Lecture Notes on
From A-Calculus to Programming Languages

15-814: Types and Programming Languages
Frank Pfenning

Lecture 7
Tuesday, September 21, 2021

1 Introduction

First, we will briefly talk about the dynamic of polymorphism (which ab-
stracts over types and applies functions to types), and then exercise poly-
morphism a little to generalizing iteration from natural numbers to richer
types, using trees as an example.

Then we take the a big step from a pure A-calculus to real programming
languages by changing our attitude on data: we would like to represent
them directly instead of indirectly as functions, for several reasons explained
in Section 4.

2 Dynamics of Polymorphism*

The material from this section was not covered in lecture, but is included
here, anticipating its introduction later in the course.

We already gave the typing rules for parametric polymorphism in the
previous lecture, but we did not yet update the rules for computation or
normal and neutral terms. A key observation is that the structure of the
types in our little language is such that we should be able to just add new
rules without touching the old ones in any way. This form of modularity
also carries over to the proofs of the key properties we would like the system
to have: they decompose into cases along the lines of the type constructs we
have.

First, reduction:

LECTURE NOTES TUESDAY, SEPTEMBER 21, 2021

L7.2 From \-Calculus to Programming Languages

red /tpbeta
(Aa.e) [1] — [T/ale
e —¢€ e— ¢
red /tplam ———— red/tpapp
Aa.e — Aa. e / e[r] — €' [7] / !

There is no red/tpapp, rule since we do not reduce types themselves.

In this definition we use substitution [7/aje, which is defined in the ex-
pected way, possibly renaming type variables bound by AS. o or V3. sigma
that may occur in e so as to avoid capturing any type variables free in 7.

There are also two new rules for normal and neutral terms, retaining all
the others.

e normal e neutral
norm/lam ——— neut/app

Aav. e normal e [7] neutral

The key theorems are preservation and progress, establishing a connection
between types, reduction, and normal forms.

Preservation. If 'Fe:7ande — ¢/ thenT' ¢’ : 7
Progress. If I' - e : 7 then either e — ¢’ for some €’ or e normal.

Finality of Normal Forms. ThereisnoI' - e : 7 such that e — ¢’ for some
¢’ and e normal.
3 Generalizing Iteration

It may be helpful to think of iteration on natural numbers to arise from they
way they are constructed

zero : nat
succ : nat — nat

Namely, if we imagine a term

succ (succ ... (succzero)) : nat

LECTURE NOTES TUESDAY, SEPTEMBER 21, 2021

From \-Calculus to Programming Languages L7.3

then we replace the constructor by appropriate functions and constants (using
g for succ and c¢ for zero

g(g...,(gc))

Now we should work out the types of g and c. Clearly, g : 7 — 7 for any
type 7 and ¢ : 7. We can obtain these types from the type of zero and succ by
replacing nat with 7. So, if we want to see n : nat as an iterator then

nat =Va.(a > a) 2 a =«

where the first argument is the result type 7 following by a function g : 7— 7
and a constant c : 7.
Let’s follow the same recipe for trees of natural numbers. They are
generated from
node : tree — nat — tree — tree
leaf @ tree

In this representation, leaves carry no information and every interior node
has a left subtree, a natural number, and right subtree. For example, the tree

node
node node
leaf 1 leaf leaf 3 leaf

would be constructed with
node (node leaf 1 leaf) 2 (node leaf 3 leaf)

To see the form of an iterator we replace the constructors node and leaf with
functions g and a constant ¢, respectively, which would give use the tree

/\
/\ /\

LECTURE NOTES TUESDAY, SEPTEMBER 21, 2021

G W N =

L7.4 From \-Calculus to Programming Languages

This time, we see that we should have

g T—nat—=T1—=7T
c T

for an arbitrary type 7. Once again, this was obtained from replacing the
type tree in the types of node and leaf with an arbitrary type. We can express
this as a polymorphic type as:

tree = Va. (« — nat - a — a) - a — «
As an example, to sum up the elements of the tree we would define

sum : tree — nat
sum = M.t [nat] (Ax. An. Ay. plus = (plus n y)) zero

First, we pass to t the result type nat, then a function g expecting the sum
of the left subtree as x, then n as the value stored in the node, and then the
sum of the right subtree as y. The function g then just has to add these three
numbers to obtain the sum of a tree. Since the leaf does not contain any
number, its value is 0 (the neutral element of addition).

