
Assignment 1
The Untyped λ-Calculus

15-814: Types and Programming Languages
Frank Pfenning

Due Thursday, September 9, 2021
60 pts

This assignment is due on the above date and it must be submitted electronically on Gradescope.
Please use the attached template to typeset your assignment and make sure to include your full
name and Andrew ID. For the written problems, you may also submit handwritten answers that
have been scanned and are easily legible.

Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/˜fp/courses/15814-f20/assignments.html.

You should hand in two files

• hw01.pdf with your written solutions to the questions.

• hw01.lam with the code, where the solutions to the problems are clearly marked and
auxiliary code (either from lecture or your own) is included so it passes the LAMBDA checker.

1 Calculating in the λ-Calculus

Task 1 (L1.1, 5 pts) Define the following functions on Booleans.

1. The “nor” operator, which yields true iff both inputs are false.

2. The conditional “if” such that
if true e1 e2 =β e1
if false e1 e2 =β e2

3. In the solution file hw01.lam include the necessary definitions of nor and if and also sufficient
test cases to certify their correctness.

Task 2 (L2.3, 15 pts) One approach to representing functions defined by the schema of primitive
recursion is to change the representation so that n is not an iterator but a primitive recursor.

0 = λs. λz. z
n+ 1 = λs. λz. s n (n s z)

1. Define the successor function succ on this new representation (if possible) and show its
correctness.

ASSIGNMENT 1 DUE THURSDAY, SEPTEMBER 9, 2021
60 PTS

http://www.cs.cmu.edu/~fp/courses/15814-f20/assignments.html
http://www.cs.cmu.edu/~fp/courses/15814-f20/assignments.html


The Untyped λ-Calculus HW1.2

2. Define the predecessor function pred on this new representation (if possible) and show its
correctness.

3. Explore if it is possible to directly represent any function f specified by a schema of primitive
recursion, ideally without constructing and destructing pairs. Write what you find.

Task 3 (L2.4, 10 pts) The unary representation of natural numbers requires tedious and error-prone
counting to check whether your functions (such as the Lucas function in the exercise below) behave
correctly on some inputs with large answers. Fortunately, you can exploit that the LAMBDA

implementation counts the number or reduction steps for you and prints it in decimal form!

(i) We have
n succ zero −→∗

β n

because n iterates the successor function n times on 0. Run some experiments in LAMBDA

and conjecture how many leftmost-outermost reduction steps are required as a function of n.
Note that only β-reductions are counted, and not replacing a definition (for example, zero by
λs. λz. z). We justify this because we think of the definitions as taking place at the metalevel,
in our mathematical domain of discourse.

(ii) Prove your conjecture from part (i), using induction on n. It may be helpful to use the
mathematical notation fkc to describe a λ-expression generated by f0 c = c and fk+1 c =
f (fk c) where f and c are λ-expressions. For example, n = λs. λz. sn z or succ3 zero =
succ (succ (succ zero)).

Task 4 (L2.5, 15 pts) Define the following functions in the λ-calculus using the LAMBDA imple-
mentation. Here we take “=” to mean =β , that is, β-conversion.

You may use all the functions in nat.lam as helper functions. Your functions should evidently
reflect iteration, primitive recursion and pairs. In particular, you should avoid the use of the Y
combinator which will be introduced in Lecture 3.

Provide at least 3 test cases for each function and include them, together with your function
definitions, in the file hw01.lam.

(i) if0 (definition by cases) satisfying the specification

if0 0 x y = x

if0 k + 1 x y = y

(ii) even satisfying the specification

even 2k = true

even 2k + 1 = false

(iii) half satisfying the specification
half 2k = k

half 2k + 1 = k

ASSIGNMENT 1 DUE THURSDAY, SEPTEMBER 9, 2021
60 PTS

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam


The Untyped λ-Calculus HW1.3

Task 5 (L2.6, 15 pts) The Lucas function (a variant on the Fibonacci function) is defined mathemat-
ically by

lucas 0 = 2
lucas 1 = 1
lucas (n+ 2) = lucas n+ lucas (n+ 1)

Give an implementation of the Lucas function in the λ-calculus via the LAMBDA implementation.
You may use the functions from nat.lam as helper functions, as well as those from Task 4. Your

functions should evidently reflect iteration, primitive recursion and pairs. In particular, you should
avoid the use of the Y combinator which will be introduced in Lecture 3.

Test your implementation on inputs 0, 1, 9, and 11, expecting results 2, 1, 76, and 199. Include
these tests in your code submission hw01.lam, and record the number of β-reductions used by
your function in your written submission.

ASSIGNMENT 1 DUE THURSDAY, SEPTEMBER 9, 2021
60 PTS

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam

	Calculating in the -Calculus

