
Lecture Notes on
The K Machine

15-814: Types and Programming Languages
Frank Pfenning

Lecture 12
Tuesday, October 19, 2021

1 Introduction

After examining an exceedingly pure, but universal notion of computation
in the λ-calculus, we have been building up an increasingly expressive
language including recursive types. The standard theorems to validate
the statics and dynamics are progress and preservation, relying also on
canonical forms. We have also seen the generic principles such as recursion
and (as we will see in the next lecture) exceptions can be integrated into
our language elegantly, with the necessary modifications of the progress
theorem. We have also seen that the supposed opposition of dynamic and
static typing is instead just a reflection of breadth of properties we would
like to enforce statically, and the supposed opposition of eager (strict) and
lazy constructors is just a question of which types we choose to include in
our language.

At this point we briefly turn our attention to defining the dynamics of
the constructs at a lower level of abstraction that we have done so far. This
introduces some complexity in what we call “dynamic artifacts”, that is,
objects beyond the source expressions that help us describe how programs
execute. In this lecture, we show the K machine in which a stack is made
explicit. This stack can also be seen as a continuation, capturing everything
that remains to be done after the current expression has been evaluated.
At the end of the lecture we show an elegant high-level implementation
of the K machine in our own language. This is an example of a so-called
metacircular interpreter, a particular form of a definitional interpreter [Rey72]
which can be seen as defining the dynamics to the object language.

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

L12.2 The K Machine

2 Introducing the K Machine

Let’s review the dynamics of functions.

λx. e value
val/lam

e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

v1 value e2 7→ e′2

v1 e2 7→ v1 e
′
2

step/app2

(λx. e′1) v2 7→ [v2/x]e′1
step/app/lam

The rules step/app1 and step/app2 are congruence rules: they descend into an
expression e in order to find a redex, (λx. e′1) v2 in this case. The reduction
rule step/beta is the “actual” computation step, which takes place when a
constructor (here: λ-abstraction) is met by a destructor (here: application).

The rules for all other forms of expression follow the same pattern. The
definition of a value of the given type guides which congruence rules are
required. Overall, the preservation and progress theorems verify that a
particular set of rules for a type constructor was defined coherently.

In a multistep computation

e0 7→ e1 7→ e2 7→ · · · 7→ en = v

each expression ei represents the whole program and v its final value. This
makes the dynamics economical: only expressions are required when defin-
ing it. But a straightforward implementation would have to test whether
expressions are values, and also find the place where the next reduction
should take place by traversing the expression using congruence rules.

It would be a little bit closer to an implementation if we could keep track
where in a large program we currently compute. The key idea needed to
make this work is to also remember what we still have to do after we are done
evaluating the current expression. This is the role of a continuation (read: “how
we continue after this”). In the particular abstract machine we present, the
continuation is organized as a stack, which appears to be a natural data
structure to represent the continuation.

The machine has two different forms of states

k . e evaluate e with continuation k
k / v return value v to continuation k

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

The K Machine L12.3

In the second form, we will always have v value. We call this an invariant or
presupposition and we have to verify that all transition rules of the abstract
machine preserve this invariant.

As for continuations, we’ll have to see what we need as we develop the
dynamics of the machine. For now, we only know that we will need an
initial continuation or empty stack, written as ε.

Continuations k ::= ε | . . .

In order to evaluate an expression, we start the machine with

ε . e

and we expect that it transitions to a final state

ε / v

if and only if e 7→∗ v. Actually, we can immediately generalize this: no
matter what the continuation k, we want evaluation of e return the value of
e to k:

For any continuation k, expression e and value v,
k . e 7→∗ k / v iff e 7→∗ v

We should keep this in mind as we are developing the rules for the K
machine.

3 Evaluating Functions

Just as for the usual dynamics, the transitions of the machine are organized
by type. We begin with functions. An expression λx. e is a value. Therefore,
it is immediately returned to the continuation.

k . λx. e 7→ k / λx. e

It is immediate that the theorem we have in mind about the machine is
satisfied by this transition.