The definition of the tree constructors themselves follow the structure of
the type. The easy case first:

leaf : tree
leaf = Aa.\n. M.l

For the node constructor we have the parameter n at the head of the term, and
we just have to remember to match the types by applying the representations
of the left and right subtrees to all parameters (including the type «).

node : tree — nat — tree — tree
node = At Az Ma. Aa. An.Al.n (t1 [a] nl) z (t2 [a] n 1)

We did not live-code this in lecture, but below is the code for trees in
LAMBDA, which should come after the code for natural number from the
last lecture. You can find this code online at tree.poly.

type tree = !'a. (a -> nat -> a -> a) -> a —> a

decl leaf : tree
decl node : tree —-> nat -> tree -> tree

defn leaf

/\a. \n. \1. 1

LECTURE NOTES TUESDAY, SEPTEMBER 21, 2021

http://www.cs.cmu.edu/~fp/www/courses/15814-f20/lectures/07-eval/tree.poly

From \-Calculus to Programming Languages L7.5

defn node = \tl. \x. \t2. /\a. \n. \1. n (tl [a] n 1) x (t2

decl sum : tree —-> nat

defn sum = \t. t [nat] (\sl. \x. \s2. plus sl (plus x s2)) zero

norm t123 = node (node leaf _1 leaf) _2 (node leaf _3 leaf)
norm s6 = sum tl23
conv s6 = _6

Listing 1: Trees of natural numbers in LAMBDA

Other data types have similar encodings. For example, we can think
of the natural numbers in binary form (type bin) as generated from the

constructors
b0 : bin—bin bit0

bl : bin—bin bitl
e : bin empty bit string
where the least significant bit comes first (“little endian”). Here are some
examples:
02 = e
1)2 = ble
(2)2 = bo(ble)
(6)2 = b0 (bl(ble))

To obtain the representation in the untyped A-calculus abstract over all the
constructors, so, for example

(6)2 = Ab0.Abl.)e.b0 (bl (ble))

To assign a type and represented a number by its iterator, we have to replace
bin with a and quantify over all possible instances. That is

bin = Va. (a—a)—=(a—a)— a =«
—_—— ~——
b0 bl e

Iteration in this case now plugs in functions g for b0, g; for bl and ¢ for e.

You may try to define some interesting functions over this representation.

4 Evaluation versus Reduction

The A-calculus is exceedingly elegant and minimal, a study of functions in
the purest possible form. We find versions of it in most, if not all modern

LECTURE NOTES TUESDAY, SEPTEMBER 21, 2021

[a]

n 1)

L7.6 From \-Calculus to Programming Languages

programming languages because the abstractions provided by functions are
a central structuring mechanism for software. On the other hand, there are
some problem with the data-as-functions representation technique of which
we have seen Booleans, natural numbers, and trees. Here are a few notes:

Generality of typing. The untyped A-calculus can express fixed points (and
therefore all partial recursive functions on its representation of nat-
ural numbers) but the same is not true for Church’s simply-typed
A-calculus or even the polymorphic A-calculus where all well-typed
expressions have a normal form. Types, however, are needed to un-
derstand and classify data representations and the functions defined
over them. Fortunately, this can be fixed by introducing recursive types,
so this is not a deeper obstacle to representing data as functions.

