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1 Introduction

We continue the investigation of shared memory concurrency by adding
negative types. In our language so far they are functions τ → σ, lazy pairs
τ N σ, and universal types ∀α. τ .

2 Review of Positives

We review the types so far, with a twist: we annotate every address that
we write to with a superscriptW and every address we read from with a
superscriptR.

Positive types τ ::= 1 | τ1 × τ2 |
∑

i∈I(i : τi) | µα. τ
Small values V ::= 〈 〉 | 〈a1, a2〉 | i · a | fold a
Continuations K ::= (〈 〉 ⇒ P ) | (〈x1, x2〉 ⇒ P ) | (i · xi ⇒ Pi)i∈I | (fold x⇒ P )
Processes P ::= x← P ; Q (allocate/spawn)

| cW ← dR (copy)
| dW .V (write)
| case cR K (read/match)

Configurations C ::= proc d P | !cell c V | · | C1, C2

The configurations are unordered and we think of “,” as an associative and
commutative operator with unit “.”. Since we have changed our notation,
we summarize the translation and the transition rules.

LECTURE NOTES THURSDAY, NOVEMBER 11, 2021



L19.2 Negative Types

JxK d = dW ← xR

J〈 〉K d = dW .〈 〉
Jcase e (〈 〉 ⇒ e′)K d = x← JeKx ;

case xR (〈 〉 ⇒ Je′K d)

J〈e1, e2〉K d = x1 ← Je1Kx1 ;
x2 ← Je2Kx2 ;
dW .〈x1, x2〉

Jcase e (〈x1, x2〉 ⇒ e′)K d = x← JeKx ;
case xR (〈x1, x2〉 ⇒ Je′K d)

Jj · eK d = x← JeKx ;
dW .(j · x)

Jcase e (i · x⇒ ei)i∈IK d = x← JeKx ;
case xR (i · x⇒ JeiK d)i∈I

Jfold eK d = x← JeKx ;
dW .(fold x)

Jcase e (fold y ⇒ e′)K d = x← JeKx ;
case xR (fold y ⇒ Je′K d)

We only have four transition rules for configurations, in addition to explain-
ing how values are matched against continuations.

proc d (x← P ; Q) 7→ proc c ([c/x]P ), proc d ([c/x]Q) (c fresh)
!cell c V, proc d (dW ← cR) 7→ !cell d V

proc d (dW .V ) 7→ !cell d V
!cell c V, proc d (case cR K) 7→ proc d (V . K)

〈 〉 . (〈 〉 ⇒ P ) = P
〈c1, c2〉 . (〈x1, x2〉 ⇒ P ) = [c1/x1, c2/x2]P
k · c . (i · xi ⇒ Pi)i∈I = [c/xk]Pk

fold c . (fold x⇒ P ) = [c/x]P

3 Functions

As the first negative type we consider function τ → σ. How do we translate
an abstraction λx. e? The translation must actually take two arguments: one
is the original argument x, the other is the destination where the result of
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the functional call should be written to. And the process Jλx. eK d must write
the translation of the function to destination d.

Before we settle on the syntax for this, consider how to translate function
application.

Je1 e2K d = x1 ← Je1Kx1 ;
x2 ← Je2Kx2 ;

How should we complete this translation?
We know that after Je1Kx1 has completed the cell x1 will contain a func-

tion of two arguments. The first argument is the original argument, which we
find in x2 after Je2Kx2 has completed. The second argument is the destination
for the result of the function application, which is d. So we get:

Je1 e2K d = x1 ← Je1Kx1 ;
x2 ← Je2Kx2 ;
xR1 .〈x2, d〉

This looks just like eager pairs, except that we read from x1 instead of writing
to it. To retain the analogy, we write the translation of a function using case,
but writing the (single) branch of the case expression to memory.

Jλx. eK d = case dW (〈x, y〉 ⇒ JeK y)

The transition rules for these new constructs just formalize the explanation.

proc d (case dW (〈x, y〉 ⇒ P )) 7→ !cell d (〈x, y〉 ⇒ P ) (→R)
!cell c (〈x, y〉 ⇒ P ), proc d (cR.〈c1, d〉) 7→ proc d ([c1/x, d/y]P ) (→L0)

As an example, we consider the expression (λx. x) 〈 〉.

J(λx. x) 〈 〉K d0 = x1 ← Jλx. xKx1 ;
x2 ← J〈 〉Kx2 ;
xR1 .〈x2, d0〉

= x1 ← case xW1 (〈x, y〉 ⇒ JxK y) ;
x2 ← xW2 .〈 〉 ;
xR1 .〈x2, d0〉

= x1 ← case xW1 (〈x, y〉 ⇒ yW ← xR) ;
x2 ← xW2 .〈 〉 ;
xR1 .〈x2, d0〉
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L19.4 Negative Types

Let’s execute the final process from with the initial destination d0.

proc d0 (x1 ← case xW1 (. . .) ; x2 ← xW2 .〈 〉 ; . . .)