How do we evaluate an application e1 e2? We start by evaluating e1 until
it is a value, then we evaluate e2, and then we perform a β-reduction. When
we evaluate e1 we have to remember what remains to be done. We do this
with the continuation

(_ e2)

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

L12.4 The K Machine

which has a blank in place of the expression that is currently being evaluated.
We push this onto the stack, because once this continuation has done its
work, we still need to do whatever remains after that.

k . e1 e2 7→ k ◦ (_ e2) . e1

When the evaluation of e1 returns a value v1 to the continuation k ◦ (_ e2)
we evaluate e2 next, remembering we have to pass the result to v1.

k ◦ (_ e2) / v1 7→ k ◦ (v1 _) . e2

Finally, when the value v2 of e2 is returned to this continuation we can carry
out the β-reduction, substituting v2 for the formal parameter x in the body e′1
of the function. The result is an expression that we then proceed to evaluate.

k ◦ ((λx. e′1) _) / v2 7→ k . [v2/x]e′1

The continuation for [v2/x]e′1 is the original continuation of the application,
because the ultimate value of the application is the ultimate value of [v2/x]e′1.

Summarizing the rules pertaining to functions:

k . λx. e 7→ k / λx. e
k . e1 e2 7→ k ◦ (_ e2) . e1

k ◦ (_ e2) / v1 7→ k ◦ (v1 _) . e2
k ◦ ((λx. e′1) _) / v2 7→ k . [v2/x]e′1

And the continuations required:

Continuations k ::= ε
| k ◦ (_ e2) | k ◦ (v1 _)

4 A Small Example

Let’s run the machine through a small example,

((λx. λy. x) v1) v2

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

The K Machine L12.5

for some arbitrary values v1 and v2.

ε . ((λx. λy. x) v1) v2
7→ ε ◦ (_ v2) . (λx. λy. x) v1
7→ ε ◦ (_ v2) ◦ (_ v1) . λx. λy. x
7→ ε ◦ (_ v2) ◦ (_ v1) / λx. λy. x
7→ ε ◦ (_ v2) ◦ ((λx. λy. x) _) . v1
7→∗ ε ◦ (_ v2) ◦ ((λx. λy. x) _) / v1
7→ ε ◦ (_ v2) . λy. v1
7→ ε ◦ (_ v2) / λy. v1
7→ ε ◦ ((λy. v1) _) . v2
7→∗ ε ◦ ((λy. v1) _) / v2
7→ ε . v1
7→∗ ε / v1

If v1 and v2 are functions, then the multistep transitions based on our desired
correctness theorem are just a single step each.

We can see that the steps are quite small, but that the machine works as
expected. We also see that some values (such as v1) appear to be evaluated
more than once. A further improvement of the machine would be to mark
values so that they are not evaluated again.

5 Sums

Functions are lazy in the sense that the body of a λ-abstraction is not eval-
uated, even in a call-by-value language. As another example we consider
sums

∑
i∈I(i : τi). Let’s recall the key rules.

(k ∈ I) Γ ` ek : τk Γ `
∑

i∈I(i : τi) type

Γ ` k · ek :
∑

i∈I(i : τi)
tp/tag

Γ ` e :
∑

i∈I(i : τi) Γ, xi : τi ` ei : σ (for all i ∈ I)

Γ ` case e (i · xi ⇒ ei)i∈I : σ
tp/cases

e value
k · e value

val/tag
vk value

case k · vk (i · xi ⇒ ei)i∈I 7→ [vk/xk]ek
step/cases/tag

e1 7→ e′1

k · e1 7→ k · e′1
step/tag

e0 7→ e′0

case e0 (i · xi ⇒ ei)i∈I 7→ case e′0 (i · xi ⇒ ei)i∈I
step/cases0

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

L12.6 The K Machine

We develop the rules in a similar manner to functions. Evaluation of a
tagged expression begins by evaluating underneath the tag.

k . j · e 7→ k ◦ (j · _) . e

When the value v is returned we can tag this value with j and pass it to the
continuation.

k ◦ (j · _) / v 7→ k / j · v

Evaluating a case expression requires first evaluating the subject of the case.

k . case e (i · xi ⇒ ei)i∈I 7→ k ◦ (case _ (i · xi ⇒ ei)i∈I) . e

Finally, when a tagged value is returned to this continuation we select the
correct branch, carry out the substitution, and evaluate the results.

