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According to Wikipedia!, the ultimate authority on everything:

Logic [...] is the formal systematic study of the principles of
valid inference and correct reasoning.

We therefore begin the course with the study of deductive inference. This
starting point requires surprisingly little machinery and is sufficient to un-
derstand the central idea behind substructural logics, including linear logic.
We aim to develop all other concepts and properties of linear logic system-
atically from this seed.

Our approach is quite different from that of Girard [Gir87], whose dis-
covery of linear logic originated from semantic considerations in the theory
of programming languages. We arrive at almost the same spot. The conver-
gence of multiple explanations of the same phenomena is further evidence
for the fundamental importance of linear logic. At some point in the course
we will explicitly talk about the relationship between Girard’s linear logic
and our reconstruction of it.

1 Example: Reasoning about Graphs

As a first example we consider graphs. Mathematically, (undirected) graphs
are often defined as consisting of a set of vertices V' and a set of edges F,
where FE is a set of unordered pairs of vertices.

!in January 2012
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Deductive Inference L1.2

In the language of logic, we represent the nodes (vertices) as constants
(a,b,...)and a unary predicate node(z) that holds for all vertices. The edges
are represented with a binary predicate edge(x, y) relating connected nodes.

The sample graph above could be represented by the propositions

node(a), node(b), node(c), node(d),
edge(a, b), edge(b, c), edge(a, c), edge(a,d)

One mismatch one may notice immediately is that the edges in the picture
seem to be undirected, while the representation of the edges is not symmet-
ric (for example, edge(b, a) is not there). We can repair this inadequacy by
providing a rule of inference postulating that the edge relation is symmetric.

edge(z,y)
edge(y, v)

sym

We can apply this rule of inference to the fact edge(a, b) to deduce edge(b, a).
In this application we instantiated the schematic variables x and y with a
and b. We will typeset schematic variables in italics to distinguish them
from constants. The propositions above the horizontal line are called the
premises of the rule, the propositions below the line are called conclusions.
This example rule has only one premise and one conclusion. sym is the
name or label of the rule. We often omit rule names if there is no specific
need to refer to the rules.

From this single rule and the facts describing the initial graph, we can
now deduce the following additional facts:

edge(b, a), edge(c, b), edge(c, a), edge(d, a)

Having devised a logical representation for graphs, we now define a
relation over graphs. We write path(z, y) if there is a path through the graph
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from x to y. A first path has length zero and goes from a node to itself:

node(x)
—— refl
path(z, x)

The following rule says is that we can extend an existing path by following
an edge.
path(z,y) edge(y, 2)
st

path(z, z)

From the representation of our example graph, when can then supply the
following proof that there is a path from c to d:

node(c) edge(a, c)
——— refl ———— sym
path(c, c) edge(c, a)
step
path(c,a) edge(a,d)
step
path(c, d)

We can examine the proof and see that it carries some information. It is not
just there to convince us that there is a path from c to d, but it tells us the
path. The path goes from c to a and then from a to d. This is an example
of constructive content in a proof, and we will see many other examples. For
the system we have so far it will be true in general that we can read off a
path from a proof, and if we have a path in mind we can always construct
a proof. But with the rules we chose, some paths do not correspond to a
unique proof. Think about why before turning the page. ..
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Proofs are not unique because we can go from edge(c, a) back to edge(a, c)
and back edge(c, a), and so on, producing infinitely many proofs of edge(c, a).
Here are two techniques to eliminate this ambiguity which are of general
interest.

One solution uses a new predicate pre_edge and defines all the edges we
have used so far as pre-edges. Then we have two rules

pre_edge(z, y) pre_edge(z,y)
edge(z,y) edge(y, )

To explain the second solution, we begin by making proofs explicit
as objects. We write e : edge(z,y) to name the edge from z to y, and
p : path(z,y) for the path from x to y. Where the proofs are not interest-
ing, we just use an underscore _. We annotate our rules accordingly, which
now read:

e : edge(z,y) _: node(x) p:path(z,y) e:edge(y,z)
sym refl step
e~!:edge(y, x) r : path(z, z) p-e: path(z, z)

Our initial knowledge base would be annotated

_:node(a), - : node(b), - : node(c), - : node(d),
eqp : edge(a, b), ey : edge(b, c), e, : edge(a, c), eqq : edge(a,d)

and then the earlier proof would carry the path information:

_: node(c) eqc :edge(ac)
—refl %YM
r : path(c,c) e, :edge(c,a)
step
r e;cl : path(c, a) €qq - edge(a,d)

ste
1 p

r-e,. -eq : path(c,d)
To force uniqueness of proofs of the edge predicate we can assert the equa-
tion

(eHt=e

so that we do not distinguish between the original edge and one that has
been reversed twice. Note that for any given path there will still be many
formal deductions using the inference rules, but they would lead to the
same proof object.
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Both solutions, restructuring the predicates or identifying proofs, are
common solutions to create better correspondences between proofs and the
properties of information we would like them to convey.

As a last example here, let’s consider what happens when we apply in-
ference indiscriminately, trying to learn as much as possible about the paths
in a graph. Unfortunately, even if the edge relation has unique proofs, any
cycle in the graph will lead to infinitely many paths and therefore infinitely
many proofs. So inference will never stop with complete immediate knowl-
edge of all paths.

One solution? is to retreat and say we do not care about the path, we just
want to know if there exists a path between any two nodes. In that case in-
ference will reach a point of saturation, that is, any further inference would
have a conclusion already in our database of facts. The original inference
system achieves that, or we can stipulate that any two paths between the
same two vertices x and y should be identified:

p = q : path(z,y)

Again, inference would reach saturation because after a time new paths
would be equal to the one we already have and not recorded as a separate
fact.

Another solution would be to allow only non-repetitive paths, by which
we mean that edges are not being reused. Then we would have to modify
our step rule

p: path(z,y) e:edge(y,z) -:notin(e,p)

step
p-e: path(z, z)

and define a predicate notin(e, p) which is true if e is not in the path p. As
was noted in class, however, this crosses a threshold: propositions (like
notin) now refer to proofs. This is the distinction between logic, in which
proofs entirely separate from propositions, and type theory in which propo-
sitions can refer to proofs. This particular example shows that type theory
can be more expressive in certain helpful ways.

A third solution would be to somehow consume the edges during infer-
ence so that we cannot reuse them later. Because there is no restriction on
how often primitive or derived facts are used in a proof, we will need the
expressive power of substructural logics to follow this idea.

Znot discussed in lecture
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2 Example: Coin Exchange

So far, deductive inference has always accumulated knowledge since propo-
sitions whose truth we are already aware of remain true. Linear logic arises
from a simple observation:

Truth is ephemeral.

For example, while giving this lecture “Frank is holding a whiteboard marker”
was true, and right now it is (most likely) not. So truth changes over time,
and this phenomenon is studied with temporal logic. In linear logic we are
instead concerned with the change of truth with a change of state. We model
this in a very simple way: when an inference rule is applied we consume
the propositions used as premises and produce the propositions in the con-
clusions, thereby effecting an overall change in state.

As an example, we consider nickels (n) worth 5¢, dimes (d) worth 10¢,
and quarters (q) worth 25¢. We have the following rules for exchange be-
tween them

d d n q n n d

Q —Q! D
q d d nQ d n n

D—l

The second and fourth rules are the first rules we have seen with more than
one conclusion. Inference now changes state. For example, if we have three
dimes and a nickel, the state would be written as

d,d,d,n
Applying the first rule, we can turn two dimes and a nickel into a quarter
to get the state
d,q
Note that the total value of the coins (35¢) remains unchanged, which is the
point of a coin exchange. One way to write down the inference is to cross

out the propositions that are consumed and add the ones that are produced.
In the above example we would then write something like

d’d’d?n ~ ¢’¢’d7y‘7q

In order to understand the meaning of proof, consider how to change three
dimes into a quarter and a nickel: first, we change one dime into two nick-
els, and then the other two dimes and one of the nickels into a quarter. As
two state transitions:

d7d7d ~ d7d7¢7n7n ~ ¢7¢7¢7V‘aq7n
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Using inference rule notation, this deduction is shown on the left, and the
corresponding derived rule of inference on the right.

To summarize: we can change the very nature of inference if we con-
sume the propositions used in the premise to produce the propositions in the
conclusions. This is the foundation of linear logic and we therefore call it
linear inference. The requisite pithy saying to remind ourselves of this:?

’ Linear inference can change the world.

3 Example: Blocks World

Next we consider blocks world, which is a venerable example in the history
of artificial intelligence. We have blocks (a, b, .. .) stacked on a table (t). We
also have a robot hand which may pick blocks that are not obstructed and
put them down on the table or some other block. We assume that the hand
can hold just one block.

We represent the state in linear logic using the following predicates

on(z,y) Block x is on top of y
empty Hand is empty
holds(x) Hand holds block x

*with a tip of the hat to Phil Wadler
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For example, the state above would be represented by
empty, on(c,t),on(b,c),on(a,t)

The two preconditions for picking up a block x are that the hand is empty,
and that nothing is on top z. In (ordinary) logic, we might try to express
this last condition as —3y.on(y, z). However, negation is somewhat prob-
lematic in linear logic. For example, it is true in the above state the —on(b, t).
However, after two moves (picking up b and then putting b on the table) it
could become true, and we might have created a contradiction! Moreover,
proving —3y.on(y, z) in linear logic would consume whatever resources we
refer to, which is problematic since our intention is just to check a prop-
erty of the state without changing it. This kind of problem is common in
applications of linear logic, so we have developed some techniques of ad-
dressing it.

A common technique to avoid such paradoxes is to introduce additional
predicates that describe properties of the state. Such predicates are main-
tained by the rules in order to keep the description of the state consistent.
Before reading on, you might consider how you can define a new predi-
cate, add appropriate initial facts, and then write rules for picking up and
putting down blocks.
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Here is one possibility. We use a new predicate clear(x) to express that
there is no other block on top of z. In addition to the propositions above
describing the initial state, we would also have

clear(b), clear(a)

but not clear(c).
Then we only need two rules, one for picking up a block and one for
putting one down:

empty clear(z) on(x,y) holds(z) clear(y)
pickup putdown
holds(z) clear(y) empty clear(z) on(x,y)

The two rules are inverses of each other, which makes sense since picking
up or putting down a block are reversible actions.

The encoding so far would work under the condition that there is a
fixed number of spots on the table where blocks can be deposited, and each
is explicitly represented by a clear(t) proposition. We cannot accidentally
pick up the table because it is not on anything else, so the last premise of
the pickup rule cannot be satisfied when z is t.

If we instead want to follow the usual assumption assume that the table
is big enough for arbitrarily many blocks we can revise our encoding in
two ways. One would be to introduce a special predicate ontable(z) and
reserve on(z,y) for blocks x and y. Then we need two additional rules to
pick up and put down blocks on the table. Another is to have a persistent
proposition

clear(t)

which can not be consumed by inference. The intrinsic attribute of the predi-
cate of being persistent is indicated by underlining it.

We view whether propositions are ephemeral (linear, will be consumed
by inference) or persistent (not linear, can not be consumed by inference)
as intrinsic attributes of the proposition. This allows us to easily mix linear
and nonlinear inference, which is a powerful tool in constructing encod-
ings. We can continue to use any encoding in “ordinary”* logic but we
have some new means of expression.

Substructural logics generalize ordinary logics

One interesting question that arises here is whether we can use persis-
tent facts to instantiate ephemeral premises of rules. This is the intention

*by which we mean “not substructural”
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here: clear(t) can be used as a premise of the putdown rule in order to put
a block on the table. This is justified since a fact we can use as often as we
want should certainly be usable this once. We just have to be careful not to
consume clear(t) so that it remains available for future inferences.

As before, we should examine the meaning of proofs in this example.
Given some initial state, a proof describes a sequence of moves that leads
to a final state. Therefore, the process of planning, when given particular
goal and final states, becomes a process of proof search.

Another important aspect of problem representations in linear logic are
state invariants that are necessary so that inference has the desired meaning.
For example, there should always be exactly one of empty and holds(z) in w
state, otherwise it would not conform to our problem domain and infer-
ence is potentially meaningless. Similarly, there shouldn’t be cycles such
as on(a, b),on(b,a), which does not correspond to any physically possible
situation. When showing that our representations in linear logic capture
what we intend, we should make such state invariants explicit and verify
that they are preserved under the possible inferences. In our example, any
rule application replaces empty by holds(z) for some z, or holds(z) by empty.
So if the state invariant holds initially, it must hold after any inference.

4 Example: King Richard III

As a first example from literature, consider the following quote:

My kingdom for a horse! — King Richard in Richard III by William
Shakespeare

How do we represent this in linear logic? Let’s fix a vocabulary:

richard King Richard III
owns(z,y) xzownsy
horse(z) x is a horse

kingdom(z) x is a kingdom

The offer corresponds to a change of ownership: Richard “owns” a king-
dom before (which we know to be England, but which is not part of his
utterance), and another person p owns a horse, and after the swap Richard
owns the horse while p owns the kingdom.

owns(richard, k) kingdom(k) owns(p,h) horse(h)

owns(richard, h) owns(p, k)
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As is commonly the case, we model an intrinsic attribute of an object (such
as h being a horse or k being a kingdom) with a persistent predicate, while
ownership changes and is therefore ephemeral.

It is implied in the exclamation that the rule can only be used once,
because there is only one £ that qualifies as “my kingdom”. Otherwise, he
would have said “One of my kingdoms for a horse!”. Another way to capture
this aspect of the offer would be to consider the inference rule itself to be
ephemeral and hence can only be used once. We do not have a good informal
notation for such rules, but they will play a role again in the next lecture.
If the rule above were persistent, it would more properly correspond to the
offer “My kingdoms for horses!”.

5 Example: Grammatical Inference

We have seen how we can add expressive power to logic simply by des-
ignating some propositions as being consumable by logical inference. We
now explore going even further: we also impose an order on the propo-
sitions describing our state of knowledge. This is the fundamental idea
behind the Lambek calculus [Lam58]°. Lambek’s goal was to describe the
syntax of natural (and formal) languages and apply logical tools to prob-
lems such as parsing. We only scratch the surface of the work, just enough
to appreciate how Lambek employs logical inference to describe grammat-
ical inference. We will also see our first logical connectives, called “over”
and “under”, although you would be unlikely to recognize them as such at
first glance.

We begin by introducing so-called syntactic types that describe the role
of words and phrases. The primitive types we consider here are only n for
names and s for sentences. We ascribe n for proper names such as Alice or
Bob, but phrases that can stand for names in sentences will also have type
n. s is the type of complete sentences such as Alice works or Bob likes Alice.

There are two constructors two combine types: Given types x and y, we
can form z / y (read: x over y) and z \ y (read: = under y). If a phrase w
has type = / y it means that we obtain an z if we find a y to its right. For
example, poor Bob can act as a name because we can (syntactically) use it
where we use Bob. This means we can assign poor the type n / n: If we find
a name to its right the result forms a name. Conversely, z \ y describes a
phrase that acts as a y if there is an « to its left. For example, an intransitive

°T highly recommend this paper, which has stood the test of time almost 50 years after
its publication.

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.12

verb like works will have type n \ s, because if we find a name to its left we
obtain a sentences, as in Alice works.
This informal definition can be seen as a form of logical inference. We
have the two rules
/)y y y y\=
—— over —  under
For these to make sense from the grammatical point of view, it is critical
that the premises of the rules must be adjacent and in the right order.
Under this point of view, proofs correspond to parse trees and the words
of the phrase we are trying to parse are labeled by their type. Using p and
q to stand for phrases (that is, sequences of words), we would have

p:x/y q:y q:y p:y\=w
———— over ———————— under
(pq) (qp) : 2

For example, we might start with the phrase poor Alice works as
(poor : m / n) (Alice : n) (works : n \ s)

In this situation, there are two possible inferences, either connecting poor
with Alice or connecting Alice with works. Let’s try the first one. We then

obtain
poor :m /n Alice :n

over
(poor Alice) : n works : n '\ s

After one more step we obtain a complete parse

poor :n /n Alice:n

over
(poor Alice) : n works : n \ s

d
((poor Alice) works) : s Hnaer

Trying the other order fails, since poor does not properly modify Alice works.
Let’s see how this failure arises during deduction. After one step we have

Alice : n works : n'\ s

- under
poor :m /n (Aliceworks) : s

At this point in the deductive process, no further inference is possible.
We now consider a few more words to find appropriate types for them.
The word here transform a sentence to another sentence when attached to
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the end. For example, writing the typing judgment vertically and indicat-
ing the expected parse tree by parentheses, we have

(Alice works) here
n n \ s ?
We see that the type of here should be s \ s.
(Alice works) here
n n\s s\s
or, making the inference more explicit

Alice works

How about never, which modifies an intransitive verb?

Bob (never works)
n ? n\s

We suggest you work this out before going on to the next page. . .

LECTURE NOTES AUGUST 30, 2016



Deductive Inference L1.14

We see that never should have type (n\ s) / (n\ s).

Bob (never works)

w0\ /() s
or, as a complete inference (= parse) tree:
never works
P s/ )

n n\ s

S

What about a transitive verb such as likes? Setting up a standard sen-

tence
Alice likes Bob

n ? n

it seems like there are two possibilities, depending on whether we prefer
the parse (Alice likes) Bob or Alice (likes Bob). The first yields the type n \ (s /
n), while the second yields (n \ s) / n. Using the tools of logic we will see in
the next lecture that these two types are equivalent in the sense that when
we can parse a phrase with the first we can always parse it with the second
and vice versa. So it should not matter which type we assign, although
if we think of parsing as proceeding from left to right one might have an
intuitive preference for the first one.

Of course, natural language has many ambiguities and the same work
can be used in different ways. For example, the work and can conjoin sen-
tences (for example, Alice works and Bob rests with type and : s\ (s / s)) but
also names (for example, Alice and Bob work with type and : n \ (n* / n)
where n* denotes plural ouns such as women).

Here is a little summary table, showing some of the possible types.

Word Type Part of Speech
works n\ s intransitive verb
poor  n/n adjective

here  s\'s adverb

never (n\s)/(n\s) adverb

likes n\(s/n) transitive verb
and s\ (s/s) conjunction
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6 Summary

We have examined the notion of logical inference from three different angles.
The first was to accumulate knowledge by deducing new facts from facts
we already knew, as in describing graphs using propositions vertex(x) and
edge(z,y) and paths through graphs using path(z,y). Proofs here contain
important information. For example, the proof that there is a path from =
to y contains the actual edges traversed.