Expressiveness. While all computable functions on the natural numbers can
be represented in the sense of correctly modeling their input/output
behavior, some natural algorithms are difficult or impossible to express.
For example, under some reasonable assumptions the minimum func-
tion on numbers n and k has complexity O(max(n, k)) [CF98], which
is surprisingly slow, and our predecessor function took O(n) steps.
Other representations are possible, but they either complicate typing
or inflate the size of the representations.

Observability of functions. Since reduction results in normal forms, to
interpret the outcome of a computation we need to be able to inspect
the structure of functions. But generally we like to compile functions
and think of them only as something opaque: we can probe it by
applying it to arguments, but its structure should be hidden from us.
This is a serious and major concern about the pure A-calculus where
all data are expressed as functions.

In the remainder of this lecture we focus on the last point: rather than
representing all data as functions, we add data to the language directly, with
new types and new primitives. At the same time we make the structure of
functions unobservable so that implementation can compile them to machine
code, optimize them, and manipulate them in other ways. Functions become
more extensional in nature, characterized via their input/output behavior
rather than distinguishing functions that have different internal structure.

LECTURE NOTES TUESDAY, SEPTEMBER 21, 2021

From \-Calculus to Programming Languages L7.7

5 Revising the Dynamics of Functions

The statics, that is, the typing rules for functions, do not change, but the way
we compute does. We have to change our notion of reduction as well as
that of normal forms. Because the difference to the A-calculus is significant,
we call the result of computation values and define them with the judgment
e value. Also, we write e — ¢’ for a single step of computation. For now,
we want this step relation to be deterministic, that is, we want to arrange
the rules so that every expression either steps in a unique way or is a value.
We’ll call this property sequentiality, since it means execution is sequential
rather than parallel or concurrent. Furthermore, since we do not reduce
underneath A-abstractions, we only evaluate expressions that are closed, that
is, have no free variables.
When we are done, we should then check the following properties.

Preservation. If --e:7and e+ ¢ then- ¢’ : 7.
Progress. For every expression - I- e : 7 either e — ¢’ for some €’ or e value.

Finality of Values. There is no - i~ e : 7 such that e — ¢’ for some ¢’ and
e value.

Sequentiality. If e — e; and e — eg then e; = ea.

Devising a set of rules is usually the key activity in programming lan-
guage design. Proving the required theorems is just a way of checking one’s
work rather than a primary activity. First, one-step computation. We suggest
you carefully compare these rules to those in Lecture 4 where reduction
could take place in arbitrary position of an expression.

val/lam
A\x. e value

Note that e here is unconstrained and need not be a value.

e1 — €}

—————— step/app beta
e1e9 > €] g ! (Az.eq1) ea — [ea/x]er

These two rules together constitute a strategy called call-by-name. There are
good practical as well as foundational reasons to use call-by-value instead,

LECTURE NOTES TUESDAY, SEPTEMBER 21, 2021

L7.8 From \-Calculus to Programming Languages

which we obtain with the following three alternative rules.

e1 €} ey value e — €l

— step/app, p step/app,
€162 > e €2 €1 €2 > e1 €9

es value

step/app/lam
(Ax.e1)ea — [ea/x]e; P/app/

We achieve sequentiality by requiring certain subexpressions to be values.
Consequently, computation first reduces the function part of an application,
then the argument, and then performs a (restricted form) of S-reduction.

There are a lot of spurious arguments about whether a language should
support call-by-value or call-by-name. This turns out to be a false dichotomy
and only historically in opposition.

We could now check our desired theorems, but we wait until we have
introduced the Booleans as a new primitive type.