k ◦ (case _ (i · xi ⇒ ei)i∈I) / j · vj 7→ k . [vj/xj]ej

Summarizing the rules pertaining to sums:

k . j · e 7→ k ◦ (j · _) . e (1)
k ◦ (j · _) / v 7→ k / j · v (2)

k . case e (i · xi ⇒ ei)i∈I 7→ k ◦ (case _ (i · xi ⇒ ei)i∈I) . e (3)
k ◦ (case _ (i · xi ⇒ ei)i∈I) / j · vj 7→ k . [vj/xj]ej (4)

A few things to note about these rules.
For one, there is a correspondence between these rules and the rules

defining the dynamics. (1) corresponds to step/tag, (2) corresponds to
val/tag, (3) corresponds to step/cases0 and (4) corresponds to step/cases/tag.

For another, the rules in the stepping judgment for the K machine are all
axioms. So a computation as a sequence of steps will be entirely flat in its
structure.

Finally, if we look at the mode, just as for the previous stepping judgment
we assume the left-hand side of each stepping rule is given and we have
enough information to construct the right-hand side. That is, we have the
mode s+ 7→ t−.

The accumulated language of continuations and machine states:

Continuations k ::= ε
| k ◦ (_ e2) | k ◦ (v1 _) (→)
| k ◦ (j · _) | k ◦ (case _ (i · xi ⇒ ei)i∈I) (+)

States s ::= k . e | k / v

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

The K Machine L12.7

6 Typing the K Machine

We postpone a correctness proof for the K machine to the beginning of next
lecture. For now, we study the statics of the machine.

In general, it is informative to maintain static typing to the extent possible
when we transform the dynamics. If there is a new language involved we
might say we have a typed intermediate language, but even if in the case of the
K machine where we still evaluate expressions and just add continuations,
we still want to maintain typing.

We type a continuation as receiving a value of type τ and eventually
producing the final answer for the whole program of type σ. That is, k ÷
τ ⇒ σ. Continuations are always closed, so there is no context Γ of free
variables. We use a different symbol ÷ for typing and⇒ for the functional
interpretation of the continuation so there is no confusion with the usual
notation.

The easiest case is

ε÷ τ ⇒ τ

since the empty continuation ε immediately produces the value that it is
passed as the final value of the computation.

We consider k ◦ (_ e2) in some detail. This is a continuation that takes a
value of type τ2→ τ1 and applies it to an expression e2 : τ2. The resulting
value is passed to the remaining continuation k. The final answer type of
k ◦ (_ e2) and k are the same σ. Writing this out in the form of an inference
rule:

k ÷ τ1 ⇒ σ · ` e2 : τ2

k ◦ (_ e2)÷ (τ2→ τ1)⇒ σ

The order in which we develop this rule is important: when designing or
recalling such rules yourself we strongly recommend you fill in the various
judgments and types incrementally, as we did in lecture.

The other function-related continuations follows a similar pattern. We
arrive at

k ÷ τ1 ⇒ σ · ` v1 : τ2→ τ1 v1 value

k ◦ (v1 _)÷ τ2 ⇒ σ

7 Implementing the K Machine

We now proceed to implement the K machine for our language within our
language, using LAMBDA’s concrete syntax. Because we are implementing

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

L12.8 The K Machine

the language within itself, this is called a metacircular interpreter. We need to
be careful to distinguish the metalanguage in which we write our interpreter
from the object language in which should be able to execute programs.

As a matter of convenience and readability (but not a matter of essence),
we will use varyadic sums in the metalanguage, and binary sums in the
object language.

In these notes we only show the cases for functions τ1→ τ2 and sums
τ1 + τ2 in the object language; the other cases follow the same patterns and
pose only minor challenges.

The first beautiful idea of the metacircular interpreter is to implement
object-language variables by meta-language variables. This means that
object-level functions are implemented via meta-level functions, but at dif-
ferent types. As a result, we will not need to implement substitution, because
applying the meta-level function will have the effect of implementing object-
level substitution.

But first the type E of object-level expressions. It is a (recursive) sum
type where each constructor and destructor has a separate summand. We
start with just functions.

