the continuation only returns a natural number rather than a pair.

pred : nat— nat
pred = An.n[nat] (Az. \y.y)

Below is a summary of this code in LAMBDA.

type nat2 = 'a. (nat -> nat -> a) -> a

decl pair : nat -> nat —-> nat?2
defn pair = \x. \y. /\a. \k. k x y

decl pred2 : nat -> nat2
defn pred2 = \n. n [nat2] (\p. p [nat2] (\x. \y. pair (succ x)
(pair zero zero)

decl pred : nat -> nat
defn pred = \n. pred2 n [nat] (\x. \y. y)

norm

_6_5 = pred2 _6
norm _5 = pred _6

Listing 2: Predecessor on natural numbers in LAMBDA

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

L6.10 Parametric Polymorphism

6 Theory

We did not discuss this in lectures, but of course we should expect the prop-
erties for the simply-typed A-calculus to carry over, once suitable reduction
rules have been defined. We will talk about these at the beginning of the
next lecture.

One remarkable fact about the polymorphic A-calculus (which is quite
difficult to prove) is that every expression still has a normal form.

Exercises

Exercise 1 Fill in the blanks in the following judgments so that it holds, or
indicate there is no way to do so. You do not need to justify your answer or
supply a typing derivation, and the types do not need to be “most general”
in any sense. As always, feel free to use LAMBDA to check your answers.

(i)] ‘l—Va.aeﬂtype

(i) | - Aa.z[a—>aly[8]: Va8

(i) -+ Az 2| IEZH |

(iv) a type | BEREY:

(v) @2 ¥a. (VB.B > B) > o, type - | (v =) >
Exercise 2

(i) Find a definition of plus : nat - nat - nat that works in the simply-
typed A-calculus in the sense that we need to instantiate the type
Ya. (a - a) - a - a only with a type variable.

(ii) Give a simply-typed definition (in the sense of part (i)) for times or
conjecture that none exists.

Exercise 3 Prove that if I' - e : 7 under the presupposition that I' ctx then
I' = 7 type.

Exercise 4 We write F' for a (mathematical) function from types to types
(which is not expressible in the polymorphic A-calculus but requires system

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

Parametric Polymorphism L6.11

F“). A more general family of types (one for each F) for self-application is
given by

up = Va.a-F(a)
wrp up—> F(up)
wp = Ar.z|up]x

We recover the type from this lecture with ' = Aa. o. You may want to verify
the general typing derivation in preparation for the following questions, but
you do not need to show it.

(i) Consider F' = Aa. v = a. In this case up = bool. Calculate the type and
characterize the behavior of wr as a function on Booleans.

(ii) Consider F' = Aa.(a - a) - . Calculate up, the type of wr, and
characterize the the behavior of wr. Can you relate ur and wr to the
types and functions we have considered in the course so far?

References

[Gir71] Jean-Yves Girard. Une extension de l'interpretation de godel a
I'analyse, et son application a 1’élimination des coupures dans
’analyse et la théorie des types. In Proceedings of the Second Scandi-
navian Logic Symposium, pages 63-92, Amsterdam, 1971.

[Rey74] John C. Reynolds. Towards a theory of type structure. In B. Robi-
net, editor, Programming Symposium, volume 19 of Lecture Notes in
Computer Science, pages 408—425, Berlin, 1974. Springer-Verlag.

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymor-
phism. In R.E.A. Mason, editor, Information Processing 83, pages
513-523. Elsevier, September 1983.

[Str00] Christopher Strachey. Fundamental concepts in programming lan-
guages. Higher-Order and Symbolic Computation, 13:11-49, 2000.
Notes for lecture course given at the International Summer School
in Computer Programming at Copenhagen, Denmark, August
1967.

LECTURE NOTES THURSDAY, SEPTEMBER 16, 2021

	Introduction
	Universally Quantified Types
	Summary: Typing Rules
	Typing Self-Application Polymorphically
	Church Numerals Revisited
	Theory