We then generalized the situation by stipulating that inference consumes
the propositions it uses unless they are specified as persistent. This allows us
to represent change of state in a logical manner, which we illustrated using
a coin exchange and blocks world, a classic artificial intelligence domain.
A proof here corresponds to a (partially ordered) sequence of actions.

Finally, we followed Lambek [Lam58] by requiring our facts not only to
be consumed by inference, but remain ordered so we could represent gram-
matical inference. We saw our first two logical connectives, x / y and z \ y
in order to represent the syntactic types of various parts of speech. In this
example, a proof corresponds to a parse tree.
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7 Bonus Materials

We complete the lecture notes here with some bonus materials from previ-
ous instance of the course, not covered this year.

7.1 [Example: Natural Numbers]

As a second example, we consider natural numbers 0,1,2,.... A conve-
nient way to construct them is via iterated application of a successor func-
tion s to 0, written as

0,5(0),s(s(0)), . ..
We refer to s as a constructor. Now we can define the even and odd numbers
through the following three rules.

even(x) odd(x)
even(0) odd(s(z)) even(s(z))

As an example of a derived rule of inference, we can summarize the proof
on the left with the rule on the right:

even(l")
_even(z) even(x)
even(s(s(x)))

The structure of proofs in these examples is not particularly interesting,
since proofs that number a number of n is even or odd just follow the struc-
ture of the number n.

7.2 [Example: Graph Drawing]

We proceed to a slightly more sophisticated example involving linear in-
ference. Before we used ordinary deductive inference to define the notion
of path. This time we want to model drawing a graph without lifting the
pen. This is the same as traversing the whole graph, going along each edge
exactly once. This second formulation suggest the following idea: as we go
along an edge we consume this edge so that we cannot follow it again. We
also have to keep track of where we are, so we introduce another predicate
at(x) which is true if we are at node z. The only rule of linear inference then

is
at(z) edge(z,vy)

at(y)
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We start with an initial state just as before, with an edge(x, y) for each edge
from x to y, the rule of symmetry (since have an undirected graph), and
a starting position at(zp). We can see that every time we take a step (by
applying the step rule shown above), we consume a fact at(z) and produce
another fact at(y), so there will always be exactly one fact of the form at(—)
in the state. Also, at every step we consume one edge(—) fact, so we can
take at most as many steps as there are edges in the graph initially. Of
course, if we are at a point  there may be many outgoing edges, and if we
pick the wrong one we may not be able to complete the drawing, but at
least the number of steps we can try is limited at each point. We succeed,
that is, we have found a way to draw the graph witout lifting the pen if we
reach a state without an edge(—) fact and some final position at(z,,).

The following example graph is from a German children’s thyme® and
can be drawn in one stroke if we start at b or ¢, but not if we start at a, d, or
e.

We leave it to the reader to construct a solution and then translate it to a
proof. Also, if we remove node e and its edges to a and d, no solution is
possible.

Let’s make the meaning of proofs explicit again. Because we have only
one inference rule concerned with a move, a proof in general will have the
following shape:

at(xzo) edge(zo, 1)
step

edge(zp—2,Tn—1)

step
at(mnfl) edge(wnflyxn)

at(xy,)

step

“Das ist das Haus vom Ni-ko-laus.”
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This proof represents the path xg, z1, ..., zp—1, z,. Of course, some of these
nodes may be the same, as can be seen by examining the example, but
no edge can be used twice. If we need to traverse an edge in the opposite
direction from its initial specification, we need to use symmetry, which will
consume the edge and produce its inverse. We can then use the inverse
to make a step. Being able to continually flip the direction of edges is a
potential source of nontermination in the inference process. This does not
invalidate the observation that a path along non-repeating edges can be
written as a proof, and from a proof we can read off a path of non-repeating
edges. This path represents a solution if the initial and final states are as
described above.

7.3 [Example: Graph Traversal]

If we just want to traverse the graph rather than draw it, we should not
destroy the edges as we move. A standard way to accomplish this is to
explicitly recreate edges as we move:

at(z) edge(z,y)
at(y) edge(z,y)

step

Another way is to distinguish ephemeral propositions from persistent proposi-
tions. Ephemeral propositions are consumed during inference, while per-
sistent propositions are never consumed. This allows us to have a uniform
framework encompassing both the ordinary logical inference where we just
add the conclusions to our store of knowledge, and linear logical inference.

We indicate the disposition of propositions that are known to be true by
writing A eph and A pers. Here, A stands for a proposition and A eph and
A pers are called judgments. Distinguishing judgments from propositions is
one of the cornerstones of Per Martin-Lof’s approach to the foundation of
logic and programming languages [ML83]. From now on we will follow the
idea that the subjects of inference rules are judgments about propositions,
not the propositions themselves. Mostly, they express that propositions are
true, but in a variety of ways: ephemerally true, persistently true, true at
time ¢, etc. There are a number of different terms that have been used for
the particular distinction we are making here:

A ephemeral A persistent
A linear A unrestricted
A true A valid

A contingently true | A necessarily true
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Our high-level message is:

Truth is ephemeral; validity is forever.

In the example, we can use this by declaring edges to be persistent, in
which case the premise and conclusion of the symmetry rule should also
be persistent. We abbreviate ephemeral by eph, and persistent by pers.

at(z) eph edge(x,y) pers
at(y) eph

step

As an even more compact notation, we underline persistent propositions; if
they are not underlined, they should be considered ephemeral. For exam-
ple, there would appear to be little reason for the properties of being even
or odd to be ephemeral, since they should be considered intrinsic properties
of the natural numbers. We therefore write

even(z) odd(x)
even(0)  odd(s(z))  even(s(x))

The first rule here is an inference rule with no premise. Persistent conclu-
sions of such rules are sometimes called axioms in the sense that they are
persistently true.

7.4 [Example: Opportunity]
A common proverb states:

Opportunity doesn’t knock twice. — Anonymous
Again, let’s fix the vocabulary:

opportunity opportunity
knocks(xz)  x knocks

Then the preceding saying is just
knocks(opportunity) eph

where we have written out the judgment ephemeral for emphasis.

Clearly, when this fact is used it cannot be used again. If it is never
used, we do not consider opportunity to having ever knocked, so the judg-
ment above captures the idea that opportunity knocks at most once (and
therefore not twice).
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Exercises

Exercise 1 As an alternative way to defining paths through graph, we can
say that paths represent the reflexive and transitive closure of the (symmet-
ric) edge relation. Write out the inference rules as in Section 1, first without
proof terms. Now add proof terms and an appropriate equality relation on
paths. Explain your choice of equational theory.

Exercise 2 Write out proof for the example graph from subsection 7.2 that
demonstrates that the figure can be drawn in one stroke.

Exercise 3 Consider the representation of undirected graphs from Section 1,
with predicates node(x) and edge(x, y).

A Hamiltonian cycle is a path through a graph that visits each vertex ex-
actly once and also returns to the starting vertex. Define any additional
predicates you need and give inference rules such that inference corre-
sponds to traversing the graph, and there is a simple condition that can be
checked at the end to see if the traversal constituted a Hamiltonian cycle.

Exercise 4 Consider the representation of undirected graph from Section 1,
with predicates node(x) and edge(z, y). We add a new predicate color(z) to
express the color of node z. A valid coloring is one where no two adjacent
nodes (that is, two nodes connected by an edge) have the same color.

(i) Give inference rules that can deduce invalid(z,y) if and only if there
are adjacent nodes x and y with the same color.

(ii) Give inference rules where proofs from an initial state to a final state
satisfying an easily checkable condition correspond to valid color-
ings. Carefully describe your initial state and the property of the final
state.

Exercise 5 Consider the game Peg Solitaire. We have a layout of holes (shown
as hollow circles), all but one of which are filled with pegs (shown as filled
circles). We move by taking one peg, jumping over an adjacent one into an
empty hole behind it, removing the peg in the process. The situation after
one of the four possible initial moves is shown in the second diagram. The
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third diagram shows the desired target position.

e o O e o O o o O
& 8 A e O o o o o
U TR TR TR TR TR TR ) . 8 8 O B 8 O 0O o o 0O O o
e O o & 0 8 B 8 O e 0 o o
U TR TR TR T TR TR ) . B 8 0 B A 8 0O 0 o o 0O O o
& 8 A e o o o o o
e o O e o o o o O
initial position after one move target position

Define a vocabulary and give inference rules in a representation of peg soli-
taire so that linear inference corresponds to making legal jumps. Explain
how you represent the initial position, and how to test if you have reached
the target position and thereby won the solitaire game.

Exercise 6 We consider the blocks world example from Section 3. As for
graphs where we had the node predicate, it is convenient to add a new
ephemeral predicate block(x) which is true for every block in the configu-
ration.

Write a set of rules such that they can consume all ephemeral facts in the
state (leaving only the persistent clear(t)) if and only if all of the following
conditions are satisfied:

(i) the configuration of blocks is a collection of simple stacks,
(ii) the top of each stack is known to be clear, and

(iii) either the hand is empty or holds a block z, but not both.

If you believe it cannot be done, solve as many of the conditions as you can,
explain why not all of them can be checked, and explore alternatives. Note
linear inference allows rules with no premises or no conclusions.

Exercise 7 Render the following statement by an American president as an
inference rule in linear logic:

If you can’t stand the heat, get out of the kitchen. — Harry S. Truman

Use the following vocabulary:

toohot(z) x cannot stand the heat
in(z,y) risiny
kitchen the kitchen
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Exercise 8 Render the following statement in linear logic (without the use
of any logical connectives):

Truth is ephemeral; validity is forever. — Frank Pfenning, page 19

Use the vocabulary
truth truth
validity  validity
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We review the ideas of ephemeral truth and linear inference with another
example from graph theory: constructing spanning trees for graphs. Next
we consider how the process of grammatical inference in the Lambek cal-
culus [Lam58], where an order of facts is prescribed, can be used to define
other forms of computation. Finally, we generalize our formalization of
logical inference to encompass hypothetical reasoning which will give rise to
Gentzen’s sequent calculus [Gen35]. The sequent calculus will be the gate-
way that allows us to move from pure logical inference to a definition of
logical connectives.

1 Example: Spanning Trees

A spanning tree for a connected graph is a graph that has the same nodes
but only a subset of the edges such that there is no cycle. In order to define
rules for constructing a spanning tree for a graph we will simultaneously
manipulate two graphs: the original graph and its spanning tree. We there-
fore add a third argument to our representation of graphs (from Lecture 1)
which identifies which graph a node or edge belongs to.

node(z, g) x is anode in graph g
edge(z,y,g) thereis an edge from z to y in graph ¢

The rule of symmetry stays within one graph g:
— """ sym
edge(y, , g)
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Now assume we have a graph g and want to build a spanning tree t. Here
is a simple algorithm for building t. We begin by picking an arbitrary node
x from g and create t with z as its only node. Now we repeatedly pick an
edge that connects a node x already in the tree with a node y not yet in the
tree and add that edge and the node y into the tree. When no such edges
exist any more, we either must have a spanning tree already or the original
graph was not connected. We can determine this, for example, by checking
if there are any nodes left in the graph that haven’t been added to the tree.

This algorithm has two kinds of steps, so its representation in linear
logic has two rules. The first step moves an arbitrary node from the graph

to the tree.
node(x, g)
start?

node(z, t)
This rule can be used only once, at the very beginning of the algorithm and
must be prohibited afterwards, or we could just use it to move all nodes
from the graph to the tree without moving any edges. So we can either say
the rule must be ephemeral itself, or we create a new ephemeral proposition
init which only exists in the initial state and is consumed by the first step.

init node(z, g)

start
node(x, t)

The next rule implements the idea we described in the text above. All
propositions are ephemeral, so we can implement “a node y not yet in the
tree” by checking whether it is still in the graph, thereby consuming it.

node(r,t) edge(x,y,g) node(y, )

move
node(x,t) edge(x,y,t) node(y,t)

A proof using these two rules describes a particular sequence of moves,
taking edges from the graph and adding them to the spanning tree.

In order to convince ourselves that this is correct, it is important to un-
derstand the state invariants. Initially, we have

init
node(z, g) for everynode zin g

edge(z,y,g) foreveryedgefromztoying

Rule move does not apply, because we do not yet have a node in t, so any
inference must begin with rule start, consuming init and producing one
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node x( in t.

node(zg,t)  for some node zg
node(z, g) for every node = # zping
edge(z,y,g) foreveryedgefromztoying

Now rule start can no longer be applied, and we apply move as long as
we can. The rule preserves the invariant that each node = from the initial
graph is either in t (node(z,t)) or in g (node(z, g)). It further preserves the
invariant that each edge in the original graph is either in t (edge(z, y,t)) or
still in g (edge(z, v, g))-

If the algorithm stops and no nodes are left in g, we must have moved
all n nodes originally in g. One is moved in the start rule, and n — 1 are
moved in applications of the move rule. In every application of the move
rule we also move exactly one edge from g to t, so t now has n nodes and
n — 1 edges. Further, it is connected since anytime we move an edge it
connects to something already in the partial spanning tree. A connected
graph with n nodes and n — 1 edges must be a tree, and it spans g because
it has all the nodes of g.

If the algorithms stops and there are some nodes left in g, then the orig-
inal graph must have been disconnected. Assume that g is connected, y is
left in g, and we started with x( in the first step. Because g is connected,
there must be a path from z( to y. We prove that this is impossible by in-
duction on the structure of this path. The last edge connects some node y’
to y. If ¥/ is in the tree, then the rule move would apply, but we stipulated
that the algorithm only stops if move does not apply. If ¢/ is in the graph
but not in the tree, then we apply the induction hypothesis to the subpath
from z to y/.

2 Example: Counting in Binary

In this section we see how to encode binary counting via ordered inference
as in the Lambek calculus. We represent a binary number 10115 (which is
eleven) by the following ordered propositions:

eps bl b0 bl bl

where bl represents bit 1, b0 represents the bit 0, and eps represents the
empty string, thereby marking the end of the binary string. We think of
increment as another proposition we add at the right end of the string. For

LECTURE NOTES SEPTEMBER 1, 2016



From Rules to Propositions L2.4

example, if we want to increment the number above twice, we would write
eps bl b0 bl bl incinc

If we define the correct rules we would like to infer

eps bl b0 bl bl incinc

eps bl bl b0 bl

Before you turn the page you might consider if you can define ordered
inference rules to define the increment operation.

LECTURE NOTES SEPTEMBER 1, 2016



From Rules to Propositions L2.5

We need the following three rules:

b0 inc . 0 bl inc . 1 eps inc
inc inc
bl inc b0 eps bl

inceps

The incl rule implements the carry bit by incrementing the remainder of
the bit string, while inceps deposits the carry as the highest bit in case we
have reached the end of the bit string.

These rules encode some parallelism. For example, after a single step of

inference we have
eps bl b0 bl bl incinc

eps bl b0 bl inc b0 inc

eps bl bl b0 bl

Here we only show the state after each inference and not the rule used
(which is incl) for the sake of conciseness. In the second line, we can apply
incl or inc0 or (because they are independent) both of them simultaneously,
which gives us

eps bl b0 bl bl incinc

eps bl b0 bl inc b0 inc

eps bl b0 inc b0 bl

eps bl bl b0 bl

Now we can obtain the desired conclusion with one more step of inference.

eps bl b0 bl bl incinc
eps bl b0 bl inc b0 inc
eps bl b0 inc b0 bl
eps bl bl b0 bl

3 Ordered Hypothetical Judgments

The notion of grammatical inference represents parsing as the process of
constructing a proof. For example, if we have a phrase (= sequence of
words) wy ... w, we find their syntactical types z; ...z, (guessing if nec-
essary if they are ambiguous) and then set up the problem

(w1 1) (wy : zp)
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where “?” will represent the parse tree as a properly parenthesized expres-
sion (assuming, of course, we can find a proof).

So far, we can only represent the inference itself, but not the goal of
parsing a whole sentence. In order to express that we introduce hypothetical
judgments as a new primitive concept. The situation above is represented
as

(wy:x1) - (wy:xy)F?:s

or, more generally, as

(pr:@1) - (Prnian) b7z

The turnstile symboxl “” here separates the succedent r : z from the an-
tecedents p; : x;. We sometimes call the left-hand side the context or the
hypotheses and the right-hand side the conclusion. Calling the succedent a
conclusion is accurate in the sense that it is the conclusion of a hypothetical
deduction, but it can also be confusing since we also used “conclusions”
to describe what is below the line in a rule of inference. We hope it will
always be clear from the situation which of these we mean.

Since we are studying ordered inference right now, the antecedents that
form the context are intrinsically ordered. When we want to refer to a se-
quence of such antecedents we write (2 where “Omega” is intended to sug-
gest “Order”. When we capture other forms of inference like linear infer-
ence we will revisit this assumption.

4 Inference with Sequents: Looking Left

Now that we have identified hypothetical judgments, written as sequents
Q F r : z we should examine what this means for our logical rules of
inference. Fortunately, we have had only two connectives, over and under,
first shown here without the proof terms (that is, without the parse trees):

r/y y y y\z

over _—
p under

Now that the propositions we know appear as antecedents, the direction of
the rules appears to be reversed when considered on sequents.

QrzQpk QrzQpk
Lz Qrbz IL* LT Qrbz \L*
Qr(x/y)yQrt z Qry(y\z) Qrt 2
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We have written 2;, and Qp to indicate the rest of the context, which re-
mains unaffected by the inference. These rules operate on the left of the
turnstile, that is, on antecedents, and we have therefore labeled them /L*
and \L*, pronounced over left and under left. While helpful for today’s lec-
ture, we will have to revise these rules at the beginning of the next lecture,
so we have marked them with an asterisk to remind us that they are only
preliminary.
Redecorating the rules with proof terms (that is, parse trees in gram-

matical inference):

p:ix/y q:y q:y pry\z

- over ———— under

(pg):z (gp) : x

Now that the propositions we know appear as antecedents, the direction of
the rules appears to be reversed when considered on sequents.