1 type E = $E. (’lam : E -> E) + (’app : E * E)

There is no case for variables, since they are represented by meta-language
variable. For example, using p·q for the representation function for expres-
sion in our language, we have

E = µE. (lam : E→ E) + (app : E × E)

pλx. eq = fold lam · (λx. peq)
pxq = x
pe1 e2q = fold app · 〈pe1q, pe2q〉

Here are two examples of this representation in our language

1 decl I : E
2 defn I = fold ’lam (\x. x)
3

4 decl omega : E
5 defn omega = fold ’lam (\x. fold ’app (x, x))

We can now define some “boilerplate” code, namely the meta-level construc-
tor functions. To make them more easily readable, we give them in curried
form.

1 decl lam : (E -> E) -> E
2 decl app : E -> (E -> E)

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

The K Machine L12.9

3

4 defn lam = \f. fold ’lam f
5 defn app = \e1. \e2. fold ’app (e1, e2)

The next step is to think about the representation of the stack. We represent
this as a meta-level function from values to values. Since we don’t have a
separate type of object-level values (at the moment), they are represented as
expressions and it is up to us, as the meta-programmer, to ensure that they
are only applied the object-level values.

The interpreter is defined by a function eval. It is intended to satisfy the
property

k . e 7→∗ k / v if and only if eval peq pkq 7→∗ pkq pvq

The main function eval e k evaluates e and passes the value to k (instead
of returning it). Its first case is fairly simple: when the expression e is a
λ-abstraction, it is already a value and we return it to the continuation k. We
use an underscore to complete the name eval_ because eval would clash
with LAMBDA’s eval keyword.

1 decl eval_ : E -> (E -> E) -> E
2 defn eval_ = $eval_. \e. \k.
3 case (unfold e)
4 of (’lam _ => k e
5 | ...)

The second case is that of an application e1 e2. We first have to evaluate e1,
with a continuation that evaluates e2 next. That is,

1 decl eval_ : E -> (E -> E) -> E
2 defn eval_ = $eval_. \e. \k.
3 case (unfold e)
4 of (’lam f => k e
5 | ’app (e1,e2) =>
6 eval_ e1 (\v1. eval_ e2 (\v2. ...)))

The rules of the K machine dictated that once we have evaluated both e1 and
e2 to v1 and v2, respectively, then v1 = λx. e′1 and we then need to evaluate
[v2/x]e′1. We accomplish this in two steps: first, we match v1 against the
representation of λ-expression. This exposes the underlying meta-level
function f . We then perform the substitution by applying f to v2.

1 decl eval_ : E -> (E -> E) -> E
2 defn eval_ = $eval_. \e. \k.
3 case (unfold e)
4 of (’lam f => k e

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

L12.10 The K Machine

5 | ’app (e1,e2) =>
6 eval_ e1 (\v1. eval_ e2 (\v2.
7 case (unfold v1)
8 of (’lam f => eval_ (f v2) k))))

However, this is not the final return value. Instead we pass it to the continu-
ation k that expects the value of e1 e2 (which will be computed as the value
of f v2).

At the “top level” the evaluate function passes the initial continuation
to eval, which is λv. v corresponding to the empty stack ε. An interesting
property of this representation is that to some extent visibility on the object
language is inherited from visibility in the metalanguage. For example,

1 decl I : E
2 decl K : E
3 decl K’ : E
4 defn I = fold ’lam (\x. x)
5 defn K = fold ’lam (\x. fold ’lam (\y. x))
6 defn K’ = fold ’lam (\x. fold ’lam (\y. y))
7

8 eval I’ = eval_ (fold ’app (K’,K)) (\v. v)

shows us

1 % eval I’ = eval_ (fold ’app (K’, K)) (\v. v)
2 % 26 evaluation steps
3 decl I’ : E
4 defn I’ = fold ’lam ---
5 % success

In other words, we do not see the normal form because none is computed:
arbitrary closed λ-expressions are values in both the object language and
metalanguage.

We also see that there is a significant overhead in the interpreter: an
expression which takes 1 step to reach a normal form in the small-step
dynamics takes 28 steps in the metainterpreter. Of course, we imagine the
metainterpreter could be compiled, so in the end it may be efficient enough
for many purposes.

LAMBDA also issues a warning for missing patterns that arise because
we match the return value from the recursive call only against ’lam f,
omitting the case of applications. That’s because by an invariant of our code,
the expression passed to the continuation is always a value (in the object
language), but the type system does not understand this fact. It is interesting
to consider how to refine the type, distinguishing values and expressions,

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

The K Machine L12.11

so that this error does not arise. While it is possible, it is not straightforward.
We may return to this in a future lecture.