7→ proc d1 (case dW1 (〈x, y〉 ⇒ yW ← xR)),

proc d0 (x2 ← xW2 .〈 〉 ; dR1 .〈x2, d0〉)

7→2 !cell d1 (〈x, y〉 ⇒ yW ← xR),
proc d2 (dW2 .〈 〉),
proc d0 (dR1 .〈d2, d0〉)

7→ !cell d1 (〈x, y〉 ⇒ yW ← xR),
!cell d2 〈 〉,
proc d0 (dW0 ← dR2 ) (from [d2/x, d0/y](yW ← xR))

7→ !cell d1 (〈x, y〉 ⇒ yW ← xR),
!cell d2 〈 〉
!cell d0 〈 〉

In the final configuration we have cell d0 holding the final result 〈 〉, which
is indeed the result of evaluating (λx. x) 〈 〉. We also have some newly
allocated intermediate destinations d1 and d2 that are preserved, but could
be garbage collected if we only retain the cells that are reachable from the
initial destination d0 which now holds the final value.

4 Store Revisited

In our table of process expression, two things stand out. One is that functions
are exactly like pairs, except that the role of reads and writes are reversed.
The other is that a cell may now contain something of the form (〈y, z〉 ⇒ P ).

Processes P ::= x← P ; Q allocate/spawn
| xW ← yR copy
| xW .〈 〉 | case xR (〈 〉 ⇒ P ) (1)
| xW .〈y, z〉 | case xR (〈y, z〉 ⇒ P ) (×)
| xW .(j · y) | case xR (i · y ⇒ Pi)i∈I (+)
| xW .fold(y) | case xR (fold(y)⇒ P ) (µ)

| xR.〈y, z〉 | case xW (〈y, z〉 ⇒ P ) (→)

We can refactor this into a more uniform presentation, even though not
all of the syntactically legal forms have corresponding types in the current
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language.

Processes P ::= x← P ; Q allocate/spawn
| xw ← yR copy
| xW .V | case xR K (1,×,+, µ)
| xR.V | case xW K (→)

Small values V ::= 〈 〉 | 〈a1, a2〉 | i · a | fold a
Continuations K ::= (〈 〉 ⇒ P ) | (〈x1, x2〉 ⇒ P ) | (i · xi ⇒ Pi)i∈I | (fold x⇒ P )

Cell contents W ::= V | K

Configurations C ::= · | C1, C2 | proc d P | !cell c W

There is now a legitimate concern that the contents of cells in memory is
no longer “small”, because a program P could be of arbitrary size. At a
lower level of abstraction, continuations would probably be implemented
as closures, that is, a pairs consisting of an environment and the address of
code to be executed. The translation to get us to this form is called closure
conversion, which we might discuss in a future lecture. For now, we are
content with the observation that, yes, we are violating a basic principle of
fixed-size storage and that it can be mitigated (but is not completely solved)
through the introduction of closures.

In our example of (λx. x) 〈 〉 the continuation has the form (〈x, y〉 ⇒
yW ← xR) which is a closed process. This can be directly compiled to a
function that takes two addresses x and y and writes the contents of x into
y. So at least in this special case the contents of the cell d1 could simply be
the address of this piece of code.

The symmetry between eager pairs (positive) and functions (negative)
stems from the property that in logic we have A ` B ⊃ C if and only if
A×B ` C (where × is a particular form of conjunction). Or, we can chalk it
up to the isomorphism τ → (σ→ ρ) ∼= (τ × σ)→ ρ: an arrow on the right
behaves like a product on the left.

One can ask if similarly symmetric constructors exists for 1, +, and µ
and the answer is yes. It turns out that lazy records are dual to sums and
there is a type ⊥ that is dual to 1 (see Exercises 1 and 2). There may even be
a lazy analogue of recursive types that exhibits the same kind of symmetry
and maybe useful to model so-called corecursive types (see Exercise 3).

We postpone discussion on the typing of process expression, cells, and
configurations until the next lecture when we consider analogues of the
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progress and preservation theorems.