6 Booleans as a Primitive Type

Most, if not all, programming languages support Booleans. There are two

values, true and false, and usually a conditional expression if e; then ey else e3.
From these we can define other operations such as conjunction or disjunc-

tion. Using, as before, o for type variables and x for expression variables,

our language then becomes:

Types T u= a|mn —7|VYa. 7| bool
Expressions e == x| Az.e|ejex|Aa.e]|e]T]
| true| false | if e; e3 e3

The additional rules seem straightforward: true and false are values, and
a conditional computes by first reducing the condition to true or false and
then selecting the correct branch.

true value false value

e1— €}

step/if
if e1 €2 e3> if €] g e3

- step/if /true . step/if /false
if true ey e3 — €9 if false ex e3 — e3

LECTURE NOTES TUESDAY, SEPTEMBER 21, 2021

From \-Calculus to Programming Languages L7.9

Note that we do not evaluate the branches of a conditional until we know
whether the condition is true or false.
How do we type the new expressions? true and false are obvious.

——— tp/true ——— tp/false
I' F true : bool P/ I' F false : bool P/

The conditional is more interesting. We know its subject e; should be of type
bool, but what about the branches and the result? We want type preservation
to hold and we cannot tell before the program is executed whether the
subject of conditional will be true or false. Therefore we postulate that both
branches have the same general type 7 and that the conditional has the same

type.
I'tey:bool T'key:7 I'beg:T

I'Hifejeges:

tp/if

Exercises

Exercise 1 For each of the following statements, provide either a proof or
counterexample. Consider only the case for e in the untyped A-calculus
from earlier in the course, and recall that a closed expression is one with no
free variables.

(i) For closed e, if e value then e normal.

(ii) For closed e, if e normal then e value.

Exercise 2 Show the new cases in the proof of preservation and progress
arising from parametric polymorphism.

(i) (Preservation)If'+e:7ande — ¢ thenT' ¢ : 7
(i) (Progress)IfT't- e : 7 then either e — €’ for some €’ or e normal

(iii) (Finality of Normal Forms) ThereisnoI' - e : 7 such that e — ¢’ for
some ¢’ and e normal.

Explicitly state any additional substitution properties you need (in addition
to Theorem L5.6), but you do not need to prove them.

Exercise 3 An alternative form of binary tree given in Section 3 is one where
all information is stored in the leaves and none in the nodes. Let’s call such
a tree a shrub.

LECTURE NOTES TUESDAY, SEPTEMBER 21, 2021

L7.10 From \-Calculus to Programming Languages

(i) Give the types for shrub constructors.
(ii) Give the construction of a shrub containing the numbers 1, 2, and 3.

(iii) Give the polymorphic definition of the type shrub, assuming it is repre-
sented by its own iterator.

(iv) Write a function sumup to sum the elements of a shrub.

(v) Write a function mirror that returns the mirror image of a given tree,
reflected about a vertical line down from the root.

Exercise 4 We say two types 7 and o are isomorphic (written 7 = ¢) if there
are two functions forth : 7 — o and back : ¢ — 7 such that they compose to
the identity in both directions, that is, A\x. back (forth x)) is equal to Az. z and
Ay. forth (back y) is equal to \y. y.

Consider the two types
nat = Va.(a—a) va—a
tan = Vo.a— (a—a) o

(i) Provide functions forth : nat — tan and back : tan — nat that, intuitively,
should witness the isomorphism between nat and tan.

(ii) Compute the normal forms of the two function compositions. You may
recruit the help of the LAMBDA implementation for this purpose.

(iii) Are the two function compositions S-equal to the identity? If yes,
you are done. If not, can you see a sense under which they would be
considered equal, either by changing your two functions or be defining
a suitably justified notion of equality?

Exercise 5 Prove sequentiality: If - - e : 7, e — e; and e — es then e; = es.

References

[CF98] Loic Colson and Daniel Fredholm. System T, call-by-value, and the
minimum problem. Theoretical Computer Science, 206(1-2):301-315,
1998.

LECTURE NOTES TUESDAY, SEPTEMBER 21, 2021

	Introduction
	Dynamics of Polymorphism*
	Generalizing Iteration
	Evaluation versus Reduction
	Revising the Dynamics of Functions
	Booleans as a Primitive Type