For binary sums, the same techniques apply. Key is to represent the
branches of a case statement as functions from the tagged value to the result.

pl · eq = fold left · peq
pr · eq = fold right · peq
pcase e (l · x1 ⇒ e1 | r · x2 ⇒ e2)q = fold cases · 〈peq, 〈λx1. pe1q, λx2. pe2q〉〉

We just show the final code.

1 type E = $E. (’lam : E -> E) + (’app : E * E)
2 + (’l : E) + (’r : E) + (’cases : E * (E -> E) * (E -> E))
3

4 decl eval_ : E -> (E -> E) -> E
5 defn eval_ = $eval_. \e. \k.
6 case (unfold e)
7 of (’lam f => k e
8 | ’app (e1,e2) =>
9 eval_ e1 (\v1. eval_ e2 (\v2.

10 case (unfold v1)
11 of (’lam f => eval_ (f v2) k)))
12 | ’l e => eval_ e (\v. k (fold ’l v))
13 | ’r e => eval_ e (\v. k (fold ’r v))
14 | ’cases (e0, bl, br) =>
15 eval_ e0 (\v0. case (unfold v0)
16 of (’l v => eval_ (bl v) k
17 |’r v => eval_ (br v) k)))

The live code can be found online at k-live.cbv. Off-line, we completed
the code to include all the type constructors in our language (excluding only
polymorphism). You can find this code at k.cbv.

It is now very easy to change the language semantics, for example, to
make the object language call-by-name (see Exercise 2)

This style of programming is called continuation-passing style, which is
a perfect match for the K machine. This kind of interpreter is also called a
definitional interpreter [Rey72] since it can be seen as providing a dynamics
to the object language.

8 Whither Types?

We have represented all expressions in the object language with the same
type E in the metalanguage. This means we can evaluate even expressions

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/12-kmachine/k-live.cbv
http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/12-kmachine/k.cbv

L12.12 The K Machine

which have no type, such as omega in our example. To complete our imple-
mentation of the object language we should also provide a object-language
type-checker in the metalanguage. We may return to this in a future lecture;
for now we are content to have implemented the dynamics.

A metalanguage term of type E that is not the representation of a well-
typed term in the object language may lead to a runtime exception when
we distinguishes cases among the result of evaluation, which happens
in the implementation of every destructor (in our code here, application
and case over binary sums). These meta-level case expressions are not
exhaustive pattern matches, but assume the represented term (and therefore
also its value) are well-typed at the object level. This is an example of an
representation invariant, and a fairly trick one, and shows that we should not
expect in general that all pattern matches be exhaustive.

Exercises

Exercise 1 Extend the K Machine for the following constructs, in each case
writing out new continuations as necessary and giving both stepping and
typing rules.

1. Constructor and destructor for the unit type 1.

2. Constructor and destructor for recursive types µα. τ .

3. The fixed point expression fix f. e.

4. Constructor and destructors for lazy pairs τ1 N τ2.

Exercise 2 Modify the implementation of the K machine so that function
calls are treated according to the call-by-name discipline.

Exercise 3 Extend the K machine for general (nested) pattern matching.
Give any possible new machine states explicit, and show both the typing
and stepping rules for the machine. As part of this, you will have to deal
with exceptions. Consider only the simplest case where exceptions cannot
be caught.

Exercise 4 Distinguish a type V of values from expressions so that, for exam-
ple, we never accidentally pass an unevaluated expression to a continuation
and that the final answer is also a value. State the types of eval and retn. How
much of the interpreter do you need to rewrite to guarantee this property?

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

The K Machine L12.13

References

[Rey72] John C. Reynolds. Definitional interpreters for higher-order pro-
gramming languages. In Proceedings of the ACM Annual Conference,
pages 717–740, Boston, Massachusetts, August 1972. ACM Press.
Reprinted in Higher-Order and Symbolic Computation, 11(4), pp.363–
397, 1998.

LECTURE NOTES TUESDAY, OCTOBER 19, 2021

	Introduction
	Introducing the K Machine
	Evaluating Functions
	A Small Example
	Sums
	Typing the K Machine
	Implementing the K Machine
	Whither Types?