Qr ((pq) :2) Qrbr:z Qr ((gp) :2) Qrbr:z

Qrp:x/y) (q:y) Qrbr:z Qr(g:y) (p:y\x) Qrtr:z

Our inferences, now taking place on the antecedent, take us upward in
the tree, so when we have a situation such as

(w1 : 1) (wy 2 Ty)

p:s
where we have deduced p : s, we are now in the situation

p:skE?:s

(wl:m1)~--(1;)n:xn)l—?:s

This means we need one more rule to complete the proof and signal the suc-
cess of a hypothetical proof. Both forms with and without the proof terms
should be self-explanatory. We use id (for identity) to label this inference.

id — id

chax prxbpix
Because we wanted to represent the goal of parsing a sequence of words
as complete sentence, no additional antecedents besides x are permitted in
this rule. Otherwise, a phrase such as Bob likes Alice likes could be incor-

rectly seen to parse as the sentence ((Bob likes) Alice) ignoring the second
likes.
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5 Inference with Sequents: Looking Right

We already noted in Lecture 1 that z\ (y / z) should be somehow equivalent
to (z \ y) / z since both yield a y when given and x to the left and z to the
right. Setting this equivalence up as two hypothetical judgments

z\(y/z)F(z\y)/=
and
(z\y)/zFx\(y/2)

that we are trying to prove however fails. No inference is possible. We are
lacking the ability to express when we can deduce a succedent with a logical
connective. Lambek states that we should be able to deduce

z z Yy

x/y if x

So x / y should follow from z if we get z if we put y to the right of z.
With pure inference, as practiced in the last lecture, we had no way to turn
this “if” into form of inference rule. However, armed with hypothetical
judgments it is not difficult to express precisely this:

zykx

zbx/y

Instead of a single proposition z we allow a context, so we write this

Qulkzx

— /R

QFzx/y

This is an example of a right rule, because it analyzes the structure of a
proposition in the succedent and we pronounce it as over right. The \R
(under right) rule can be derived analogously.

yQFx

" \R
QFy\z

In the next lecture we will look at the question how we know that these
rules are correct. For example, we might have accidentally swapped these
two rules, in which case our logic would somehow be flawed. And, in fact,
our rules are already flawed but we do not have the tools yet to see this.
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Let’s come back to the motivating example and try to construct a proof
of

e\ (y/z)F(z\y) /=

Remember, all the rules work bottom-up, either on some antecedent (a left
rule) or on the succedent (a right rule). No left rule applies here (there is no
x to the left of = \ (...)) but fortunately the /R rule does.

z\(y/z) zkz\y IR
z\(y/z)F(z\y) /=

Again, no left rule applies (the parentheses are in the wrong place) but a
right rule does.

x xz\(y/z2) zkux
z\(y/z) zFa\y

/R
2\ (y/2)F(z\y) /=
Finally, now a left rule applies.
z zk
y/ y \L

z z\(y/2) zFy
z\(y/z) zFaz\y
z\(y/2)F(z\y) /=

One more left rule, and then we can apply identity.

id,
yruy

-
y/z zhkuy
v x\(y/z) zFy
z\(y/z) =Fz\y
z\(y/2)F(x\y)/ =
The proof in the other direction is similar and left as Exercise 5.
We have left out the proof terms here, concentrated entirely on the log-
ical connectives. We will return to proof terms for ordered hypothetical

judgment in a future lecture and proceed to conjecture some logical con-
nectives and how to define them via their left and right rules.

\L*
\R
/R

LECTURE NOTES SEPTEMBER 1, 2016



From Rules to Propositions L2.10

6 Alternative Conjunction

As already mentioned in the last lecture, some words have more than one
syntactic type. For example, and has type s\ s/ s (omitting parentheses now
since the two forms are equivalent by the reasoning the previous section)
and also type n \ n* / n, constructing a plural noun from two singular ones.
We can combine this into a single type = & y, pronounced z with y:

and : (s\s/s)&(n\n*/n)

Then, in a deduction, we are confronted with a choice between the two for
every occurrence of and. For example, in typing Alice and Bob work and Eve
likes Alice, we choose n \ n* / n for the first occurence of and, and s\ s / s for
the second.

Lambek did not explicitly define this connective, but it would be de-

fined by the rules

T&Y T &Y
withy

withsg

In the proof term we might write .1 for the first meaning and .2 for the
second meaning of the word.
prrdy pra&y

with; — withy
pl:zx p2:y

so that the parse tree for the sentence above might become

((Alice and.1 Bob) work) and.2 (Eve likes Bob)

where we have omitted parentheses that are redundant due to the associa-
tivity of \—/.

As before, these rules turn into left rules in the sequent calculus, shown
here only without the proof terms.

QL:L‘QRFZ QLyQRFz
&Ly &Lo
Qrae&yQrtz Qrax&yQrt =z

To derive the right rule we must ask ourselves under which circum-
stances we could use a proposition both as an x and as a y. That's true, if
we can show both.

QFz QFy

&R
QFxz &y
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7 Concatenation

In a sequent, there are multiple antecedents (in order!) but only one succe-
dent. So how could we encode the goal we had in the binary counting
example:

eps bl b0 bl bl incinc

eps bl bl b0 bl

Clearly, this is a hypothetical judgment but the succedent is not a single
proposition. In order to define over and under, it is important to maintain
a single succedent, so we need to define a new connective that expresses
adjacency as a new proposition. We write = e y (read: x fuse y). In the
Lambek calculus, we would simply write

Tey

Ty
As a left rule, this is simple turned upside down and becomes

QraxyQrbz

QLdionRl—Z

fuse

o/

As aright rule for x e y, we have to divide the context into to segments, one
proving = and the other proving y.

Ql}—l‘ QQ}—y
D Qo xey

Note that there is some nondeterminism in this rule if we decide to use it
to prove a sequent, because we have to decide where to split the context
Q= (Qq Qg). For a context with n propositions there are n + 1 possibilities.
For example, if we want to express that a phrase represented by (2 is parsed
into two sentences we can prove the hypothetical judgment

QFses
We can then prove
Alice works Bob sleeps ?
n n\s n n\s F ses

but we have to split the phrase exactly between works and Bob so that both
premises can be proved. Assuming a notationofp-q: zeyifp:zandq:y,
the proof term for s e s in this example would be (Alice works) - (Bob sleeps).
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8 Emptiness

In this section we consider 1, the unit of concatenation, which corresponds
to the empty context. The left and right rules are nullary versions of the
binary concatenation. In particular, there must be no antecedents in the
right rule for 1.

Qp QrF 2z

— 1R — 1L
F1 QL]_QRI—Z

9 An Unexpected Incompleteness

In functional programming there is a pattern called currying which says
that instead of a functions of type (7 x o) — p, passing a pair with values
of type 7 and o, we can pass the arguments sequentially as indicated by
the type 7 — (0 — p). Logically, this is manifested by the isomorphism
between these two types when considered as propositions, where x is con-
junction and — is implication.

Is there something similar in ordered logic? First we note that over and
under are a form of implication, distinguished merely by whether they ex-
pect their argument on the left or on the right. Concatenation is a form
of conjunction since it puts together two proofs. Let’s consider (z o y) \ z.
This expect « followed by y to its left and concludes z. Similarly, y \ (z \ z)
expects a y to its left and then an z next to that which, if you had concate-
nated them together, would be z e 3. So these two seem like they should be
intuitively equivalent. Let’s try to use the tools of logic to prove that.

First, y \ (z\ 2) - (z ey) \ 2. We show here the completed proof, but you
should view it step by step going upward from the conclusion.

- id,

x x\zl—z\L*
Ty y\(ﬂf\z)FZ.
zeoy y\(z\z)Fz
y\(@\2)F (zey)\ 2

\L*
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Now for the other direction. Unfortunately, this does not go as well.

?
x y (xey)\zhkz

y (zey)\zFua\z \R
(zoey)\zFy\(z\2)

The sequent at the top should be intuitively provable, since we should be
able to combine x and y to = e y and then use the \ L* rule, but there is no
such rule. All rules in the sequent calculus so far decompose connectives in
the antecedent (left rules) or succedent (right rules), but here we would like
to construct a proof of a compound proposition. We could add an ad hoc
rule to handle this situation, but how do we know that the resulting system
does not have other unexpected sources of incompleteness?

In the next lecture we will first fix this problem and then systematically
study how to ensure that our inference rules do not exhibit similar prob-
lems.
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Exercises

Exercise 1 Consider variations of the representation and rules in the span-
ning tree example from Section 1. Consider all four possibilities of nodes
and edges in g and t being ephemeral or persistent. In each case show the
form of the three rules in question: sym (possibly with two variants), start,
and move, indicate if the modification would be correct, and spell out how
to check if a proper spanning tree has been built in the final state.

Exercise 2 Consider the encoding of binary numbers in ordered logic as in
Section 2. Assume a new proposition par for parity and write rules so that
the binary representation of a number followed by par computes eps b0 or
eps bl if we have an even or odd number of ones, respectively.

Exercise 3 Represent the computation of a Turing machine using ordered
inference as in Section 2. You will need to decide on a finite, but potentially
unbounded representation of the tape, the finite number of states, and the
state transitions, such that each step of the Turing machine corresponds to
one or more steps of ordered inference. Make sure to describe all parts of
the encoding carefully.

Exercise 4 Represent instances of Post correspondence problem in ordered
logic so that ordered inference as in Section 2 from an initial state proves
a distinguished proposition s (for success) if and only if the problem has a
solution. One should be able to extract the actual solution from the proof.
Make sure to describe all parts of the encoding carefully.

Exercise 5 Prove (x \y) /zF x\ (y/ 2)

Exercise 6 Find equivalences along the lines of associativity, currying, or
distributivity laws as in the first two examples and prove both directions.
Note (but do not prove) where they don’t seem to exist if we restrict our-
selves to the over, under, fuse, and with connectives. You may need to
refer to Lecture 3 to use the stronger versions of \ L and /L that resolve the
incompleteness in Section 9.

(x\y)/ 2z 2\ (y/ z) (see Section 5 and Exercise 5)

(zoy)\ zd-y\ (z\ 2) (see Section 9 and Lecture 3)

1. 2/ (yez) 1 Az, vy, 2)
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2. (ZE.Z/)/Z_“_ B(x,y,z)
3. (IIZ&y)/Z I+ C(xvyaz)

4.z /(y&=z) 4+ D(z,y,2)
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In the last lecture we started developing a sequent calculus which expresses
the notion of a hypothetical judgment 2 - z where 2 is a ordered collection of
antecendents and z is the succedent. Each connective (we discussed x / y,
z\y, zey, 1and z & y) was defined by a right rule (which shows how to
prove such a proposition) and a left rule (which shows how to use such a
proposition).

We wrote down rules that seemed intuitively correct, but we were sur-
prised we couldn’t prove (zey) \ z F y \ (z \ z) with our rules. We need
some criteria to decide if the rules are “correct”. In traditional development
of classical logic this is usually done by developing a Tarskian semantics,
interpreting the propositions in some mathematical domain, and then as-
sessing whether the rules are sound and complete with respect to this in-
terpretation.

An alternative approach views the left and right rules of the sequent cal-
culus themselves as providing the meaning of the connectives, a so-called
proof-theoretic semantics. This idea was pioneered by Gentzen [Gen35], de-
veloped further by Dummett [Dum91], and proposed as the foundation of
type theory by Martin-Lof [ML83]. We follow this approach here in the
definition of substructural logic and the sequent calculus, rather than intu-
itionistic logic and natural deduction.

We provide two tests to verify if the left and right rules for a connective
are in harmony, which permits us to view the rules as a semantic defini-
tion. These criteria not only supply internal notions of soundness and com-
pleteness, but they will also play a critical role later on, when we introduce
computational interpretations of proofs.
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1 Repairing the Rules for y \

Recall the relevant preliminary rules from Lecture 2.

idg
rhx
yQFx R QpxQptz .
QFy\z Qry(y\z) Qrt z
QFz Uty QrzyQrtz
— oR ol
QO Fzey Qp(zey) Qrt 2z

Read from the conclusion to the premise, each of the right and left rules
removes a connective from the sequent, so they analyze the structure of the
proposition in the endsequent.

When we were trying to prove (xey) \ z -y \ (z \ 2) we got stuck at the
following point, with no further rule applicable. As usual in the sequent
calculus, you should read this partial derivation from the bottom upwards.

?

Ty (x;y)\zl—z
y (zey)\zkux\z \R
(zoy)\zFy\(z\2)

At this point, there are a couple of directions we could go in. One is to
add new rules, another one is to generalize the rules we already have. One
suggestion would be to add the rule

Qp (zey) Qrt 2
QLwaRFZ

This would allow us to complete this proof because we could combine z
and y so that \L* then applies. This is a valid direction to consider (and
there are solutions along these lines in other contexts), but a calculus with
this rule no longer breaks down connectives as we go up the proof. If we
see the rules as a semantic definition, they would now be problematic since
the meaning would no longer be compositional but may depend on other
propositions that we did not anticipate. We also need to modify our simple
argument for decidability. Finally, it seems like a very special case: how do
we know we have added enough rules?
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A second approach is to generalize the rule
QL T QR Fz
Qry (y\z) Qrt 2

\L*

Instead of requiring the proposition to the left of (y \ ) to match y exactly,
all we need is that we can prove y from some of the antecedents. Since order
is important, we slice off a section just to the left of (y \ x) for this purpose
to arrive at the following rule.

Qll—y QL[BQRl_Z
QLQ/ (y\l’)QRl—Z

A pleasing aspect of this rule is that it just breaks down a single connective,
so it fits within our general program of right and left rules and meaning
explanations of propositions. We will therefore adopt it. Spoiler alert: it
will pass the tests for harmony we devise in the next section. Moreover, the
previous rule \ L* can easily be justified as a derived rule of inference:

yl—y Y QLl'QRl—Z
Qry (y\z) Qrt 2

Finally, the rule is strong enough so we can complete the proof in our mo-
tivating example:

id id
rhx yFy Y

id,

R

r ykxzey zkF 2z

x y (zey)\zkz
y (zey)\zka\z \R
(zey)\zEy\(z\2)

2 Identity and Cut

The key idea behind the tests we devise on the harmony between left and
right rules is that they ensure agreement between proving a proposition (the
right rule) and using a proposition (the left rule). How can we embody these
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principles in the sequent calculus? Actually, we already have one rule that
embodies the second one, name the identity rule.

id,

Tk

It expresses that if we have an antecedent x (and nothing else) we can use
it to prove the succedent x.
The other direction would say that if we can prove x we are justified to
use z. In its simplest form, this would be
Fx xhkz
Fz

This is too restrictive, since we should be able to use x even if it requires
some of the antecedents in the conclusion. Ordering constraints mean what
is used to prove z should be some segment of our context.

Qrz QrzQ =z
QL Qpt 2

cut,

If, for the whole logical system, the left and right rules are in balance, we
should never need identity or cut. That’s actually not quite true: if we have
propositional variables like = or y because we perform schematic inference
(as we have been doing in much of the development), then identity for
variables cannot be eliminated. These two properties are known as identity
elimination and cut elimination.

Unfortunately, cut and identity elimination are global properties of a
complete logical system, not isolated questions about the individual left
and right rules. In the next lecture we will proceed to prove, as metathe-
orems about the Lambek calculus, that these two properties actually hold.
In this lecture we will focus on isolating local transformations on proofs
which we call identity expansion and cut reduction which are isolated checks
on the left and right rules for each connective. Cut reduction in particu-
lar will also play a fundamental role in the computational interpretation of
proofs we will discuss later in the course.

Consider a proposition = * y for some connective *. We say it satisfies
identity expansion if we can replace the identity at x * y by uses of identities
at x and y. Conversely, we say it satisfies cut reduction if we can replace any
cut at z*y that matches a right rule for z xy against the left rule on the same
proposition by cuts at « and y. In the next few sections we will check these
property for some connectives and we will also look for counterexamples
to understand what may happen if these properties are not satisfied.
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3 Harmony fory \ x

We'll start with y \ z. Identity expansion is easier to check. Can we expand
the one-line proof

 idy,
y\zky\z 2

into a proof just using identity at « and y? There are only two possible rules
that could apply, but \ L will fail since we cannot prove y. So wee need to
start with \ R.

y y\zhkzx
y\rky\z

Fortunately, at this point we can use \ L followed by identities to complete
the proof.

id id
yFuy Y rkax

y y\zhkzx
y\zky\z

Interesting, the restricted rule \ L* would have actually passed this test. It
might have been slightly suspicious, though, because the expanded form
does not need id,,.

Note that the expansion introduces uses of \R and \L into the proof.
Cut reduction instead eliminates uses of these rules that appear just above
the cut. The situation:

D &' E
QF2x Q'+ QrzQpkz
Yy R Yy L R \L
QFy\z QY (y\z) Qrt 2
cu y\z
QLA QQpF 2

We have named here the subproofs, D, £’, and &, since these are the proofs
we can now use to justify the conclusion, using cut only at y and x. Indeed,
we can first cut £ with D and then the result with £. Note that we could
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also cut D with £ and then the result with £'. We show the first alternative.

& D
o+ QF
v UOTT e
QAAFx QLl’QRl—Z t
Cuty
QLY QORE 2

At this point we know we have established harmony. To summarize, we
have the identity expansion, denoted by =g

iy i,
zhkzx
yry \]Z

” y y\zkx \R
—idy S INT 7
y\eFy\e =g  yl\eFy\e

and the cut reduction, denoted by =g
D g £
yQkx . QFty QrzrQrbz \
QFy\z QpQ (y\z) Qrt 2 .
cut,\ o
O Y QQpt 2 "

&' D
Q'+ QF
vy v cut E

O OF L QL Qpt o2
—R QLQ/QQRFZ

cut,

Let’s see what would happen if we had the weaker \ L* rule.

D &
QF2x Qrx Q-
Y R L R Z \L*

QFy\z Qry(y\z) QrtF 2
cut

O, yQQpt 2 o\
D &
yQbFx QpraQpbz
cut,
—R QryQQrt=z
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We note that, perhaps surprisingly, cut reduction can still apply, but that
the situation of cut we are considering is not most general, that is, it only
applies in the special case of a cut where y happens to be present in its
second premise. This would eventually lead to a failure of the global cut
elimination property we discuss in the next lecture.

Coming back to the original rules, let’s make another (not completely
implausible) mistake and consider the incorrect \ R’ rule which adds y to
the wrong side of the antecedents.

D &' £
Qytx , Vry QraQpbz
Qky\x\ QL (y\z) Qrt 2

QLQ/QQRFZ

cuty\z

Now we can try to perform a similar reduction to before, which would give
us:

& D
Q- Quyk
Y 4 $cuty &
QO Fz QrxzQptz
) cuty
=R QLQQ/QPJ—Z

We note that this proof has a different conclusion from before, swapping
Q' and ), so this is not a valid reduction. Indeed, cut reduction fails: we
cannot construct, from the proofs D, £’ and £ that we have a proof of the
original endsequent 7, ' 2 Qp using cut only at z and y.