5 Typing

Before writing an example, it may be helpful to introduce typing for config-
uration. The judgment has the form

Ψ ` C :: ∆

where the processes and cells in C may read from Ψ and either define (cells)
or write to (processes) ∆. Both of these are contexts give types to addresses:

Ψ ::= a : τ | · | Ψ1,Ψ2

We start with the rule for composition of configurations. Even though
configurations, as written, are unordered, their typing derivation will impose
an order in that a process writing to an address comes before (to the left)
or a process reading from an address. Cells are ordered correspondingly:
!cell a W comes before any reader of a, and any cell referenced by W must
come before it.

Ψ0 ` C1 :: Ψ1 Ψ1 ` C2 :: Ψ2

Ψ0 ` C1, C2 :: Ψ2

tp/join
Ψ ` (·) :: Ψ

tp/empty

Because cells might have multiple readers, in the typing of processes and
cells we have to propagate all channels from the left of the judgment to the
right.

Ψ ` P :: (d : τ)

Ψ ` proc d P :: (Ψ, d : τ)
tp/proc

For cells, we distinguish the cases of a small value V or a continuation K. In
either case, to avoid redundancy between various rules, we just reconstitute
a process that would create such a cell and type that.

Ψ ` cW .V :: (c : τ)

Ψ ` !cell c V :: (Ψ, c : τ)
tp/cell/val

Ψ ` case cW K :: (c : τ)

Ψ ` !cell c K :: (Ψ, c : τ)
tp/cell/cont

We already discussed the typing rules for the positives in the last lecture, so
it remains to show typing for the negatives. The only one so far is functions;
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others are discussed in the exercises.

Γ, y : τ ` P :: (z : σ)

Γ ` case xW (〈y, z〉 ⇒ P ) :: (x : τ → σ)
→R

x : τ → σ ∈ Γ y : τ ∈ Γ

Γ ` xR.〈y, z〉 :: (z : σ)
→L0

Under the Curry-Howard interpretation into the semi-axiomatic sequent
calculus, this corresponds to the following two rules

Γ, A ` B
Γ ` A⊃B

⊃R
Γ, A⊃B,A ` B ⊃L

0

6 Preservation and Progress

We see the rules are arranged so that Ψ ` C :: ∆ implies that Ψ ⊆ ∆. In the
preservation theorem we need to account for the possibility that a new cell
is allocated which would then appear in ∆′ with its type but not in ∆.

While configurations are not explicitly ordered, a typing derivation
imposes some ordering constraints. In particular, a cell (or the writer of a
cell), always precedes a reader of a cell in the left-to-right order of the typing
derivation.x

In this lecture we only state progress and preservation; we may come
back later to prove them when our language is complete.

Theorem 1 (Preservation)
If Γ ` C :: ∆ and C 7→ C′ then Γ ` C :: ∆′ for some ∆′ ⊇ ∆.

To state progress, we should reflect on what plays the role of a value in our
usual formulation of progress. But it turns out to be easy: it is a configuration
consisting entirely of cells and no processes. We call such a configuration
final. Clearly, such a configuration cannot take a step. The usual notion of
a closed expression that we start with is replace by a configuration that does
not rely (that is, may read from) any external addresses.

Theorem 2 (Progress) If · ` C :: ∆ then either C 7→ C′ or C is final.
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7 Example: A Pipeline

As a simple example for concurrency in this language we consider setting
up a (very small) pipeline. We consider a sequence of bits

bits = µα. (b0 : α) + (b1 : α) + (e : 1)

(which also happen to be isomorphic to binary numbers). We assume there
is a process flip : bits→ bits that just flips every bit. We show this below. For
now, our goal is to understand how to compose two such processes in a
pipeline.

Assume there is a cell

!cell flip Kflip : bits→ bits

This means that Kflip = (〈x, y〉 ⇒ P ) where x : bits is address of the argu-
ment and y : bits is the destination for the result.

Then we can compose two of these as

Kflip2 = 〈x, z〉 ⇒
y ← flipR.〈x, y〉
flipR.〈y, z〉

In the picture below we see the two flip processes running, after the code for
flip2 has executed but neither of these has taken any action yet. The process
on the left reads from x and writes to y while the process on the right reads
from y and writes to z. The destinations y and z have been allocated but
have not yet been written to. Cell x contains the sample input, which is the
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memory representation of fold (b0 · fold (e · 〈 〉)).

The left process now reads along x and allocates and writes along y. After it
runs for a few steps, we might reach the following situation:

The green part here is the new part compared to the previous configuration.
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L19.10 Negative Types

It should be clear how each of the two processes translates into a proc
object, while each filled cell corresponds to a cell object. The empty cells are
addresses that have been allocated, but not yet written to, so they are not
explicit in the configuration.

