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1 Introduction

Using type structure to capture common constructions available in program-
ming languages, we have built a rich set of primitives in our programming
language (see 09-sums-rules.pdf for a summary of the rules). Booleans
turned out be representable using generic constructions, since bool = 1 + 1.
However, natural numbers would be

nat = 1 + (1 + (1 + · · ·))

which cannot be expressed already. However, we can observe that the tail of
the sum is equal to the whole sum. That is,

nat = 1 + nat

We won’t be able to achieve such an equality, but we can achieve an isomor-
phism

nat ∼= 1 + nat

with two functions to witness the isomorphism.

nat
unfold−→∼=←−
fold

1 + nat

Actually, unfold and fold will not be functions but language primitives be-
cause we want them to apply to a large class of recursively defined types.
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L10.2 Recursive Types

2 Recursive Types

The more general type constructor that solves recursive type equations is
written as µα. τ . Mu (µ) here stands for “recursive”, α is a type variable
with scope τ .1 The general picture to keep in mind is that a recursive type
µα. τ should be isomorphic to its unfolding [µα. τ/α]τ .

µα. τ

unfold−→∼=←−
fold

[µα. τ/α]τ

Once we have defined the fold and unfold expressions with their statics and
dynamics, we will have to check that these two types are indeed isomorphic.

As an example, consider

nat = µα. 1 + α

Does this give us the desired isomorphism? Let’s check:

nat = µα. 1 + α
∼= [µα. 1 + α/α](1 + α)
= 1 + (µα. 1 + α)
= 1 + nat

So, yes, we get the desired isomorphism. Here are some other examples of
types with recursive definitions we’d like to represent in a similar manner.

Lists list τ ∼= 1 + (τ × list τ)
Binary Trees tree ∼= 1 + (tree× nat× tree)
Binary Numbers bin ∼= list (1 + 1)

For example, binary trees of natural numbers would then be explicitly
defined as

tree = µα. 1 + (α× nat× α)
∼= 1 + (tree× nat× tree)

and satisfy the desired isomorphism.

1Sometimes µα. τ is reserved for so-called inductive types which requires some restrictions
on the occurrences of α in τ . Since our type is indeed inductive (rather than, for example,
coinductive) whenever these restrictions are satisfied, we will use the notation µα. τ . It is
also common in the literature.
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3 Fold and Unfold

Let’s recall the principal isomorphism we would like to have:

µα. τ

unfold−→∼=←−
fold

[µα. τ/α]τ

Each new type we have comes with some constructors for values of the new
type and some destructors. Computation arises when a destructor meets a
constructor. According to the display above, fold should be the constructor
(because it results in something of type µα. τ ), while unfold is a destructor.
Reading the types off the above desired isomorphism:

Γ ` e : [µα. τ/α]τ

Γ ` fold e : µα. τ
tp/fold

Γ ` e : µα. τ

Γ ` unfold e : [µα. τ/α]τ
tp/unfold

We decide that fold e is a value only if e is a value. This is so that, for
example, when we write v : nat, the value v will actually directly represent
a natural number instead of some expression that might result in a natural
number (see Exercise 1)

e value
fold e value

val/fold

The interesting rule for stepping (usually the first one to write) is the one
where a destructor meets a constructor.

v value
unfold (fold v) 7→ v

step/unfold/fold

Does this rule preserve types? Let’s say we have

· ` unfold (fold v) : σ

By inversion (only the unfold rule could have this conclusion), we obtain

· ` fold v : µα. τ

where σ = [µα. τ/α]τ . Applying inversion again, we get

· ` v : [µα. τ/α]τ
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which is also the type of unfold (fold v). Therefore, the rule step/unfold
satisfies type preservation.

We now only need to add rules to reach values and redices, so-called
congruence rules.

e 7→ e′

fold e 7→ fold e′
step/fold

e 7→ e′

unfold e 7→ unfold e′
step/unfold0

It is a matter of checking the progress theorem and also verifying the desired
isomorphism to ensure that we now have enough rules. A student suggested

fold (unfold e) 7→ e
?

which is eminently reasonable, but turned out to be unnecessary. Instead,
we find that fold (unfold e) is extensionally equivalent to e at type µα. tau.

4 Examples

Before we check our desired properties, let’s write some examples on natural
numbers (in our unary representation).

nat = µα. 1 + α
∼= 1 + nat

zero : nat
zero = fold (l · 〈 〉)

one : nat
one = fold (r · zero)

= fold (r · fold (l · 〈 〉))

succ : nat→ nat
succ = λn. fold (r · n)

pred : nat→ nat
pred = λn. case (unfold n) (l · x1 ⇒ zero | r · x2 ⇒ x2)

At this point we realize that we cannot write any function that recurses over
a natural number. Unlike the λ-calculus, the representation here as a sum
and a recursive types only allows us to implement a case construct. This is
not a significant obstacle, since we will shortly add general recursion to our
language and then functions like addition, multiplication, exponentiation,
and greatest common divisor can be implemented simply and uniformly.
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5 Preservation and Progress

We have already seen the key idea in the preservation theorem; all other
cases are simple and follow familiar patterns.