How catastrophic is this failure? See Exercise 2. Suffice it to say here
that our test fails. The left and right rules are not in harmony. Indeed, the
identity expansion would fail as well:

77 7?7
Fy zykx
. W\z)ykaz
_ Idy\x ” — \ R
y\zkFy\x =5 y\zky\z
Each step here is forced, and we can not prove either of the two sequents at
the top since no rule applies.

We skip harmony for x /y, which is symmetric (see Exercise 1) and move
on to other connectives.
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4 Alternative Conjunction

As one more example, let’s consider the alternative conjunction x&y. Recall
the sequent rules

QFz QFy QrxzQrtz QryQrtz

&R &L &L
QFz &y Qpax&yQrtz ! Qrae&yQrtz ?

The identity expansion is once again straightforward, since essentially ev-
ery step is forced.

id idy
zhz yhy
— &L —— &l
) T&Ytx r&yky
e idyay 2R
T &Yt rT &y =5 r&ykFz&y

What would happen if, say, we forgot the second left rule, &L2? We would
not be able to complete the proof of the second premise of &R, so the iden-
tity expansion would fail. It is perhaps easier to see here than in the case
of = \ y, that identity expansion verifies that, taken together, the left rules
for a connective are strong enough to prove the succedent with this same
connective. If we omit the second left rule here they are too weak and our
test will fail.

For the cut reduction, we actually have to test two situations, since there
are two possible left rules to infer x & y. First, with the first left rule:

D D’ &
QFz QFy QpazQrtz
— &R &Ly
QFz&y Qr (z&y) Qr 2
cutm&y
QLQQRI_Z
We can easily reduce this to a cut between D and €.
D &
Oz QpzQrbz
cut,
=R QL QQrkE 2

We don’t need a cut on y here: the proof of = & y offers a choice between
the proof of x and the proof of y and in this case the proof that uses = & y
chooses .
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Of course, if the second premise of the cut is &L, we perform a sym-
metric reduction, this time to a cut on y. We omit the straightforward de-
duction.

Note that if we had mistakenly omitted the &Ls rule, then we would
have had only the first case to check, and it would pass. In other words, the
left rules are not too strong. In this case, the imbalance can only be noted
in the identity expansion.

Another suggested mode of failure would require two copies of z in the
left rule. Then the situation would be as follows:

D D &
QFx QFy . QrarxxzQrtz )
—& :
QFz&y Qr (x&y) Qr k2 !
cutx&y
Qr QQAp 2

A cut reduction would require two cuts on x to eliminate the two copies,
but this would duplicate {2 and lead to the wrong endsequent.

D E
QFx QrzxzQrpbz
D cut,
QFzx QL QzQrtz
o cut,
R Qr QA QAQpF 2z

So this is not a valid cut reduction. The right rule and this modified left
rule would not be in harmony. In fact, identity expansion would also fail
since we have an extra copy of z in one branch on the proof, which is not
allowed in applications of the identity rule.

5 Rule Summary

Here is a summary of the sequent calculus rules for the Lambek calculus so
far [Lam58].! We often consider the cut-free sequent calculus, omitting the
cut, rule, and the identity expanded sequent calculus, restricting the id, rule
to propositional variables x.

We refer to id, and cut,, as judgmental rules since they are concerned only
with the nature of the ordered hypothetical judgment but not any particu-
lar propositions. They are also sometimes called structural rules. The other

1Ac’cually, Lambek did not have 1 or & as explicit connectives.
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rules, namely the right and left rules, are defining propositional connec-
tives so we call them the propositional rules.

Judgmental rules

Oz QpzQrtz

cut,

QLQQRFZ

QFy QrzQrbz

QLQ/(y\I')QR}_Z

Yy QraQ. =z
Qp (x/y) YV Qrt 2

QL[EyQRI—Z
QL(.I'O:I,/)QRI_Z

ol

QLQRl—Z

— 1L
QL].QRl—Z

QraxQrtz QLyQrtz
L f L &Lo

idy
rhx
Propositional rules
QFz
I R
QFy\z
QuFax
QFzx /vy
QFz Qty
QO Fzey
— 1R
F1
QFz QFy
QFxz &y
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Exercises

Exercise 1 Show identity expansion and cut reduction for = / y.

Exercise 2 As pointed in Section 3, if we replace the \ R rule with \ R? which
adds y at the wrong end of the antecedents, both identity expansion and
cut reduction fail. Explore which, if any, of the three structural rules would
now be derivable in the presence of cut and identity. In each case, show
the proof if one exists or indicate that you believe it is not derivable (which
you do not need to prove).

1. Exchange:
QryzQpkz
——  exchange
QL Ty QR [ z
2. Weakening:
QL QR Fz
s k
QLa:QRI—z weaken
3. Contraction:
QraxzxzQrbz
—— contract
QrxQptz

If any of these were derivable, it would quantify the global effect of the
lack of harmony for a single connective, upsetting our intended meaning
of the logic. If none of these can you find another expression of the failure
of semantic intent?

Exercise 3 Assume we define a new connective * with the following right
and left rules (which mix the right rule for alternative conjunctions with
left rule for concatenation):

QFz QFy QrrzyQrtz
— xR 1
QFxx*xy Qp (zxy) Qr k2

First, show which of identity expansion and cut reduction fail and which
succeed. Then answer the same questions as in Exercise 2.

Exercise 4 Assume we define a new connective # with the following right
and left rules (which mix the right rule for concatenation with left rules for
alternative conjunction):

QL}—I' QRl—y# QL.I'QRl—Z # QLyQRFZ
1
QpQrta#y Qr (x#vy) QrE 2 Qr (x#y) QrE 2
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First, show which of identity expansion and cut reduction fail and which
succeed. Answer the same questions as in Exercise 2.

Exercise 5 Consider a connective x o y (pronounced x twist y) defined in
the original style of Lambek by

Toy

y x
Investigate this connective by going through the following steps.

twist

1. Define the right and left rules for x o .

2. Verify identity expansion and cut reduction for z o y.
3. Prove or refute that oy - yexandyez k- zoy.
4

. Find a curried equivalent A(z,y, z) of (xoy) \ z and prove A(z,y, z) -
(xoy)\ zand (zoy)\ zH+ Az, y, 2).

5. Find a curried equivalent B(z,y, z) of x / (yoz) and prove B(z,y, z) I
x/(yoz)andz / (yoz)F B(z,y,2).

Exercise 6 Consider propositions in the Lambek calculus constructed from
z/y z\y zey xoy, and 1. This calculus should have some strong
symmetries. Find a transformation Z such that - z if and only if - Z that
exhibits such a symmetry and prove that it satisfies this property.

Exercise 7 We have explained logical equivalence between xand yas z - y
and y - x. Can we internalize logical equivalence as a connective x = y?
Its defining rules in Lambek’s original style would be

T T=Y : T=Y :
equivy — equivy

Answer the following questions if you find this is a proper connective, or
explain if no satisfactory rules seem possible.

1. Define right and left rules for z = y.

2. Verify identity expansion and cut reduction for z = y.

3. Prove or refute that = is reflexive, symmetric, and transitive.
4

. If you can define « = y notationally as proposition A(z,y) with con-
nectives already present rather than by right and left rules, show that
Atz =yand z = y - A with your rules from part 1.

Exercise 8 Prove that z ¢ 1 and 1 e x are equivalent to x.
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We first present some additional examples illustrating ordered inference
that capture computations of finite state transducers and Turing machines.
Then we return to cut elimination, also called Gentzen’s Hauptsatz [Gen35],
for the Lambek calculus given in its sequent formulation. Together with
identity elimination, this justifies our program of viewing the inference
rules as defining the meaning of the connectives even more clearly than
the cut reduction and identity expansion by themselves. The idea behind
these will emerge in the proof. Cut elimination also immediately yields a
decidability proof for the Lambek calculus, something already observed by
Lambek [Lam58].

1 Example: Finite State Transducers

A subsequential finite-state transducer [Sch77] (FST) consists of a finite num-
ber of states, an input alphabet and an output alphabet, and a transition
function ¢ that takes a state and an input symbol to a new state and an out-
put string. We also distinguish an initial state and a final state, from which
no further transitions are possible. Finite state transducers have a number
of important closure properties and are closely related to deterministic fi-
nite automata (DFAs). They are often depicted with transition diagrams.
As an example we show a FST which transforms an input string consisting
of a and b symbols by compressing all runs of b into a single b. Each tran-
sition is labeled as = | w where z is either an input symbol or € (when the
input string is empty) and w is a word over the output alphabet.
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ble

In order to represent this in the Lambek calculus so that ordered in-
ference corresponds to computation, we introduce propositions a and b to
represents the symbols, here shared between the input and output alpha-
bets. We also have a proposition $ representing an endmarker and reverse
the word!. For example, the string bbaba will be represented as the ordered
antecedents $ a b a b b. Furthermore, we have a new proposition for every
state in the FST, here qq, ¢1, and ¢y. Initially, our antecedents will be popu-
lated by the representation of the input string followed by the initial state.
In this example, we start with

$ababbq

We now present inference rules so that each ordered inference corresponds
to a transition of the finite state transducer. In the premise we have the
input (represented as a proposition) followed by the state; in the conclusion
we have the new state followed by the output. The empty input string is
represented by §, which we need to write when we transition into the final

state.
a qo b qo $ qo

qo @ @b qr $

aq bq 3 a1
4o G q qr $
Since it is convenient, we add one more inference rule
ar

'for reasons that may nor may not become clear in a future lecture
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so that the overall computation with input word w, and initial state g to
output v in final state ¢; is modeled by inference

$ w qo

Qf$vR
$ ol

where s” represents the reversal of a string s. We could also fold the last
step into the rules producing ¢y, replacing gy by the empty context.

You can see why we used an endmarker $: unlike the usual assumption
for finite-state transducers, ordered inference cannot depend on whether it
takes place at the end of the context. This is because any ordered inference,
by its very definition, applies to any consecutive part of the state. In the
sequent calculus this is explicit in all the left rules that have arbitrary 2y,
and (g surrounding the principal proposition of the inference. Trying to
restrict this would lead to a breakdown in the sequent calculus (see Exer-
cise 2).

We can use this construction to represent any subsequential finite-state
transducer, with one inference rule for every transition. We will not de-
velop the formal details, which are somewhat tedious but straightforward.

We can compose transducers the way we could compose functions. If
transducer 7' transforms input wp into w; and 75 transforms w; to wy,
then T4 ; T, transforms wg to we. There is a construction on the automata-
theoretic descriptions of transducers to show that 77 ; T5 is indeed another
finite-state subsequential transducer if 7} and 75 are.

Here, in the setting of ordered inference, we can easily represent the
composition of transducers T ; ... ; T}, just by renaming the sets of states
apart and then creating the initial state as

$wltqd...qb
where ¢} is the initial state of FST T;. As T} starts to produce output, the
configuration will have the form
S we' gy wi' @G- 40

At this point, 7% (represented by ¢?) can start to consume some of its input
and produce its output, and so on. Effectively, we have a chain of trans-
ducers operating concurrently as long as enough input is available to each
of them. Eventually, all of them will end up in their final state and we will
end up with the final configuration $ v%.
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2 Example: Turing Machines

In this section we generalize the construction from the previous section to
represent Turing machines. We represent the contents of the unbounded
tape of the Turing machine as a finite context

$ a—1 q ap ay $

with two endmarkers $. The proposition ¢ represents the current state of
the machine, and we imagine it “looks to its right” so that the contents of
the current cell would be ag.> The initial context for the initial state gy is
just

$qgag ... an$

where ag .. .a, is the input word written on the tape. Returning to the
general case
$ ... -1 qapay $

if the transition function for state ¢ and symbol g specifies to write symbol
ag, transition to state ¢/, and move to the right, then the next configuration
would be

$...a1ayq¢ ar ...$

This can easily be represented, in general, by the rule

qa

! !

a q

MR

which we call MR for move right.
To see how to represent moving to the left, reconsider

$ a—1 q ap ay $

If we are supposed to write g, transition to ¢/, and move to the left, the
next state should be
$...qda1ayar ...$

The corresponding rule would, using b for a_;:

bqga

ML,
q/ ba

*In lecture we were looking to the left, but it is a bit unpleasant to define the initial state
in that case.
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We would have such a rule for each b in the (fortunately finite) tape alpha-
bet (which excludes the endmarker), or we could represent it schematically

rxqa

ML*
q/ za
except we would have a side condition that  # $. We should also have

rules that allow us to extend the tape by the designated blank symbol “_’
(which is part of the usual definition of Turing machines).

$qa $
L T LS

$q¢ _d g.$

Finally, if we are in a final state ¢; from which no further transitions are
possible, we can simply eliminate it from the configuration.

ar
—F

A somewhat more symmetric and elegant solution allows the tape head
in state ¢ (represented by the proposition ¢) to be looking either right or
left, represented by ¢ > and < ¢q. When we look right and have to move
left or vice versa, we just change the direction in which we are looking to
implement the move. Then we get the following elegant set of rules, two
for each possible transition, two extra ones for extending the tape, and two
(if we like) for erasing the final state.

q>a q>a

—— LRMR — LRML

a ¢ <q a

a < q a <

—— LLMR — LLML

a q v aq a
>$ $« <4qy qr >
— ER — EL — FL — FR
>o$ $.< . .

The initial configuration represented by the context
$Q0 >ap ... an$
and the final configuration as

$by ... b $
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and we go from the first to the last by a process of ordered inference.

Of course, a Turing machine may not halt, in which case inference would
proceed indefinitely, never arriving at a quiescent state in which no infer-
ence is possible.

Our modeling of the Turing machine is here faithful in the sense that
each step of the Turing machine corresponds to one inference. There is a
small caveat in that we have to extent the tape with an explicit inference,
while Turing machines are usually preloaded with a two-way infinite tape
with blank symbols on them. But except for those little stutter-steps, the
correspondence is exact.

Composition of Turing machines in this representation is unfortunately
not as simple as for FSTs since the output is not produced piecemeal, going
in one direction, but will be on the tape when the final state is reached. We
would have to return the tape head (presumably in the final state) to the
left end of the tape and then transition to the starting state of the second
machine.

Both for finite-state transducers and Turing machines, nondeterminism
is easy to add: we just add multiple rules if there are multiple possible tran-
sitions from a state. This works, because the inference process is naturally
nondeterministic: any applicable rule can be applied.

We will return to automata and Turing machines in a future lecture
when we will look at the problem again from a different perspective.

3 Admissiblity of Cut

We return from the examples to metatheoretic considerations. Our goal
in this section and the next is to show that the cut rule can be eliminated
from any proof in the ordered sequent calculus. Together with identity
elimination in Section 5, this gives us a global version of harmony for our
logic and a good argument for thinking of the right and left rules in the
sequent calculus as defining the meaning of the connectives.

A key step on the way will be the admissibility of cut in the cut-free se-
quent calculus. We say that a rule of inference is admissible if there is a
proof of the conclusion whenever there are proofs of all the premises. This
is a somewhat weaker requirement that saying that a rule is derivable, which
means we have a closed-form hypothetical proof of the conclusion given all
the premises. Derivable rules remain derivable even if we extend our logic
by new propositions and inference rules (once a proof, always a proof), but
admissible rules may no longer remain admissible and have to be recon-
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sidered.

Since the cut-free sequent calculus will play an important role in this
course, we write {) - z for a sequent in the cut-free sequent calculus. We
write admissible rules using dashed lines and parenthesized justifications,
asin

Oz Qpxz Q. Hz
QL QO iz

Of course, we have not yet proved that cut is indeed admissible here!

(cuty)

Theorem 1 (Admissibility of Cut)
IfQH—J}LZTZdQLl'QRH—ZthEVIQLQQRH—Z.

D and 2 and we construct

Proof: We assume we are given
Q= Q L X Q R H z

f .

Q L QQ R H z
The proof proceeds by a so-called nested induction, first on x and then
the proofs D and €. This means we can appeal to the induction hypothesis

when
1. either the cut formula x becomes smaller,
2. or x remains the same, and

(@) D becomes smaller and € stays the same,

(b) or D stays the same and £ becomes smaller.

This is also called lexicographic induction since it is an induction over a lexi-
cographic order, first considering x and then D and £.

The idea for this kind of induction can be synthesized from the proof if
we observe what constructions take place in each case. We will see that the
ideas of the cut reductions in the last lecture will be embodied in the proof
cases. We distinguish three kinds of cases based on D and £.

Identity cases. When one premise or the other is an instance of the identity
rule we can eliminate the cut outright. This should be expected since
identity (“if we can use x we may prove x”) and cut (“if we can prove x
we may use x”’) are direct inverses of each other.

Principal cases. When the cut formula z is introduced by the last inference
in both premises we can reduce the cut to (potentially several) cuts on
strict subformulas of A. We have demonstrated this by cut reductions
in the last lecture.
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Commutative cases. When the cut formula is a side formula of the last
inference in either premise, we can appeal to the induction hypothesis
on this premise and then re-apply the last inference. These constitute
valid appeals to the induction hypothesis because the cut formula
and one of the deductions in the premises remain the same while the
other becomes smaller.

We now go through representative samples of these cases. First, the two
identity cases.

Case: id # &
D= id; and g arbitrary
T Hx QL xT QR H z
We have to construct a proof of Q, 2 Qr K z, but Q = z, so we can
let F = €.
Case: D # id

D arbitrary,and & = id,

QO z THx

We have to construct a proof of 7, Q Qp H 2z, but Q, = Qr = (-) and
z = x,80 we can let F = D.

Next we look at a principal case, where the cut proposition = (here x; /
x2) was introduced in the last inference in both premises, in which case we
say x is the principal proposition of the inference.

Case: /R # /L
Dl 82 81
Qxo b 21 Q;%H_$2 QLxlﬂ/I%H—Z
D= ————/R and £= /L
QH 21 /29 Qr (z1 /) x2) O U2

Using the intuition gained from cut reduction, we can apply the in-
duction hypothesis on x2, £, and D; and we obtain

D
Q Q/R H- Tl by i.h.on x2,527D1
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We can once again apply the induction hypothesis, this time on 1,
D}, and &;:

&
QL QQ, ALz byih.onz, D), &
Note that D] is the result of the previous appeal to the induction hy-
pothesis and therefore not known to be smaller than D;, but the ap-

peal to the induction hypothesis is justified since z; is a subformula
of I / 9.

Now we can let F = &/ since Qg = U, %, in this case, so we already
have the right endsequent.

A more concise way to write down the same argument is in the form
of a tree, where rules that are admissible (by induction hypothesis!)
are justified in this manner.