The two processes also run in parallel, which is how they form a pipeline.
For example, after a few more steps we might reach the configuration (with
the purple part being new):

The right process here lags behind the left one, which is possible since the
semantics here is not synchronous. A cell can be read as soon as it is filled,
but it may not be read immediately while other computations take place.

If we knew that the left process was the only reader along x (and any
cells reachable from it) we could “garbage-collect” the cells that are no
longer accessible and the situation would look as follows (assuming here
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some process not shown could read the output z).

Instead of translating an expression, we write a flip process directly. For
this purpose we have to decide how to handle recursion. There seem to be
two solutions:

1. We add a process fix f. P which transitions to [fix f. P/f ]P . This is
entirely straightforward but requires process substitution in the dy-
namics.

2. We allow recursively defined processes

!cell flip Kflip

where Kflip refers back to its own cell with address flip to encode a
recursive call.

We choose the latter option for this example, for variety, even though it
would require more complicated typing rules for configurations.

It remains to define Kflip.

Kflip = 〈x, y〉 ⇒ case x (b0 · x′ ⇒
| b1 · x′ ⇒
| e · u⇒ )
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In the first branch, we have to allocate a fresh cell y′ for the output and make
a recursive call to fill it. We can also write b1 · y′ to y.

Kflip = 〈x, y〉 ⇒ case x (b0 · x′ ⇒ y′ ← flipR.〈x′, y′〉 ;

yW .(b1 · y′)
| b1 · x′ ⇒
| e · u⇒ )

The branch for b1 is symmetric to the first one.

Kflip = 〈x, y〉 ⇒ case x (b0 · x′ ⇒ y′ ← flipR.〈x′, y′〉 ;

yW .(b1 · y′)
| b1 · x′ ⇒ y′ ← flipR.〈x′, y′〉 ;

yW .(b0 · y′)
| e · u⇒ )

In the last case, we just write e · u to y.

Kflip = 〈x, y〉 ⇒ case x (b0 · x′ ⇒ y′ ← flipR.〈x′, y′〉 ;

yW .(b1 · y′)
| b1 · x′ ⇒ y′ ← flipR.〈x′, y′〉 ;

yW .(b0 · y′)
| e · u⇒ yW .(e · u) )

As shown in the previous section, we can compose two flip processes into a
pipeline as follows:

Kflip2 = 〈x, z〉 ⇒
y ← flipR.〈x, y〉
flipR.〈y, z〉

You may look back at the diagrams to visualize how the two processes work
together, effectively communicating via the shared location y, which then
becomes y′, y′′, etc. as the computation progresses and recursive calls are
mad in both of them.

Under a sequential interpretation, where x ← P ; Q waits until P has
written to destination x before Q starts executing, all recursive calls in flip
would have to be finished before the first bit of output is written. When
we compose two, the inner one has to finish entirely, writing out the whole
sequence of bits before the outer one can start. This is the behavior of the
functional λx. flip (flipx) where the intermediate destination y and the final
destination z remain unnamed.
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Exercises

Exercise 1 For lazy records (as a generalization of lazy pairs) we introduce
the following syntax in our language of expressions:

Types ::= . . . | Ni∈I(i : τi)
Expressions ::= . . . | 〈|i⇒ ei|〉i∈I | e · j

1. Give the typing rules and the dynamics (stepping rules) for the new
constructs.

2. Extend the translation JeK d to encompass the new constructs. Your
process syntax should expose the duality between eager sums and
lazy records.

3. Extend the transition rules of the store-based dynamics to the new
constructs. The translated form may permit more parallelism than the
original expression evaluation, but when scheduled sequentially they
should have the same behavior (which you do not need to prove).

4. Show the typing rules for the new process constructs.

Exercise 2 Explore what the rules and meaning of ⊥ as the formal dual of
1 in the process language should be, including whichever of the following
you find make sense. If something does not make sense somehow, please
explain.

1. Write out the new forms of process expressions.

2. Provide the store-based dynamics for the new process expressions.

3. Show the typing rules for the new process expressions.

4. Reverse-engineer new functional expressions in our original language
so they translate to your new process expression. Show the rules for
typing and stepping the new constructs.

5. Summarize and discuss what you found.

Exercise 3 In our expression language the fold e constructor for elements of
recursive type is eager. Explore a new lazy roll e constructor which has type
να. τ , providing:

1. Typing rules for roll and a corresponding destructor (presumably an
unroll or case construct).

LECTURE NOTES THURSDAY, NOVEMBER 11, 2021



L19.14 Negative Types

2. Stepping rules for the new forms of expressions.

3. A translation from the new forms of expressions to processes, extend-
ing the language of processes as needed

4. Typing rules for the new forms of processes.

5. Transition rules for the new forms of processes.
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