For progress, we first need a canonical form theorem. We get the new
case

(vi) If · ` v : µα. τ and v value then v = fold v′ for a value v′.

This follows, as before, by analyzing the cases for typing and values.
The critical case in the proof of progress (by rule induction on the given

typing derivation) is

· ` e1 : µα. τ

· ` unfold e1 : [µα. τ/α]τ
tp/unfold

If e1 7→ e′1 then, by rule, unfold e1 7→ unfold e′1. If e1 is a value, then
the canonical forms theorem tells us that e1 = fold v2 for some value v2.
Therefore, the step/unfold applies and unfold (fold v2) 7→ v2.

6 Isorecursive Types

The new type constructor µα. τ we have defined is called an isorecursive type,
because we have and isomorphism

µα. τ

unfold−→∼=←−
fold

[µα. τ/α]τ

rather than an equality between the two types (which would be equirecursive).
But is it really an isomorphism? Let’s check the two directions.

First, we need to check that unfold (fold v) = v for any value v :
[µα. τ/α]τ . But immediately (by rule step/unfold) we have

unfold (fold v) 7→ v

so the two are certainly equal.
In the other direction, we need to verify that

fold (unfold v)
?
= v for any value v : µα. τ
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By the canonical forms theorem, v = fold v′ for some value v′. Then we
reason

fold (unfold v)
= fold (unfold (fold v′))
7→ fold v′

= v

So, an isorecursive type is indeed isomorphic to its unfolding.

7 Excursion: Embedding the Untyped λ-Calculus

As one of you suspected during lecture, now that we have recursive types,
perhaps we can type λx. x x, which we previously proved to have no type.
And if that works, why stop there? Why not type the Y combinator itself?
In an earlier lecture we convinced ourselves that λx. x x : τ → σ for any
types τ and τ satisfying τ = τ → σ. That’s because x needs to take itself as
an argument.

This does not seem promising, since we still cannot solve this equation!
But we may be able to approximate it by an isomorphism. Can we find a type
U such that U ∼= U → τ2. The unspecified type τ2 gets in the way, so let’s try
it with τ2 = U . So, we have to solve

U

unfold−→∼=←−
fold

U → U

In our language, any recursive type equation has a solution (perhaps degen-
erate), so we just set

U = µα. α→ α ∼= U → U

Let’s try to type self-application at type U → U .

?
x : U ` xx : U

· ` λx. x x : U → U
tp/lam

This still does not work, but we can unfold the type of the first occurrence of
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x so it matches the type of its argument!

x : U ` x : U
tp/var

x : U ` unfold x : U → U
tp/unfold

x : U ` x : U
tp/var

x : U ` (unfold x) x : U
tp/app

· ` λx. (unfold x) x : U → U
tp/lam

So, lo and behold, if we are willing to insert an unfold we can now type-check
self-application.

Curious: can we do the same with the Y combinator? The answer is
yes, but let’s be even more ambitious: let’s translate the whole untyped
λ-calculus into our language! We write M for untyped expressions to
distinguish them from the target language expressions e.

Untyped Exps M ::= x | λx.M |M1M2

We try to devise a translation p−q such that

pMq : U

for any untyped expression M . To be more precise, assume the untyped
expression has free variables x1, . . . , xn, then we aim for

x1 : U, . . . , xn : U ` pMq : U

The reason all variables have type U because in the source they stand for an
arbitrary untyped expression. We define

pxq = x
pλx.Mq = fold (λx. pMq)
pM1M2q = (unfold pM1q) pM2q

We suggest you go through these definitions and type-check them, keeping
in mind the all-important

U

unfold−→∼=←−
fold

U → U

The type-correctness of this translation means we have a very direct repre-
sentation of the whole untyped λ-calculus in our language, using only a single
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type U (but exploiting recursive types). Therefore, the untyped λ-calculus is
sometimes referred to as the unityped λ-calculus because it can be represented
with a single universal type U .

Since the Y combinator is only a particular untyped λ-expression, we
can also translate it into the target.

However, there is still a fly in the ointment: even though we know the
target is well-typed, we don’t know if it behaves correctly, operationally.
Under some definitions it does not. For example, λx.Ω has no normal form,
but pλx.Ωq = fold (λx. pΩq) is a value and does not take a step. We will
discuss at a later point how to bridge this gap, which is not straightforward.