Given
Dy & &
Q.’EgH‘l‘l Q;%H—.’,Eg QL$1Q/}%H—Z
QH—xl/xQ QLxl/xQQﬁQQ’}%H—z
QL Q Q) Vb i 2

/L

(cut?)

construct
& Dy
Q/R H- i) Q T2 H- I
. (i.h. on z3) 51//
QQRH—:L'l QLJ?lQRH_Z
Qr Q Q’R Q}’% H z

(ih.onz)

This is of course the local reduction, revisited as part of an inductive
proof.

Finally we look at a commutative case, where the last inference rule ap-
plied in the first or second premise of the cut must have been different from
the cut formula. We call this a side formula. We organize the cases around
which rule was applied to which premise. Fortunately, they all go the same
way: we “push” up the cut past the inference that was applied to the side
formula. We show only one example.
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Case: D # oR
&1 &
Oz Q zQrH 2z
D arbitrary and €& = R
Q- z QO Q xQrHt 2102
In this case we have the situation
& &
W Hz1 Q zQrH2z
oR
Q-2 QL Q 2 Qptt 2z ez
cut?
QA QORI 21 @29 ( )
and construct
D &
< Oz Qf 2 QrHz
1 ih.onz, D, &

Q) iz Qf QQpt 2z
QILQ/[//QQRH—,ZlOZQ

R

Effectively, we have commuted the cut upward, past the o R inference.
O

Our proof was constructive: it presents an effective method for con-
structing a cut-free proof of the conclusion, given cut-free proofs of the
premises. The algorithm that can be extracted from the proof is nonde-
terministic, since some of the commuting cases overlap when the principal
formula is a side formula in both premises. For most logics (although usu-
ally classical logic) the result is unique up to further permuting conversions
between inference rules, a characterization we will have occasion to discuss
later.

4 Cut Elimination from Cut Admissibility

Because of its fundamental importance, there have been many different
kinds of proofs of cut elimination for different logics. The first one, which
also introduced the sequent calculus, was by Gentzen [Gen35]. We will de-
velop a proof by structural induction, by far the most important method of
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proof in the study of proofs. This technique was developed in [Pfe94] for
classical linear logic, adapted to linear logic by Chang et al. [CCP03]. A key
insight is to use the admissibility of cut on cut-free proofs as a lemma.

Theorem 2 (Cut Elimination) If Q) - x then Q i .
Proof: We proceed by induction on the structure of

D
QFz

Except for cut, all cases are straightforward. We show one such case.
Case: \L
D Do
Q'+ Yy QL z QR Fa
QL (y\2) Qrtx

Then construct
ih.(Dy) i.h.(Dy)
QW Yy QL z QR H x
QY (y\z) Qpt =

/

D' is cut free since i.h.(D;) and i.h.(Dy) are.

The remaining case is that of cut. Luckily, we can call on admissibility of
cut to obtain a cut-free proof of the conclusion!

Case:
D, Do
Qbty QryQtox
D= cuty
QLY Qplkz
Then
ih.(D))  ih.(Dy)
Ay QruyQhtzx
D = (cuty)

QLQ/QRH‘IE
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5 Identity Elimination

In this section® we show identity elimination. Fortunately, it is much easier
than cut elimination. It is also not quite as important, since it’s relationship
to computation is less direct.

Theorem 3 (Admissibility of Identity) In the sequent calculus where id, is
restricted to variables a, there are cut-free proofs of x W x for any proposition
.

Proof: By induction on the structure of x. We show only one case; all other
cases are similar.

Case: x = 1 / 22 Then

I‘l/ZL‘Q IEQH_CL‘l

1‘1/%’2H—1‘1/5L'2
O

The keys to this proof are the identity expansions, just like the cut re-
ductions were the keys to the admissibility of cut.

Theorem 4 (Identity Elimination) Whenever Q) - x in the sequent calculus,
then there exists a proof where identity is applied only to variables. If the given
proof is cut-free, so will be the resulting one.

Proof: By induction on the structure of the given proof, appealing to the
admissibility of identity in the case of id,. O
6 Consequences of Cut Elimination

There are many important consequences of cut elimination. One class of
theorems are so-called refutations, showing that certain conjectures can not
be proven. Here are a few.

Corollary 5 (Consistency) It is not the case that \- x for a variable x.

3not covered in lecture
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Proof: Assume - z. By cut elimination, there must be a cut-free proof of .
But no rule could have this conclusion for a variable . O

Without cut elimination the above proof would not work, because the
sequent in question might have been inferred by the cut rule.
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Exercises

Exercise 1 The binary counter in Lecture 2, Section 2, is almost in the form
of a subsequential finite-state transducer. If we think of eps as the end-
marker $, the only fly in the ointment is the early termination, before all the
input is read.

1. Represent increment of a binary string as an FST that correctly reads
all of its input. How many states do you need?

2. Use the construction in Section 1 to present this new version as or-
dered inference rules.

3. Represent the functions 2 * n and 2 * n + 1 for input n both as FSTs
and as ordered inference rules.

4. Any examples, conjectures, or theorems how fast the output of an FST
may grow as a function of the input on the binary representation of
natural numbers?

Exercise 2 Consider defining a new unary connective $ x with the follow-

ing left rule:

rQFz
— $L
$z)QF 2

which is intended provide us with z, but only if $ x is at the left end of the
context. Define matching right rule(s) and test identity expansion and cut
reduction, or explain why it dos not seem to be possible.

Exercise 3 Proceed as in Exercise 2 for new unary connective x $ (written
in postfix form) defined by

Qxtkz

Qz$) k=2 5L

which is intended to provide us with z, but only if = § is at the right end of
the context.

Exercise 4 Consider defining a new connective y = x with the right rule

QLyQRl—SU
QLQRl—y:l‘

=R
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which is intended to express that y implies = if we can prove z under the
assumption y somewhere in the antecedent. Define matching left rule(s) and
test identity expansion and cut reduction, or explain why it does not seem
to be possible.

Exercise 5 Write out the following cases in the proof of cut admissibility.
1. Show the principal case for e R matched against e L.
2. Show the principal case for &R matched against &Ls.
3. Show the principal case for 1R matched against 1L.

4. Show all commutative cases for arbitrary D and £ being /L applied
to a side formula.

5. Show all commutative cases for D being \ L and £ being arbitrary.

Exercise 6 Reconsider the alternative rule \ L*.
QpxQprt 2z
Qry(y\z) Qrt 2

\L*

from Lecture 2.
1. Show which cases in the proof of cut admissibility go awry.

2. Prove that cut elimination does not hold if \ L is replaced by \ L*.

Exercise 7 Among the following prove those are true and refute those that
are not by taking advantage of cut elimination. We write z 4 y for z F y
and y F z.

1. zt+tz&x
2. x4~ zex

3. 142\ =z
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Lecture Notes on
Ordered Proofs as Concurrent Programs

15-816: Substructural Logics
Frank Pfenning

Lecture 5
September 13, 2016

In this lecture we will first define subsingleton logic which is the subset of
ordered logic where each judgment has at most one antecedent. Then we
provide an operational interpretation of subsingleton logic in which cut reduc-
tion drives computation. This is in contrast to what we have been doing so
far, where logical inference, that is, proof construction models computation.
The correspondence from this lecture is summarized in the following

table.

Logic Programming

Propositions Session types

Ordered proofs Concurrent programs

Cut reduction =~ Communication

This is an instance of a very general connection between proofs and pro-
grams studied in type theory. We can vary the logic and the computational
interpration. The big upside of this form of correspondence is that it helps
us design programming languages in concert with the logic for reasoning
about its programs.

This analysis was pioneered by Curry [Cur34] who related proofs in
axiomatic form with combinatory logic. Late, Howard [How69] made the
discovery that the Church’s simply typed A-calculus was in bijective cor-
respondence with intuitionistic natural deduction. The particular instance
of this correspondence for subsingleton logic is a recent discovery by DeY-
oung and yours truly [DP16].
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1 Subsingleton Logic

We can examine the rules for each of the connectives to see which of them
are still meaningful if we restrict ourselves to at most one antecedent. For
example,

Quykx

Ql—x/y/R

would have a premise with two antecedents if the conclusion has only one.
Restricting the conclusion to just one! would not work because identity
expansion would fail: in subsingleton logic, we wouldn’t be able to prove

x/ykax/y.

What remains from the connectives we have introduced so far is only
x &y and 1. But we haven’t had a notion of disjunction yet, which is written
as x @ y. Itis a disjunction, which means that « @ y is true if either x or y is
true. So we have two right rules:

QFzx ® QFy o
QFxdy QFxdy

Knowing that z or y is true, but not which one, means that the left rule
proceeds by cases.

QL.’I}QRI—Z QLyQR}_Z
Qr(zoy) Qrt 2

It is straightforward to check the identity expansion and cut reduction, as
well as extend the proof of cut elimination accordingly. Disjunction, just
like the alternative conjunction, make sense in subsingleton logic.

We summarize the rules of subsingleton logic, with two small nota-
tional changes: we write w for zero or one antecdent, and we use letters
A, B, C to denote propositions (rather than z, y, 2).

Yn response to a question in lecture
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) whkHA AFC
IdA —— C
AFA wkC

uty

wkHA & wkB & AFC BFC
whkA®B  wkA®B AGBEC

®L

whA wkB Arc B-C .
whA&B AaBFC <Y AgBrC
L C
1R

— 1L
1 1-C

We can generalize this slightly if we are prepared to accept an empty right-
hand side. It will not be particularly useful for our purposes today, but the

rules would be
Al

— 1R
AFL

— 1L
Lt

Important? is that we also have to generalize all the other left rules to per-
mit an empty succedent. So in the presence of L, sequents would have the
form w F v, with both sides either empty or a singleton.

2 Proofs as Programs

We write w = P : A with two alternative interpretations:
1. P is a proof of A with antecedent w.
2. Pisa process providing A and using w.
Two processes are composed by cut, so that if
wkEP:A AFQ:C

then P and @) can run next to each other and exchange messages. Which
messages can be exchanged is dictated by the type (= proposition) A.
As an example, consider

wkP:A®B A®BFQ:C

2which I neglected to mention in lecture
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The proof P of A © B will contain critical information, namely if A is true
or if B is true. Since the proof @) of C' must account for both possibilities,
we see that P will eventually send some information (inl if A is true, or inr
if B is true) and @ will receive it. In a synchronous communication model,
the message exchange can ony take place if both sides are ready, which
correspond to a principal case of cut where A @ B is the principal formula
in both inferences. Using this intuition to fill in proof terms for one of the
cases we arrive at:

wkEP:A oR AFQ1:C BFQ2:C
wERiN;P):A® B A®BF (casel (inl = Q; | inr = Q1)) : C

OL

This reduces to the new cut at type A
wkEP:A AFQ.:C

So we think of (R.inl ; P) as sending the label inl to the right and then
continuing as P, while casel (inl = Q1 | inr = Q2) receives either inl or inr
from the left and continues as @1 or @2, respectively. The types A that type
the interface between two processes are called session types (see [HHN114]
for a survey). A strong logical foundation for session types in linear logic
was discovered by Caires and your lecturer [CP10] and later extended by
others [Wad12, CPT13, Ton15].

If ® Ry was used in the first proof, then the new cut would be at type B.
In either case, the communication corresponds exactly to a principal case
in cut reduction.

Looking at computation more globally, processes are configured into a
linear chain

P PP P,

which we write as ordered propositions
proc(Py) proc(P) proc(Ps) proc(P,)

since we would like to specify the rules of computation for this program-
ming language using ordered inference. Such a configuration is well-typed
if we have

((,U(]l_Pl ZAl) (A1 I_PQ :Ag) (Agl_Pg 2A3) (Anl_Pn An)

where for any two adjacent processes, the type A; provided by P; has to be
the same as the one used by P, ;.

We now go through the rules and connective of ordered logic and de-
velop the operational interpretation of proofs.
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Cut as Composition. Cut is straightforward, since it just corresponds to
parallel composition.

wkHFP:A AFQ:C
wkH(P|Q):C

with the computation rule

proc(P | Q)
proc(P)  proc(Q)

Clearly, this rule preserves the typing invariant for a configuration if (P |
Q) is typed by the cut rule, since the type A provided by P is exactly the
same as the one as used by @, and the left and right interfaces w and C,
respectively, are preserved.

Identity as Forwarding. Cut creates two processes from one, while iden-
tity removes one process from the configuration, acting like a “forwarding”
between the processes to its sides.

Ao A

The computation rule simply removes the process from the configuration.

proc(«)

Again, this preserves the typing invariant for configurations since the pro-
cesses to the left and right of proc(<+) have the same type A on the right
and left sides, respectively.

Now we come to the logical connectives. We already foreshadowed
the case for disjunction, but we first generalize it to be more amenable for
programming without changing its logical meaning.

Disjunction as Internal Choice. We generalize disjunction to be an n-ary
connective by writen ©{l; : A;};cs for some finite index set I and labels
l;. Now the binary disjunction is defined as A & B = @&{inl : A,inr : B}.
Disjunction is also called internal choice since the proof itself determines
which of the alternatives is chosen.

LECTURE NOTES SEPTEMBER 13, 2016



Ordered Proofs as Concurrent Programs L5.6

The right rule will send the apropriate label while the left rule will re-
ceive it and branch on it.
whk P: A (kGI) AZI—QZC (fOI'alliEI)

B Ry, oL
w (le ; P) : @{li : Ai}@'e] @{li : Ai}ie[ H caseL(li = Qi)ie] :C

Again, the computation rule just mirrors the cut reduction and therefore is
easily seen to preserve configuration typing.

proc(R.l;, ; P) proc(caseL(l; = Qi)icr)
proc(P) proc(Qk)

The interface type between the two adjacent processes transitions from
®{l; : A;}ier to A, for some k € 1.

Alternative Conjunction as External Choice. Again, we generalize from
A&Bto &{l; : A;}ier and defined A&B = &{inl : A,inr: B}. A&B is some-
times called external choice since its proof must account for both possibilities
and the clients selects between them. Otherwise, it is the straightforward
dual of @, sending to the left and receiving from the right.

whk P A; (foralliel) ArFQ:C (kel)
&R &Ly,
w - caseR(l; = P;)ier : &{li : Aitier &{li+ Aitier F (L5 Q) : C

Again, the computation rule just mirrors the cut reduction and therefore is
easily seen to preserve configuration typing.

proc(caseR(l; = P;);er) proc(L.l; ; Q)
proc(Py) proc(Q)

Unit as Termination. The unit 1 just corresponds to termination. Since
communication is synchronous, the paired process to the right just waits
for the termination to occur.

‘FQ:C
——— 1R - 1
-FcloseR : 1 1FwaitL; Q: C

L

The computation rule lets the waiting process proceed while the closing
one disappears.
proc(closeR)  proc(waitL ; Q)

proc(Q)
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This preserves types since there is no left interface to the configuration be-
fore and after the step, and the right interface C' is preserved. Again, this
can simply be read off from the cut reduction.

This completes the introduction of the computational interpretation of
subsingleton logic. The computational metatheory, namely the progress and
preservation theorems will be discussed in the next lecture. We move on to
write some programs!

3 Example: Subsequential Finite State Transducers

We have already introduced FSTs in Lecture 4, where we provided an im-
plementation using the computation-as-ordered-inference paradigm. Here,
we will use the computation-as-ordered-proof-reduction paradigm instead.
We begin with the example of an FST that compresses runs of b into a single
b.

ala blb

— () o

ble

€| € €|€

We would like to represent the transducer as a process T that receives
the input string, symbol by symbol, from the left and sends the output
string, again symbol by symbol, to the right.

string = T' : string

The first problem is how to represent the type string. It is easy to represent
symbols as labels and a choice between symbols a, b, and the endmarker $
as an internal choice

®{a: Ay, b: Ay, $: Ag} T : string
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Clearly, T' can proceed with a ©L rule, which means it can branch on
whether it receives an a, b, or a $. After receiving an a, for example, what
should the type on the left be? We can receive further symbols, so it should
be again string. This leads us to

string = ®{a : string, b : string,$ : Ag}

which is an example of a recursive type since string is defined in terms of
itself. What should the remaining unspecified type Ag be? Once we receive
the endmarker we can receive no further symbols (or anything else) from
the left, we can only wait for the process to our left (that produced the
string) to terminate. So Ag = 1 and we have

string = ®{a : string, b : string,$ : 1}

It is convenient in this setting to think of the string as being equal to the type
on the right. If every type definition is contractive [GHO5] in the sense that
it starts with a type constructor (®, &, 1) then we do not need any explicit
right or left rules since we can “silently” replace a type by its definition and
apply the appropriate rule. This is the idea behind equirecursive treatment
of recursive types. One should be worried that they could destroy all the
good properties of the logic, but with some care this does not have to be
the case. We will come back to this point in a future lecture.
Here is a simple program that produces the string babb:

1 "babb" : string
Tbabb” = R.b;R.a;Rb;RD;RS$;

To deal with recursive types, the program will have to be similarly re-
cursive. At the level of proofs, this can be analyzed as circular proofs [FS13],
fixed points [Bael2], or corecursive proofs [TCP14]. Again, we may come
back to this point in a future lecture and just freely use recursion for now.
Each state of the FST becames a process definition that captures how the
FST behaves with the corresponding input. Output is handled simply by
sending the appropriate label to the right, and the new state is handled by

LECTURE NOTES SEPTEMBER 13, 2016



Ordered Proofs as Concurrent Programs L5.9

invoking this state.

Qo = casel (a = R.a; Qo
|b=Rb; Q1
|$=R$;Qy)

Q1 = casel (a = R.a; Qo
b= @1
|$=R$;Qy)

Qf = ¢

The type of the final state @, is a bit different, since we know input and
output have completed by the time this state is reached. We have

string = Qo : string
string £ Qi : string
1 FoQy 1

We also note an alternative definition for Q)¢
@y = waitL ; closeR

These two definitions are equivalent in the sense that (waitL ; closeR) is the
identity expansion of <+ : 1. We will not go into detail, but this means
that those two processes are observationally equivalent and can be used inter-
changeably [PCPT14].

At this point we could almost formulate a conjecture such as

proc("w™)  proc(Qo)

proc("v™)

where Qg is the process representing the initial state of the machine that
transforms input w to output v. Before reading on, consider why this may
not hold.
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Yes: the problem is that when T" attempts to send an output symbol
to the right, there is no consumer so the process will actually block and
the computation will come to a halt. There are at least two ways to solve
this problem. One is to make communication asynchronous so that output
(sending a label to the left of right) can always take place. This has two
advantages: (1) it is more realistic from the implementation perspective,
and (2) it increases the available parallelism. We will return to this option
in a future lecture.