Here is the code we wrote in LAMBDA in lecture. Here $ stands for µ, so
that $U. U -> U stands for µU.U → U . Note that $ binds a type variable,
so we could equally well have written $a. a -> a, but it is easier to ready
if we reuse the intended name on the left-hand side of the definition as the
name of the bound variable.

1 type U = $U. U -> U
2 decl lam : (U -> U) -> U
3 decl app : U -> (U -> U)
4

5 defn lam = \f. fold f
6 defn app = \e1. \e2. (unfold e1) e2
7

8 defn omega = lam (\x. app x x)
9 defn Omega = app omega omega

10

11 eval omega_val = omega
12

13 fail eval 100000 Omega_val = Omega

Listing 1: Untyped λ-calculus in LAMBDA

8 Fixed Point Expressions

We have added recursive types that solve recursive type equations. But in
order to write all the programs we want (for example, on natural numbers
all the recursive functions) we also need recursively defined expressions.
The Y combinator is not directly available to us in the needed generality,
even though it can be defined at type U . Instead we add a primitive, fix f. e,
where f is a variable. It is not a value, and it steps by unrolling the fixed

LECTURE NOTES THURSDAY, SEPTEMBER 30, 2021



Recursive Types L10.9

point:

fix f. e 7→ [fix f. e/f ]e
step/fix

This “unrolling” is quite similar to unfolding a recursive type, but at the
level of expressions. However, it is independent of recursive types and can
be applied in full generality. One particular example is fix f. f 7→ fix f. f so
in this language we can define ⊥ = fix f. f (see Exercise L8.3). Emboldened
by this property, we imagine we might have in general

Γ, f : ` e :

Γ ` fix f. e : τ
tp/fix

but there are still some holes in this typing rule.
We want preservation to hold (progress is trivial to extend, because a

fixed point always steps) so we need that

· ` fix f. e : τ implies · ` [fix f. e/f ]e : τ

From this we can deduce two things: first, e : τ because that is the result of
substitution. And, second, for the substitution property to hold we need
that f : τ so we can substitute [fix f. e/f ]e. Filling in this information:

Γ, f : τ ` e : τ

Γ ` fix f. e : τ
tp/fix

Now we have settled both statics and dynamic and have fixed point expres-
sions available to us. For example

plus : nat→ (nat→ nat)
plus = fix p. λn. λk. case (unfold n) (l · ⇒ k | r ·m⇒ succ (p m k))

There are a few unpleasant things about fixed point expressions. One is
that it is neither a constructor nor a destructor of any particular type, but
is applicable at any type τ . It thus violates one of the design principles of
our language that we have followed so far. We may interpret this as an
indication that recursion is a fundamental computational principle separate
from any particular typing construct, but this is not a universally held view.

The second one is that in fix f. e the variable f does not stand for a
value (like all other variables x we have used so far) but a expression (we
substitute fix f. e for f , and that’s not a value). To avoid this latter issue, in
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call-by-value languages sometimes the fixed point expression is limited to
functions, as in fun f(x) = e where e can depend on both x and f .

In LAMBDA we reuse $ to stand for fix for expressions, since it serves the
same purpose and obeys corresponding laws to the type constructors. Below
is our sample code using recursive types and fixed points from lecture.

This code also illustrates general labeled sums which have the form (`1 :
τ1) + · · · + (`n : τn). We recover the usual binary sum with `1 = l and
`2 = r. The tags or labels `i occupy a different name space and should not be
confused with variables. We therefore write them bold in the mathematical
presentation and prefix them with a tick mark (’) in LAMBDA code. The use
of general tagged sums make actual code significantly more readable.

1 type bool = (’true : 1) + (’false : 1)
2

3 decl true : bool
4 decl false : bool
5

6 defn true = ’true ()
7 defn false = ’false ()
8

9 decl and : bool -> bool -> bool
10 defn and = \b. \c. case b of (’true u => c | ’false u => false)
11 conv and true true = true
12 conv and true false = false
13 conv and false true = false
14 conv and false false = false
15

16 decl and’ : bool -> bool -> bool
17 defn and’ = \b. \c. case b of (’true _ => case c of (’true _ => true | ’false _ => false)
18 |’false _ => false)
19

20 fail conv and = and’
21

22 fail type nat = (’zero : 1) + (’succ : nat)
23

24 type nat = $nat. (’zero : 1) + (’succ : nat)
25

26 decl zero : nat
27 decl succ : nat -> nat
28

29 defn zero = fold ’zero ()
30 defn succ = \n. fold ’succ n
31

32 eval one = succ zero
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33

34 decl pred : nat -> nat
35 defn pred = \n. case unfold n
36 of ( ’zero _ => zero
37 | ’succ m => m )
38 eval two = pred (succ (succ one))
39