Another solution is to create a client that will accept the expected output
string. This client is written in the form of a finite automaton, which we
discuss in the next section.

4 Finite-State Automata

A (deterministic) finite-state automaton works almost exactly like a sub-
sequential transducer, but it will output only either acc or rej, not a whole
string. This is easy to model:

answer = G{acc: 1,rej: 1}

It generalizes the grammar for strings by allowing two different endmark-
ers (instead of just $), and has otherwise no symbols.
The we would write

string &= reject : answer
reject = casel (a = reject | b = reject | $ = Rurej ; <)

string = accept : answer
accept = casel (a = accept | b = accept | $ = R.acc ; <)

string = Lbab_ : answer
Lbab = casel (a = reject
| $ = Rurej; <
| b= caseL (b = reject
| $ = Rurej; <
| a = casel (a = reject
|$ = Rurej; «
| b= accept)))
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We can then test our machine with

proc("bbab™) proc(Qo) proc(Lbab)

proc(R.acc ; <)
Now we can state more generally that

proc("w™) proc(Qo) proc(Lva)

proc(R.acc ; <)

if and only of the FST with initial state ()y transduces input w to output v.
The proof of essentially this theorem is sketched in a recent paper [DP16].

The transitions of the transducer here are not exactly in one-to-one cor-
respondence with the steps of proof construction, since the sequence of
reading the input and writing the output are usually seen as a single step.
Except for this potential minor difference regarding what counts as a step
(depending on the precise formulation of the finite-state transducer), au-
tomata transitions are modeled precisely a logical inference steps.

In fact, the opposite is also true. If we have a cut-free proof

string = P : string

then P will behave like a finite state transducer. The proof is essentially by
inversion: Since the proof is cut-free, P can proceed only by forwarding,
receiving from the left, sending to the right, or recursing. From this we can
easily construct an FST with the same behavior, again allowing for some
minor discrepancies in how steps are counted.

Taken together, this means we have an isomormophism between proofs
in subsingleton logic containing only © and 1 and inductively defined types
and subsequential finite state transducers. A recent paper [DP16] slightly
generalized FSTs so that they encompass finite-state automata as well by
allowing multiple distinct endmarkers, as we have done for the represen-
tation of string acceptors.

As a last remark, we notice that composition of transducers is logically
trivial, namely just cut. If we have

string =Ty : string and string & Ty : string
then
string = (11 | Ts) : string

LECTURE NOTES SEPTEMBER 13, 2016



Ordered Proofs as Concurrent Programs L5.12

Here, the two transducers will run in parallel, similarly to our earlier mod-
eling of transducers via ordered inference. T will pass its output to 75,
which will in turn pass its output to a consumer on the right. We can also
just perform cut elimination to obtain a cut-free 7" equivalent to (7} | 1),
but a word of caution: in the presence of corecursive (circular) proofs, the
usual cut elimination algorithms has to work somewhat differently [FS13].
Nevertheless, it is an illustration how logical tools such as cut elimination
can be used in programming languages, this time in program transforma-
tion.
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Exercises

Exercise 1 Write a transducer over the alphabet a, b which produces ab for
every occurrence of ab in the input and erases all other symbols.

1. Present it in the form of ordered inference rules.

2. Present it in the form of a well-typed program.

Exercise 2 Rewrite your parity-computing inference rules from Exercise
L2.2 as a transducer, replacing eps with the endmarker $.

1. Present the transducer in the form of ordered inference rules, for ref-
erence. You may freely change your solution of Exercise L.2.2 in order
to prepare it for part 2.

2. Rewrite it in the form of a well-typed ordered concurrent program.

Exercise 3 Rewrite the program below as a finite state transducer, expressed
as a set of ordered inference rules. Describe the function on strings that Q)
computes.

Qo = casel (a = Q1

| b= Q2

|$=RS$; +)
Q1 = casel (a = @

| b= Rb; Q2

|$=RS$; <)
Q2 = casel (a = R.a; Q1

| b= Q2

|$=RS$; <)

Exercise 4 Reconsider the transducers for compressing runs of b’s, given
here as a set of ordered inference rules. We present here the version without
an explicit final state.

a qo b qo $ q0
qo a a1 b $
aq bq 3q
q0 G q1 $
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In our encoding as a program () of type string = (o : string we treated
letters as messages and states as processes. No explicit representation of
the final state is necessary with the rules above.

Define a dual encoding where symbols of the alphabet and endmarkers
are represented processes and states as messages.

1.

Define an appropriate type state so that state - P, : state where P, is
the process representation for the alphabet symbol a.

. For each symbol a of the transducer alphabet, define the process P,.

. Give the type of the process Ps representing the endmarker $. You

may choose whether to represent a final state as an explicit message
of some form or not.

. Define the process Py for the endmarker.

. Define the initial configuration for the string babb and initial state qq.

Then describe it in general for the machine under consideration here.

. Define the final configuration for the given example string and initial

state. Then describe it in general for the machine under consideration
here.

Do you foresee any difficulties for encoding subsequential finite state
transducers in general in this style? Note that FSTs read one symbol
at a time but may output any number of symbols (including none) in
one transition. Describe how this could be handled, or explain why a
dual construction may only work for a restricted class of FSTs.

. Consider how to compose transducers and compare to the composi-

tion in the original encoding given in lecture.
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Lecture Notes on
Reasoning about Computation

15-816: Substructural Logics
Frank Pfenning

Lecture 6
September 15, 2016

In this lecture we will begin with a summary of the correspondence be-
tween proofs and programs from last lectures and then establish some key
properties of the programming language that we derived from subsingle-
ton logic. As usual, we will go back and forth between computational and
logical interpretations. The properties we show are the usual preservation
and progress, where the first shows that types are preserved during com-
putation, and the second shows that computation can make progress unless
it attempts to communicate with the “outside world”. Both of these prop-
erties emerge very naturally from the cut reduction properties we checked
for subsingleton logic.
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1 Concurrent Subsingleton Programs

Types A n= ®{l: Aitier internal choice
| &{li: Aitier external choice
| 1 termination

Processes P,QQ = <+ forward id
| (P|Q) compose cut
| Rix; P send label right DRy,
| caseL(l; = Qi)ier receive label left eL
| caseR(l; = P;)ier receive label right &R
| Lik; @ send label left &Ly,
|  closeR close and notify right 1R
| waitl ; Q wait on close left 1L

We also allow mutually recursive type definitions o = A which must be
contractive, that is, A must be of the form @&{...}, &{...}, or 1. We treat a
type name as equal to its definition and will therefore silently replace it.
The usual manner of making this more explicit is to use types of the form
pa. A, but we forego this exercise here.

Similarly, we allow mutually recursive process definitions of variables
X as processes P in the form w - X = P : A. Collectively, these constitute
the program P. We fix a global program P so that the typing judgment,
formally, is w Fp P : A where we assume that w Fp @ : A for every
definition w - X = @ : A in P. Since P does not change in any typing
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derivation, we omit this subscript in the rules.
g whkEP:A AFQ:C
— |
AF oA 2 wk(P|Q):C

wkEP: A, (kel) AiFQ;:C (forallie )
wh (Rl P): d{li + Aitier i ©{li + Aitier - casel(l; = Qi)ier : C oh
whk P+ A; (forallie ) A FQ:C (kel) L
w - caseR(l; = F)icr : &{li : Ai}ier 8&{li + Aitier F (Llk; Q) : C
‘FQ:C
FoseR 1 T Thwai ;@0 M

(wWkEkX=P:A)eP
whHX:A

X

For the synchronous operational semantics presented via ordered infer-
ence, we use ephemeral propositions proc(F) which expresses the current
state of an executing process P. We also import the process definitions

X = P as persistent propositions def (X, P).
proc(<>) proc(P | Q)

fw cmp
proc(P) proc(Q)

proc(R.l; ; P) proc(caseL(l; = Q;)icr)
proc(P) proc(Qy)

proc(caseR(l; = P;)icr) proc(L.l; ; Q)
proc(Pg) proc(Q)

&C

proc(closeR)  proc(waitL ; Q)
proc(Q)

proc(X) def(X,P)
proc(P)

1C

def

A process configuration C consists of an ordered collection of proc(P)
propositions. The typechecking judgment for configurations, w - C : ' is
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defined by the following rules that work through C from right to left.

whHC:w WwWhHP:A
wk():w whk (Cproc(P)): A

2 Type Preservation

We have already indicated the deeper reason type preservation holds in
the last lecture: cut reduction (which is how computation mostly proceeds)
preserves the endsequent of the proof and thereby the type of the process.
Here, we go through the proof more rigorously.

Even though typing was defined from left to right, if we have a well-
typed configuration any subconfiguration is also well-typed.

Lemma 1 (Configuration Typing)

1. (Split) If wr, - Cr, Cr : wgr then wy, - Cr, : wyr and wpyr = Cr : wr for some
WM.

2. (Concatenation) If wy, F Cr, : wys and wyy = Cr = wg, then wy, = Cr, Cr :
WR.

3. (Singleton) w - proc(P) : Aiffw P : A

Proof: Split follows by induction on the structure of Cg, concatenation by
induction on the typing of Cr, and singleton follows by inversion in one
direction and by constructing the derivation in the other direction. O

Theorem 2 (Type Preservation) If w = C : A and C — C’ by one step of
ordered inference, then w = C' : A.

Proof: By split (Lemma 1), wehaveC = (Cr, Cys Cr) wherewr, - Cpy : Apris
the premise of one of the computation rules. By concatenation (Lemma 1),
we have preservation if we can show that the conclusion C); of the compu-
tation rule again has type wy, F C}, : Ay

We show only one case of this proof, since all others proceed analo-
gously.

Case: Cys = (proc(R.lj, ; P) proc(casel(l; = Q;)ier))-
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wr, F proc(R.l; ; P) : B
and B F proc(caseL(l; = Qi)icr) : Ay by inversion on typing of Cas
B=&{l;: Bi}icrand B; - Q; : Ay foralli e I

by inversion on typing of casel

kelandwr - P: By by inversion on typing of R.lj
B FQr: Au using i = k
wr, = (proc(P) proc(Qk)) : Am by concatenation

]

3 Progress

Progress means that a configuration will either try to communicate with
the “outside world” at its endpoints, or it will be able to make a transition.
It does not get stuck in some unexpected way. Just as preservation came
down to the fact that cut reduction preserves the endsequent, progress
comes down to the fact that every right rule for a connective matched with
any left rule will be able to reduce. This was essentially our test whether the
interpretation of the logical connectives is meaningful. Again, this intuitive
argument is couched in an inductive proof.

Theorem 3 (Progress) Ifw = C : A then
1. either C can make a transition (by ordered inference),
or C = (-) is empty,

or C attempts to communicate to the left (casel, L.l;, or waitL),

LN

or C attempts to communicate to the right (caseR, R.lx, or closeR).

Proof: Perhaps surprisingly, the proof is by a simply structural induction
on the typing of C. Note that the four cases are not mutually exclusive. For
example, the rightmost process in a configuration may want to communi-
cate to the right while another part of the configuration transitions. This is
the nature of concurrent computation.

Case:

AF(): A

The C = (-) and part 2 applies.

LECTURE NOTES SEPTEMBER 15, 2016



Reasoning about Computation L6.6

Case:
whC:w W'k proc(P): A
wt (C' proc(P)) : A

where C = (C' proc(P)). First, if P is a forward (+»), composition
(P | Py), or a defined name (X), it can make a transition and therefore
also C. Moreover, if P communicates to the right, then so does C
and part 4 applies. So we can exclude these cases from consideration
below and we may assume that P attempts to communicate to the left
(casel, L.lx, or waitL).

From the induction hypothesis on the first premise, we know we can
distinguish the following subcases.

Subcase: C’ can make a transition. Then so can C.

Subcase: C' = (-). Then C = proc(P). Since P communicates to the
left, so does C and part 3 applies.

Subcase: C’ attempts to communicate to the left. Then so does C =
(C' proc(P)).

Subcase: C’ attempts to communicate to the right, that is, its right-
most process P’ has the form caseR, R.lj; or closeR. We already
know that P communicates to the left, which is one of casel,
L.li, or waitL. Now we apply inversion on the typing of P’ and
P taking advantage of the fact that the mediating type w’ = B
on the right of P’ and left of P must be the same. It emerges
from this analysis that one of the remaining two-premise rules
(®C, &C, or 1C) must be applicable. This is because once we fix
one side and therefore the interface type B, the rule on the other
side must be one of the cases we considered when checking cut
reduction.

4 Example: Bit Strings Revisited
In this section we revisit the implementation of bit strings and increment

from Lecture 2. Recall the ordered logic program for incrementing a bit
string, now using $ as the terminator. Recall that numbers are written with
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propositions b0 for 0 and bl for 1 and are shown with the least significant
bit to the right.

b0 inc . bl inc . $inc
incO - incl
bl inc b0 $ bl

inc$

This is not quite a finite state transducer, since we may not read the whole
input, but it is still straightforward to represent this as a proof in subsingle-
ton logic. We recommend you try before reading on.
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bits = &{b0 : bits, bl : bits, $ : 1}
bits I inc : bits
inc = casel (b0 = R.bl; <

| b1 = R.bO ; inc

|$ = Rbl;RS$; <)

We now experiment with ways we can use logical tools to reason about
this program. First, how can we define a type of std which corresponds
to a bit string in standard form, that is, without leading 0 bits? Again, it is
an excellent way to test your understanding to construct such a definition
before moving on.
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The key idea is that we have two mutually recursive types, std for any
standard bit string and pos for a positive one, that is, not consisting only of
b0 and $.

std = ®{ b0 : pos,
bl : std,
$:1}

pos = &{ b0 : pos,
bl : std}

Now the increment process should have type
std t-inc : pos

which expresses that if we receive any number in standard form from the
left we will send a positive number in standard form to the right.

Before we proceed with checking the definition, one observation: if w -
P : std then also w = P : bits no matter what w and P are. This is easy to
see, since std represents a sequence of 0’s and 1’s followed by $ while std
is just a restricted form of such a sequence. We say std is a subtype of bits,
written std < bits. It turns out that subtyping is decidable [GHO05] with an
interesting algorithm we intend to return to in a later lecture. Here we just
note that

pos < std and std < bits

We further note that in the presence of subtyping we can relax the identity

rule to
A< A

Ao A id=

Again, I strongly recommend writing out the typing derivation of the pro-
gram yourself to check your understanding.
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std = @{b0 : pos,bl : std,$ : 1}
pos = ®{b0 : pos, bl : std}

std - inc : pos
inc = caselL (b0 = R.b1; +
| b1 = R.bO ; inc
|$ = RbL;RS$; <)

pos < std < 1|—<—>:1id
pos|—<—>:std|7 std = inc : pos " 1-RS; < :std .
OR ) S2]
pos = R.bl ; <+ : pos std = R.bO ; inc : pos 1FRb1;RS; < :pos
©L

std - caseL(b0 = R.b1l ; <» | b1 = R.b0 ; inc| $ = R.b1; R.$ ; <) : pos

When we arrive at process names X such as inc, we accept a globally as-
serted type. This is fine, as long as we make sure that we check all defini-
tions and mirrors the same approach for recursively defined functions in
functional languages.
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5 Implementing Turing Machines

We have already established that Turing machines can be easily imple-
mented using ordered inference, and that finite state transducers can be
implemented using ordered inference as well as ordered proofs. Can we
also implement Turing machines, following the same ideas? The answer
is yes; our development roughly follows [DP16]. Here is a summary of
the representation of Turing machines using ordered inference. The initial
configuration is represented by the ordered context

$gr>ar...a,$
and the final configuration as
$01 ... b 3

and we go from the first to the last by a process of ordered inference using
the following rules:

q>a a<q
LRMR LLMR
For 6(q,a) = (¢',d', R): a ¢ > a ¢ >
q>a a<q
LRML LLML
For §(q,a) = (¢',d’, L): aq d aq d
>3 $ <
— ER — EL
To extend the tape: >o$ o<
< qr qr >

— FL — FR
To halt in final state: . :

We will represent the tape head together with the direction symbol as a
process, so that for every state g;, in the machine we have two definitions,
<Qk and Qr~. What should their types be? A process <@}, will have to
receive a tape symbol or endmarker from the left, so its type should be

tape = ®iex{a; : tape, $ : 1}
tape - <Q; : 7

On the other hand, a right-looking process Q;~ will have to receive a tape
symbol or endmarker from the right, so its type should be

epat = Rqiex{a; : epat,$: 1}
TH Qi :epat
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It seems advisable for both kinds of processes to have the same type so we
can transition easily between them, which gives us

tape - <Q; : epat
tape b Q;” : epat

Now consider one case, looking left and moving left:

a dq

LLML

aq o

The code to effect this change should recognize an a from the left, then
output an o’ to the right, and then transition to <@’

tape b <Q : epat
<@ =caseL(a=R.d ;<Q'|...)

However, there is a serious problem with this code. Can you spot it?
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The problem is that it does not type-check! The type that governs @’s
communication on the right is epat = &{...} which prescribes receiving a
symbol from the right rather than sending one! At first, this looks like it is
very difficult to repair, but by employing cut we can overcome the problem.

The idea is to spawn a new process on the right whose sole job is to
send the symbol a’ to the left! Recalling the definition of epat, we have

epat = &jex{a; : epat,$ : 1}
epat - L.a’ ; <> : epat

We then rewrite the code snippet above as
tape = <Q : epat
<@ =caseL(a=R.d ;<Q'|..)) ill-typed!
<@ =caseL(a= (<Q"| (L.d' ;) |...) well-typed!

The new cut is well-typed:

epat = < : epat |

&Ly
tape - <Q' : epat epat - (L.a’ ; <) : epat

tape - (<Q' | (L.d’ ; <»)) : epat

cut

With this idea we can easily fill in the four symmetric cases:

q>a a <4 q
LRMR LLMR
a q’l> a q’D
q>a a dq
LRML LLML
<]q/ a/ qq/ a/

with the following snippets

LRMR Q~ = caseR(...

LLMR <@ = casel (... )
LRML Z =caseR(...|a= (=Q" | (L.d’; +))
LLML <@ = casel (... )

The same idea can be used to implement extension of the tape on the left
and right. We have slightly rewritten the rules to account for the state ¢,
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because the directional markers < and > are not represented as processes.

g $ $ <gq
ER
g> 9% $.4gq

EL

The rule snippets for this are part of Exercise 4

Termination of the machine can now no longer be forwarding (the way
it was for the transducer), since the types on the left and right, tape and epat,
respectively, are different. Instead, we could finish with an idling process,
or we could traverse the tape to the left end or right end. Going to the right
end makes sense if we want to pass on the result of the computation as a
string. Going to the left end makes sense if we want to compose Turing
machines and start the next machine once the current one has finished (see
Exercises 4 and 5)
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Exercises

Exercise 1 Show the following cases in the proof of preservation (Theo-
rem 2)

1. Termination (rule 1C)
2. Composition (rule cmp)

3. Forwarding (rule fwd)

Exercise 2 Rewrite the code for inc in Section 4 so that forwarding («) is
only used at type 1 by adding a second process copy that represents the
identity function and calling it in the right place. Then

1. Show the typing derivation for std - inc : pos. Which type(s) do you
need for copy?

2. Show the typing derivation(s) for copy.

In the above, forwarding is used only at type 1, so we should not need
subtyping.

Exercise 3 Define type even and odd for bit strings (not necessarily in stan-
dard form) that represent even and odd binary numbers, respectively. Where
they exist, provide the typing derivations for or explain why typing might
fail. You may use subtyping if it turns out to be convenient.

even t inc : odd
odd I inc : even

Exercise 4 Complete the encoding of Turing machines in Section 5.

1. Give the code snippets for the ER and EL rules that extend the tape
on the right and left end, respectively.

2. Provide the correct types and code for a final state @), that traverses
the tape to reach the right endmarker and then terminates so that the
final configuration Z behaves like the string

$al “e e an

and has type 1 F Z : tape. For this I believe it may be necessary to
change the type epat in a way that does not affect the remainder of the
program but allows us to reach Z.

LECTURE NOTES SEPTEMBER 15, 2016



Reasoning about Computation L6.16

Exercise 5 In order to compose Turing machines so that the second one
runs on the result of the first one, we need the final state of the first machine
to traverse the tape to its left end and then transition to the initial state of
the next machine.

Develop this as an alternative to Exercise 4.2.
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In this lecture we first discuss! an asynchronous model of communication,

where messages are always sent and buffered, even if the recipient is not
yet ready to receive. Asynchronous communication increases parallelism
in a concurrent program, because it let’s the sender continue earlier. It is
also more realistic with respect to actual implementation models. We will
see the logical origins of asynchronous communication [DCPT12], and later
that synchronous session-typed communication is actually a special case of
asynchronous communication [PG15], which is decidedly not the case in
the untyped setting of the m-calculus [Pal03].

Then we generalize our operational interpretation of proofs as processes
from the subsingleton fragments to all of ordered logic (to the extent we
have introduced it so far).

1 Asynchronous Communication

So far, communication has been synchronous: the matched processes that are
sending and receiving a message continue with their remaining programs
together. Asynchronous communication in our case will mean that the send-
ing process will not have to wait for the receiving process, but can continue
with the remainder of its computation right away. In contrast, attempt-
ing to receive a message will block until a message arrives. Asynchronous
communication requires a message buffer, which turns out to be naturally

1Ac’cually, we first discussed some homework solutions, which I will omit here to the
delight of future generations of students.
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representable in our operational framework. Perhaps more suprisingly, it
also has a clear logical interpretation [DCPT12].

As an example, let’s take a look at internal choice. Its operational se-
mantics is specified by the following ordered rule of inference.

proc(R.ly ; P) proc(caseL(l; = Qi)icr)
proc(P)  proc(Qx)

®C

We now decompose this into two rules, one (&C5) to send a message and
one (©C,) to receive a message. In order to express this, we use a new
proposition msg(m).

proc(R.l ; P) msg(R.l;) proc(caseL(l; = Qi)ier)
®Cs ®C;
proc(P) msg(R.lx) proc(Qy)

Note that if a process sends multiple messages, the fact that we have an
ordered context will neatly preserve their relative order. In this manner,
the messages taken together form a buffer between the two processes. For

example:
proc(R.l; ; R.lj ; P) proc(Q)

proc(R.l; ; P) msg(R.ly) proc(Q)
proc(P) msg(R.l;) msg(R.ly) proc(Q)

s

®C;

2 Typing Messages

What should the types of messages be? We have collected enough invari-
ants on the computation state in the last lecture in order to derive what
needs to happen here. Let’s look at the sending rule first, where we have
written the interface types on the right below.

proc(R.lj ; P) whk (Rl ; P): ®{l; : A }ier
@
proc(P) msg(R.lx) whk P:Ag 77

It is clear from the interface type that we must have
A+ msg(le) : @{ll : Ai}ie[

because it matches the type of P to its left and the type of the interface to
the right.
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Now comes the central insight of asynchronous communication:
msg(R.l;) ~ proc(R.lx ; <)

From the typing perspective, this is easily verified:

— i
Ak|—<—>:Akl

A b (Rl ;<) ®{l; : Aitier

DRy,

We can also see that message receipt

msg(R.l;) proc(caselL(l; = Q;)ier)
proc(Qr)

®Cy

works like synchronous communication if we replace the message by a pro-

cess:
proc(R.ly ; <») proc(casel(l; = Qi)icr)

proc(«+) proc(Qy)
proc(Qk)

On the other hand, we really need to treat a message differently from a
process, because the process proc(R.lj; ; ++) would immediately spawn an-
other message qua process, which would spawn another message, and so
on. So in the operational semantics we use proc(P) and msg(m), where our
underlying intuition for the meaning of a message is

fw

msg(m) =~ proc(m ; <)

Rewriting the remaining rules via messages is now straightforward, giving
us a complete asynchronous operational semantics. The rules for forward-
ing, composition, and definitions do not change since they do not involve
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communication.
proc(<) proc(P | Q)
— fwd cmp
proc(P) proc(Q)
proc(R.l; ; P) msg(R.l;) proc(caseL(l; = Qi)ier)
®Cs ®Cy
proc(P) msg(R.lx) proc(Qp)
proc(L.l; ; Q) proc(caseR(l; = P;)icr) msg(L.l;)
&C &C
msg(L.ly) proc(Q) proc(F)
proc(closeR) msg(closeR) proc(waitL ; Q)
— 1C; 1C,
msg(closeR) proc(Q)
proc(X) def(X,P)
def
proc(P)

We see that closeR is somewhat of a special case since it requires the an-
tecedents to be empty, so we cannot forward and msg(closeR) ~ proc(closeR).

3 Asynchronous Communication as Commuting Cut
Reduction
The intuition
msg(m) ~ proc(m ; <)

is the key providing a proof-theoretic understanding of asynchronous send-
ing of messages. Consider once again

proc(R.l ; P) o proc(R.lj ; P)
®Cs
proc(P) msg(R.lj) proc(P) proc(R.lj ; <)

where the second form uses our definition. But the second form produces
two processes, which is the exact behavior of a cut:

proc(R.lj ; P) proc(P | (R.lx ; <))
proc(P) proc(R.lg ; <) proc(P) proc(R.lg ; <)

cmp

But what is the relationship between

(Rlz;P) and (P|(Riy;)) ?
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Writing out the proofs:
Ak F: Ak I
wI—P;Ak R wl—P:Ak Akl—R.lk;H:@{li:Ai}iGI
S5}
whk Rl P:®{l: Aitier g whk P | (Rl ;<) ®{li: Aitier

we see that eliminating the cut in the second proof above will lead to the
tirst one: we push the cut up but the ®R;, rule with a commuting cut re-
duction and then eliminate the resulting cut with the identity.

This means from left to right we introduce a cut that can be eliminated
by a commuting conversion. Introducing a cut will lead to more processes,
but at the same time it will also lead to more parallelism because processes
can execute independently.

This also tells us that if we stick with synchronous communication we
can easily rewrite our programs to behave asynchronously (at least in this
case) simply by rewriting (R.l;, ; P) as (P | (R.ly ; <*)). In other words,
in the synchronous calculus we already had the expressive power of asyn-
chronous communication simply by introducing a pair of cut (= spawn)
and identity (= forwarding). For the special case of closeR this analysis is
not needed, since closeR has no continuation and we cannot logically dis-
tinguish between proc(closeR) and msg(closeR).

From a programming point of view, however, it is much more con-
venient to stick with the standard construction R.l;, ; P and interpret all
such sends as asynchronous. Interestingly, we show later (or you can read
in [PG15]) that we can also go the other way: if we assume all communi-
cation is asynchronous we can also recover synchronous communication
based on logical principles.

4 From Subsingleton to Ordered Logic

A big next step in this course is investigate how our ideas so far generalize
from subsingleton to ordered logic. The difference is only that we allow
multiple antecedents. This is a big change since we immediately obtain
four new connectives: over (A / B), under (A \ B), fuse (4 e B), and twist
(Ao B).

Before we get to their operational meaning, let’s reconsider the basic
judgment. The first attempt is to generalize from

AFP:B
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to
A...A,FP:B

The problem now is: How can P address A; if it wants to send or receive
a message from it? For example, several of these types might be internal
choice, and P could receive a label from any of them. In subsingleton logic,
there was only (at most) a single process to the left, so this was unambigu-
ous.

We could address this by saying, for example, that P received from the
ith process, essentially numbering the antecedents. This quickly becomes
unwieldy, both in practice and in theory. Or we might say that P can only
communicate with, say, 4,, or A;, the extremal processes in the antecedents.
However, this appears too restrictive (see Exercise 1). Instead, we uniquely
label each antecedent as well as the succedent? with a channel name.

(x1:A41) ... (xn:Ay) F P (y:B)
We read this as

Process P provides a service of type B along channel y and uses chan-
nels x; of type A;.

Since we are still in ordered logic, the order of the antecedents matter, and
we will see later in which way. We abbreviate it as - P :: (y:B), over-
loading (2 to stand either for just an ordered sequence of antecedent or one
where each antecedent is labeled.

We now generalize each of the rules from before.

Cut. Instead of simply writing P | @, the two processes P and () share a
private channel.

QF P, (:A) Qp (:A) QrF Qy : (2:0)
QL QQrF (v Py Qy) 2 (2:0)

cut

As a point of notation, we subscript processes variables such as P or @
with bound variables if they are allowed to occur in them. In the process
expression z < P, ; (), the variable z is bound and occurs on both side,
because it is a channel connecting the two processes. We almost maintain
the invariant that all channel names in the antecedent and succedent are
distinct, possibly renaming bound variable silently to maintain that.

*Not strictly necessary, since the conclusion remains a singleton, but convenient to cor-
relate providers with their clients through a private shared channel.
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Operationally, the process executing (z < P, ; ;) continues as @,
while spawning a new process P,. This interpretation is meaningful since
both (z <+ P, ; Q) and Q, offer service C' along z. This asymmetry in
the operational interpretation comes from the asymmetry of ordered logic
(and intuitionistic logic in general) with multiple antecedents but at most
one succedent.

In order to define the operational semantics, we write write proc(z, P)
if the process P provides along channel =, which is to say it is typed as
QF P (x:A) for some Q and A. This is useful to track communications.
Then for cut we have the generalized rule of composition

proc(z,x < Py ; Q)

w

cmp
proc(w, Py)  proc(z, Qu)

We write cmp®” to remind ourselves that the channel w must be globally
“fresh”: it is not allowed to occur anywhere else in the process configura-
tion.

Identity. The identity rule could just be

id

YA & (2 A)
based on the idea that  and y are known at this point in a proof so they
don’t need to be mentioned. Experience dictates that easily irecognizing

whenever channels are used makes programs much more readable, so we
write

yAFz vy (x:A) d
and read is as x is implemented by y or x forwards to y.

There are various levels of detail in the operational semantics for de-
scribing identity in the presence of channel names. We cannot simply ter-
minate the process, but we need to actively connect  with y. One way to
do this is to globally identify them, which we can do in ordered inference
by using equality (which we have not introduced yet).

proc(x, z < y)

T=y fwd
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Internal Choice. This should be straightforward: instead of sending a la-
bel “to the right”, we send it along the channel the process provides.

QF P (x:A) (ke
QF (xlg; P) o (x: &{li:Ai bier)

Conversely, for the left rule we just receive along a channel of the right type,
rather than receiving from the right.

Qp (2:4;) QrE Q; = (:C) (Viel)
GSL
Qr, (x:@{li:Ai}iej) Qr b casex (ZZ = Qi)ie] i (ZC)

Communication of the label goes through a channel. We only show the
synchronous version:

proc(x, z.ly, ; P) proc(z,case z (I; = Qi)icr)

proc(z, P) proc(z, Q)

The fly in the ointment here is that these two processes may actually not
be next to each other, because a client can not be next to all of its providers
now that there is more than one.

One possible solution is to send messages (asynchronously) and allow
them to be move past other messages and processes (see Exercise 2). This,
however, does not seem a faithful representation of channel behavior, and
a single communication could take many steps of exchange. A simpler
solution is to retreat to linear inference where the order of the propositions
no longer matters. We have used this, for example, to describe the spanning
tree construction, Hamiltonian cycles, blocks world, etc. Now we reuse it
for the operational semantics. Our earlier rules for cut and identity should
also be reinterpreted in linear and not ordered inference.

External Choice. This is symmetric to internal choice and therefore bor-
ing (see Lecture 8 for the rules).

Unit. The previous pattern generalizes nicely: instead of closeR and waitL
we close and wait on a channel.
QL QrFQ: (2:0)

1R _ 1L
- close x :: (x:1) Qr (x:1) Qr - (wait z ; Q) = (2:C)

proc(x, close x) proc(z,wait z ; Q)

proc(z, Q)

1C
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Over. As the final connective in this lecture we consider A / B. First, we
review the purely logical rules.

QOBEA QFB QL AQrkC

—2"“ JR
QFA/B/ QL (A/B)Q QpFC

It turns out that the fact the /L rule has two premises complicates the op-
erational reading, so we use the simplified version /L*. With this rule, cut
elimination no longer holds (see Exercise L4.6), but cut reduction and iden-
tity expansion still do. Since in the setting of proofs as processes we are less
concerned about full cut elimination, this is acceptable here. Eventually, we
can arrange that all rules except cut have at most one premise, which means
that only cut spawns new processes. Recall also that with /L* and cut, /L
is derivable. We return to this issue in Lecture 9.

Qp AQrEC
QBFA IR L R /L
QFA/B QL (A/B)BQrtC

Which of these sends and which receives? In general, there is information
in the rule which cannot always be applied (and therefore is not invertible),
which in this case is /L*. Therefore the process assigned to this rule sends,
while the /R receives. We can mechanically fill in channel names and notice
that the channel z in /R transitions from type A / B to type A4, so the same
transition has to take place in /L*.

Q (y:B) - Py :: (x:A) IR Qp (2:A) Qr F Q = (2:0)
QF?: (:A/B) Qr (2:A/ B) (w:B) Qr F?:: (2:0)

/L

Staring at this rule for a while, we can see which information must be trans-
mitted. We reveal the answer on the next page, but you should try to find
the answer first.
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It is the channel w! Essentially, it is first owned (that is, used) by the
process executing the left rule and afterwards it is owned by the process
executing the right rule.

Q(y:B) - Py :: (z:A) IR Qp (2:A) Qr F Q == (2:0)

QF (y<recva; Py):: (x:A/ B) Qp (z:A/ B) (w:B) QrF (send z w ; Q) ::

The following computation rule implements the cut reduction of /R and
JL*.
proc(x,y < recv z ; Py) proc(z,send z w ; Q)

proc(z, [w/y]P,) proc(z,Q)

We see that we substitute the received channel w for the bound channel
name y in P,. We will usually write [w/y]P, as P,,. Since w cannot appear
in @ but will appear in P,, this amounts to an ownership transfer for the
channel w from one process to another.

In the next lecture we will complete the logical connectives of ordered
logic and their operational reading and then summarize them.
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Exercises

Exercise 1 Explore whether or not we obtain a logic (and whether this logic
has a reasonable operational interpretation) if we restrict the ordered judg-
ment 2 A - P : B so that P can only communicate with the process pro-
viding A on the left and B on the right.

Exercise 2 We gave up on the ordered operational semantics because a pro-
cess needs to communicate with another process that is not an immediate
neighbor. Specify an asynchronous operational semantics that proceeds via
ordered inference and let’s messages flow through the configuration. As-
sess positives and negatives of this semantics.
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Lecture Notes on
Law and Order

15-816: Substructural Logics
Frank Pfenning

Lecture 8
September 22, 2016

In this lecture we first complete a set of connectives for ordered logic and
their operational interpretation. Then we will write some programs ex-
ploiting the gained expressive power.

1 Multiplicative Connectives

Wecall A/ B, B\ A, Ae B and Ao B the multiplicative connectives, following
Girard’s nomenclature for linear logic [Gir87]. This class of connectives
also includes 1, which have already defined.

Under. This is entirely symmetric to / from the last lecture, so we just
state the rules here.

(y:B) QF Py, :: (x:A) \R Qp (2:A) QrF Q = (2:0)

QF (y«recva; Py (x:B\ A) Qp (w:B) (:B\A) QrF (send z w ; Q) ::

The following computation rule implements the cut reduction of \R and
\L*.
proc(z,y < recv x ; Py) proc(z,send z w ; Q)

proc(x, P,) proc(z, Q)

Note that the operational reading here is identical for A / B; the difference is
entirely in the restrictions about where w:B or y:B are to be found. This in-
dicates that order in this formulation of the operational semantics is not es-
sential from the computational point of view, but imposes some restrictions
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on the programs one can write. These restrictions should express some in-
tuitively understandable program properties which will hopefully emerge
when we start to use these connectives.

Fuse. The natural right rule for fuse has two premises.

MEFA Q2 FB
Q2 QFAeB

oR

In order to avoid spawning a new process in this rule, we have to find an
equivalent one-premise version somehow analogous to the restricted left
rules for A/ Band B\ A.

Actually, we could decide that either of the two premises should be the
identity, just as the specialized form forms of /L and /R arise by forcing
one of the premises to be an identity. So either {2; = A or {23 = B. These
considerations yield:

QFB QFA

*

AQrAeB” 0OBFAen
Rather arbitrarily we pick the first, which yields the following pair of right
and left rules for Ae B
QFB QL ABQpEC
—— e R* ol
AQFAeB QL (AeB)QrtEC

Again, we can ask which of the rules carries information, and here it is e R*
which sends. Filling in channel names, we see that once again a channel is
sent and received.