40 decl plus : nat -> nat -> nat
41 defn plus = $plus. \n. \k. case unfold n
42 of ( ’zero _ => k
43 | ’succ m => succ (plus m k) )
44

45 eval five = plus (plus two one) two
46

47 type list = $list. (’nil : 1) + (’cons : nat * list)
48 decl sum : list -> nat
49 defn sum = $sum. \l. case (unfold l) of ( ’nil _ => zero
50 | ’cons (n, t) => plus n (sum t) )
51

52 type tree = $tree. (’leaf : 1) + (’node : tree * nat * tree)

Listing 2: Sample recursive types in LAMBDA

Exercises

Exercise 1 Prove adequacy of natural number encodings in type nat.

1. Define a (mathematical) function pnq on natural numbers n such that
· ` pnq : nat and pnq value.

2. Define a (mathematical) function xvy on values v with · ` v : nat
returning the number represented by v.

3. Prove that the pair of functions p−q and x−y witness an isomorphism
between the usual (mathematical) natural numbers and closed values
of type nat.

Exercise 2 Consider the combinators Y and Z. Here Z, the call-by-value
fixed point combinator, is defined as

Z = λf. (λx. f (λv. x x v)) (λx. f (λv. x x v))

1. Exhibit a difference between Y and Z under that assumption that the
pure untyped λ-calculus follows a call-by-value evaluation strategy.
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2. Give the translation pZq : U into the universal type.

Exercise 3 Consider the type of lists of natural numbers

list = µα. (nil : 1) + (cons : nat× α) ∼= (nil : 1) + (cons : nat× list)

Define the following functions (including plist) in your hw05.cbv file. Feel
free to use any definition of nat consistent with the natural numbers.

(i) nil : list, the empty list.

(ii) cons : nat× list→ list, adding an element to a list. Include at least 1 test.

(iii) append : list→ list→ list, appending two lists. Include at least 1 test.

(iv) reverse : list→ list, reversing a list. Include at least 1 test.

(v) itlist : list→∀β. (nat× β→ β)→ β→ β satisfying

itlist nil [τ ] f c = c
itlist (cons 〈n, l〉) [τ ] f c = f 〈n, itlist l [τ ] f c〉

where you may take equality to be extensional. This captures iteration
over lists, for the special case where the elements are all natural num-
bers. You do not need to prove the correctness of your representation,
nor provide any testing.

(vi) Design a type and implementation for primitive recursion over lists,
defining a function plist. Note that we do not ask for primitive recursion
over the naturals contained in the list, only over the list itself. You do
not need to prove the correctness of plist, nor provide any testing.

Exercise 4 It is often intuitive and useful to define types in a mutually
recursive way. For example, we might specify the even and odd natural
numbers in unary representation with the following desired isomorphisms:

even ∼= (zero : 1) + (succ : odd)
odd ∼= () + (succ : even)

Here the empty parenthesis () are used to indicate that (succ : even) is a
disjoint sum with just a single alternative. The only value v of type odd
would be fold (succ · v′) with v′ : even. Part of this task will be to find a
representation of such types using the explicit recursive type constructor
µα. τ .
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Let the type of bit strings (which, during lecture, we used to represent
numbers in binary form) be defined as

bits ∼= (b0 : bits) + (b1 : bits) + (e : 1)
bits = µα. (b0 : α) + (b1 : α) + (e : 1)

We say a bit string has parity 0 if it has an even number of 0s and 1 if it has
an odd number of 1s. The answer to the questions below should be included
in the file hw05.cbv.

(i) Define isomorphisms to be satisfied by two types bits0 and bits1, where
the values of type bits0 are exactly the bit strings with parity 0, and the
values of type bits1 are exactly the bit strings with parity 1.

(ii) Give explicit definitions bits0 = . . . and bits1 = . . . using the recursive
type constructor µα. τ satisfying this specification.

(iii) We now define a type

parity = (p0 : 1) + (p1 : 1)

Define a function parity : bits→ parity that computes the parity of the
given bit string.

(iv) Next we define
par0 = (p0 : 1) + ()
par1 = () + (p1 : 1)

It should be the case that

parity v0 7→∗ w0 where w0 : par0 if v0 : bits0
parity v1 7→∗ w1 where w1 : par1 if v1 : bits1

Does your implementation of parity have either following types?

parity : bits0→ par0
parity : bits1→ par1

If not, explain why not. We are not looking for a paraphrase of the
error message, but a brief analysis why the two types above may be
difficult to verify for a type-checker.

If yes, explain briefly which feature of your implementation made it
possible for the type-checker to verify both of these properties.

The explanations should be included your hw05.cbv file. You may
use the delimited comments (* <comment> *) for this purpose.
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