QF P:: (x:B) Qp (y:A) (:B) Qr F Qy =2 (2:0)

*

oR

(w:A) QF (send z w ; P) :: (x:Ae B) Qp (x:AeB) Qrt (y «recv x ; Qy) = (2:C)

Interestingly, we don’t need any new program constructs, since A e B, just
like A/ B and B\ 4, just send and receive channels. This is reflected in this
simple computation rule where we now write @, for [w/y|Q,:

proc(z,send x w ; P) proc(z,y < recv  ; Qy)

proc(P) proc(Quw)

oC
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Twist. Ao B is entirely symmetric to A e B, so we just state the rules.

QF P (x:B) . Qp (:B) (y:A) Qr F Qy =2 (2:0)
Q (w:A)F (send z w ; P) :: (xz:Ao B) ot Qp (x:AoB) QrF (y «recv x5 Qy) = (2:C) oL

proc(z,send z w ; P) proc(z,y < recv z ; Qy)

proc(P) proc(Quw)

(¢]

2 Rule Summary

Here is a summary of the propositions and proofs, which double as types
and programs, together with their rules.

Types A B, C = @{Zz : Ai}ie[ | &{ll : Ai})ie[ | 1
| A/B|B\A|AeB|AoB
Processes P,(Q = x4y identity
| x<+ P,;Qq cut
| xlk; Plcasex (I; = Q;)icr @, &
| close z | wait z ; Q 1
|

sendz y; Ply<recva; @, /5\s®0

We can see that despite some complexity in the language of types, the
process language is relatively parsimonious. This syntactic overloading of
several constructs is acceptable because during type checking of processes
we always track the types of all channels exactly. For this to be always pos-
sible, we need to annotate cut with the type of freshly introduced channel,
as in x:A < P, ; (. Because we are in the sequent calculus, the types of
channels in the premises are always strict components of the types in the
conclusion.
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Judgmental Rules
QF P, (x:A) Qp (2:A) QpF Q, 2 (2:0)
cut id
QL QOQrE (x + Py Q) = (2:0) Yy Az y i (:A)

Additive Connectives

QF P (x:Ar) (el Qp (2:A4;) QrF Q; = (22C) (Viel)

SRy eL
Q- (aclk ; P) i (.’L’ : @{li:Ai}ieI) Qy, (x:@{li:Ai}ie[) Qg F case x (ll = Qi)ie[ b (ZC)
QF P (x:4;) (Miel) Qp (2:Ag) QprE P (2:C) (kel)
&R &Ly
Ot casex (ll = Pi)ie] b (m&{llAZ}lel)) QL (.’L‘ : &{llAl}le[) QR H (a?lk ; Q) b (ZC)
Multiplicative Connectives
QL QrkQ :: (2:C)
1R 1L
- close z :: (2:1) Qp (z:1) Qp F (wait z ; Q) :: (2:C)
Q(y:B)F Py (x:A) IR Qp (x:A) Qr F Q = (2:C) e
QF (yrecvaz; Py) : (z:A/ B) Qp (2:A/ B) (w:B) Qp F (send z w ; Q) :: (2:C)
(y:B) QF Py i (x:A) \R Qp (2:A) Qp F Q =2 (2:0) \L
QF (y+reeva; Py) : (e:B\ A) Qp (w:B) (x:B\A) Qr F (send z w ; Q) :: (2:C)
QF P:: (z:B) ) Qp (y:A) (2:B) Qr F Qy = (2:C)
(w:A) QF (send z w ; P) :: (z:A e B) oK Qp (x:AeB) Qpt (y < recv x5 Q) = (2:C) oL
QF P:: (x:B) . Qp (x:B) (y:4) Qr F Qy = (2:C) .

Q (w:A) F (send x w ; P) :: (z:A o B) oft Qr (2:AeB) Qrt (y ¢ recv z ; Q) :: (2:0)
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For the operational semantics we have to remember that we are using
linear inference, not ordered inference.

proc(z,z + Pp 5 Q) proc(z,x <+ y)

cmp?
proc(w, Py,) proc(z, Q) r=y fwd

proc(x, z.l, ; P) proc(z,case z (I; = Qi)icr)

proc(z, P) proc(z, Q)

proc(x,case z (I; = P;)icr) proc(z, .l ; Q)

&C
proc(z,Q) proc(z, )
proc(x, close x) proc(z,wait z ; Q)
1C
proc(z, Q)

proc(x,y < recv x ; P,) proc(z,send z w ; Q)

- JCA\C
proc(z, Py) proc(z, Q)

proc(z,send z w ; P) proc(z,y < recv z ; Qy)

o, o(C

proc(P) proc(Qu)

3 Example: Lists

We are used to lists being a data structure; here it describes the behavior of
a process which (essentially) sends a sequence of elements. Looking back
at the rules, we see that this requires either fuse or twist, and we choose
fuse. It therefore goes beyond the subsingleton fragment.

list4 = @{cons: Aelistg,nil : 1}

Lists are polymorphic in the sense the type of all elements in a list must be
the same, but arbitrary, session type A. We indicate this with a subscript
A on the list type, which therefore represents really a whole collection of
types. We might decide to formally introduce first class type constructors
and explicit polymorphism at a later time.

Our first program will be to append two lists. We will write it in stages.

({1:list4) (lo:lista) - append : (I:list4)

append = case l; (cons = ... % (l1:Aelisty) (la:lista) F L:listg
| nil=...)
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We have written in the type of the first hole, indicated by the first ellipsis,
that we are working to fill. From the type we can see that /; will send us a
channel z of type A, and since it is A e list4 we are required to add this to
the left of /1, which yields:

(I1:list4) (lo:lista) - append : (I:list4)

append = case l; (cons = x < recv [; ;

. % (x:A) (I1:lista) (la:lista) F L:list4
| nil=...)

At this point we know the result list will start with z, and fortunately we
can find z at the left end of the context. So we can send it along x, after we
indicate the result starts with an element by sending the label cons.

(I1:list4) (lo:lista) - append : (I:list4)
append = case l; (cons = x < recv [; ;
l.cons;send ! z ;
.. % (l1:|iStA) (lg:“StA) Fl:listy4
| nil=...)

Now we are back to the original type and we can make a recursive call in
this branch of the case expression.

({1:list4) (lo:lista) - append : (I:list4)
append = case l; (cons = x < recv [ ;
l.cons ;send ! z ;
append
| nil = ... % (11:1) (Ia:list4) F L:list4

)

We have filled in the type of /; in the second branch of the case expression.
The code is now easy: we wait for /; to terminate and then implement [ as
l2 by forwarding. This is possible since their types match.

({1:list4) (lo:lista) - append : (I:list4)
append = case l; (cons = x < recv [; ;
l.cons ;send ! z ;
append
| nil = wait Iy ;1 « l2)

It is very easy to imagine some syntactic sugar, where consecutive sends
and receives of labels and channels are combined. For example:
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({1:list4) (lo:lista) - append : (I:list4)
append = case l; (cons(z) = l.cons(z) ; append
| nil() =1 < 2)

We refrain from such niceties because it obscures the structure of commu-
nication.

However, we will make one change. There is an oddity in our code in
that the type declaration for append declares channel variables l1, I3 and [
which appear free in the definition. Really, they should be somehow bound
so that the definition is self-contained. Our notation for a process name X
with type declaration

(x1:A1) .. (2 Ap) F X i (2:A)

is

r X<x1...0q = Px,21,...,20)
thereby writing the provided channel x like a return value and the used
channels channel and z1, ..., z, like arguments to X. Note that z, 21, ...z,

are bound channel names occuring in the body P and can be renamed as
convenient. In this form, which we will use from now on, we have

(Iy:lista) (lo:lista) & append : (I:list4)
l < append < 11 Iy =
case l; (cons = x < recv !y ;
l.cons;send ! T ;
l « append + 1 Iy
| nil = wait [} ;1 < l2)

Note that the recursive calls also now specifies the offered channels [ and
the used channels /1 and Is.

In practice, is it convenient to fold in an appeal to a defined process
name with a cut. More formally, we generalize definitions and the def rules
for defined process names to be as follows:

proc(y <~ X <~ y1...Yn; Qy) def(x X 1.2y = Pryay, . 2,)

def®
prOC(Pw,yl ~~~~~ yn) prOC(Qw)

At first it might look like there could be many processes of the type

(Iyzlista) (Ipilista) B X : (L:list,)
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for example, taking alternating elements from /; and [y, or appending [»
to l;. I believe that none of these would be well-typed, and essentially the
only possible behavior is to append /; and /5 or diverge at some point. This
is pure conjecture, since at this point we have not developed the necessary
theories of observational equivalence and parametricity that might allow
us to prove such a result. Similarly, I would conjecture that (¢:list4) - X ::
(I:list4) would force X to be observationally equivalent to the identity and
could not, for example, reverse ¢. Occasionally we will want to reverse
lists, which means eventually we will have to leave the confines of ordered
concurrency. But let’s first see what we can write here.

Next we think about writing processes nil and cons that behave like the
empty list, or add an element to a given list. We will write these in one
installment.

-F il - (L:listy)
[« nil =
l.nil ; close [

(x:A) (t:listq) b cons : (I:listy)
l<cons<—zxt=
l.cons;sendlx;l <+t

Note that there seems to be no possible implementation if we reverse the
arguments to cons.

(t:listy) (z:A) F cons’ : (I:listy)
[+ cons' < xt=
l.cons;sendlxz 7??

The send is ill-typed since x is at the wrong end of the context for the type
[ : Aelisty. The ordering constraints impose a tight discpline on the use of
channels. See also Exercise 2.

In the next lecture we will write some more programs along these lines.
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Exercises

Exercise 1 Reconsider the proposition L from Lecture 5 and write out log-
ical rules as well as an operational semantics via rules of linear inference.
Implicitly this means that all the other rules with a parametric succedent
(usuall denoted by C or z:C') should be generalized to also allow an empty
succedent (which you do not need to rewrite). Operationally, this corre-
sponds to a detached process that has no client, but may use other pro-
cesses.

Exercise 2 Can you write an intuititively meaningful process cons’ with
(t:lista) (z:A) & cons’ : (L:lista)

If so, show the definition and explain what it does. If not, explain why you
think it might be impossible to write a process of this type.

Exercise 3 Define
tsilg4 = @{snoc: Aotsily,lin: 1}
Define processes dneppa, lin, and snoc that mirror append, nil and cons.
Exercise 4 Define
dlist4 = ®{cons : A edlisty,snoc: Aodlista,nil: 1}

Explore the behavior of this type, and which kinds of operations can be
defined over this type. Form some conjectures about which operations may
be impossible.

Exercise 5 We would like to define a type %A which behaves exactly like
A once it has synchronized with a client at the same type. No information
except that the client has arrived at a matching point will be exchanged.

1. Give logical %R and %L rules.
2. Assign process expressions to these rules.
3. Provide the operational %C rule using linear inference.

4. Can you define %A in terms of other connectives in ordered logic
with a corresponding operational behavior?
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15-816: Substructural Logics
Frank Pfenning

Lecture 9
Tuesday, September 27, 2016

In the last lecture we introduced lists with arbitrary elements and wrote
ordered programs for nil (the empty list), cons (adding an element to the
head of a list) and append to append two lists. The representation was in
the form of an internal choice

list4 = @{cons: Aelista,nil: 1}

We might think of this as the usual functional data structure of lists, but
we should keep in mind that it is really just an interface specification for
processes. It does not imply any particular representation.

Today, we will look at a data structure in which we can insert and delete
channels of arbitrary type. The interface is different because it is in the form
of an external choice, more in the style of object-oriented programming or
signatures in module systems for functional languages.

1 Storing Channels

Here is our simple interface to a storage service for channels:

storey = &{ ins: A\ storeg,
del : &{none : 1,some : A e store}}

Using our operational interpretation, we can read this as follows:

A store for channels of type A offers a client a choice between insertion
(label ins) and deletion (label del).
When inserting, the clients sends a channel of type A which is added
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to the store.

When deleting, the store responds with the label none if there are no
elements in the store and terminates, or with the label some, followed
by an element.

When an element is actually inserted or deleted the provider of the
storage service then waits for the next input (again, either an insertion
or deletion).

In this reading we have focused on the operations, and intentionally ig-
nored the restrictions order might place on the use of the storage service.
Hopefully, this will emerge as we write the code and analyze what the re-
strictions might mean.

First, we have to be able to create an empty store. We will write the
code in stages, because I believe it is much harder to understand the final
program than it is to follow its construction.

storeq = &{ ins: A\ storey,
del : @{none : 1,some : A estore}}

First, the header of the process definition.

- empty :: (s : storey)
s < empty = ...

Because a store 4 is an external choice, we begin with a case construct, branch-
ing on the received label.

- empty :: (s : storen)
s < empty = case s (ins = ... % -t s:A\storey
| del =... % -k s:@{none:1,some: Aestorey}

)

The case of deletion is actually easier: since this process represents an
empty store, we send the label none and terminate.

- empty :: (s : storey)
s < empty = case s (ins = ... % -t s:A\storey
| del = s.none ; close s)
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In the case of an insertion, the type dictates that we receive a channel
of type A which we call z. It is added at the left end of the antecedents.
Since they are actually none, both A \ store4 and store4 / A would behave
the same way here.

- empty :: (s : storey)
s < empty = case s (ins = % -t s:A\storey
T 4— recv s ; % x:Al s :storey

| del = s.none ; close s)

At this point it seems like we are stuck. We need to start a process imple-
menting a store with one element, but so far we just writing the code for an
empty store. We need to define a process elem

(x:A) (t:storey) b elem :: (s : storey)

which holds an element x:A and also another store ¢:store4 with further
elements. In the singleton case, ¢t will then be the empty store. Therefore,
we first make a recursive call to create another empty store, calling it n for
none.

- empty :: (s : storey)
s <— empty = case s (ins = x < recv s ; % x:Al s :storey
n < empty ; % (x:A) (n:storeyq) s : storey

| del = s.none ; close s)

(x:A) (t:storey) F elem :: (s : storey)
s<elem<«—zt=...

Postponing the definition of elem for now, we can invoke elem to create a
singleton store with just z, calling the resulting channel e. This call will
consume z and n, leaving e as the only antecedent.

- empty :: (s : storey)

s <— empty = case s (ins = x ¢ recv s ; % x:Al s :storey
n < empty ; % (x:A) (n:storeq) s : storey
e«celem<+xn; % estoreqk s:storey

| del = s.none ; close s)

(x:A) (t:storey) b elem :: (s : storey)
s<elem<«—zt=...
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At this point we can implement s by e (the singleton store), which is just an
application of the identity rule.

- empty :: (s : storen)

s < empty = case s (ins = x < recv s ; % (x:A) b s : storey
n < empty ; % (x:A) (n:storeq) s : storey
e<celem<—zxzn % e:storeq - s : storey
S< e

| del = s.none ; close s)

(x:A) (t:storey) b elem :: (s : storey)
s<elem<«—zt=...
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It remains to write the code for the process holding an element of the
store. We suggest you reconstruct or at least read it line by line the way we
developed the definition of empty, but we will not break it out explicitly into
multiple steps. However, we will still give the types after each interaction.
For easy reference, we repeat the type definition for store4.

storeq = &{ ins: A\ storey,
del : ®{none : 1,some : A estore}}

(x:A) (t:storey) b elem :: (s : storey)

1 s«+elem—zxt=

2 case s (ins = y < recv s ; % (y:A) (z:A) (t:storeq) F s : storey

3 t.ins ; % (y:A) (z:A) (t:A\ storeyq) b s : storey
4 send t x ; % (y:A) (t:storeq) = s : storey

5 r<elem<+yt; % rstoreqt s:storey

6 ST

7 | del =-s.some ; % (x:A) (t:storeq) | s: A estorey

8 send s x ; % t:storeys s :storey

9 s« t)

A few notes on this code. Look at the type at the end of the previous line to
understand the next line.

¢ Inline 2, we add y: A at the left end of the context since s : A \ storeg4.
¢ Inline 4, we can only pass x to t but not y, due restrictions of \ L*.
* Inline 5, y and ¢ are in the correct order to call elem recursively.

¢ Inline 8, we can pass x along s since it is at the left end of the context.

How does this code behave? Assume we have a store s holding elements
z1 and x5 it would look like

proc(s,s <— elem < 1 t1) proc(t1,t; < elem <— xa ta) proc(ta, to < empty)

where we have indicated the code executing in each process without un-
folding the definition. If we insert an element along s (by sending ins and
then a new y) then the process s < elem < x; t; will insert z; along ¢; and
then, in two steps, become s < elem < y t1. Now the next process will pass
x9 along t2 and hold on to z;, and finally the process holding no element
will spawn a new one (t3) and itself hold on to z».

proc(s, s < elem < y t1) proc(ty,t < elem < x1 t2)
proc(ta, to < elem <— xo t3) proc(ts,ts < empty)
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If we next delete an element, we will get y back and the store will effectively
revert to its original state, with some (internal) renaming.

proc(s, s <— elem <— x1 ta) proc(te,ta < elem <— x9 t3) proc(ts,ts < empty)

In essence, the store behaves like a stack: the most recent element we have
inserted will be the first one deleted. If you carefully look through the in-
termediate types in the elem process, it seems that this behavior is forced.
We conjecture that any implementation of the store interface we have given
will behave like a stack or might at some point not respond to further mes-
sages. We do not yet have the means to carry out such a proof. Some
related prior work might provide hints on how this might be proved using
parametricity [Rey83, CPPT13].!

'If T or someone else in the class can prove or refute this conjecture, we may return to it
in a future lecture.
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2 Tail Calls

Let’s look again at the two pieces of code we have written.

storeq = &{ ins: A\ storey,
del : @{none : 1,some : A estorey}}

- empty :: (s : storen)

1 s« empty =

2 case s (ins = x ¢ recv s ; % (x:A) F s :storeg

3 n < empty ; % (x:A) (n:storey) F s : storey
4 e<«elem<+—zxn % e:storey - s : storey

5 s4e

6 | del = s.none ; close s)

(x:A) (t:storey) F elem :: (s : storey)

7 s<+elem—zxt=

8 case s (ins = y < recv s ; %  (y:A) (z:A) (t:storeq) s : storey

9 t.ins ; % (y:A) (z:A) (t:A\ storeq) s : storey
10 send ¢ x ; % (y:A) (t:storey) b s : storey

11 r«elem<yt; % ristoreqt s:storey

12 ST

13 | del = s.some ; % (x:A) (t:storeyq) F s: Aestorey

14 send s x ; % t:stores F s :storey

15 s+ t)

empty starts two new processes, in lines 3 and 4 and then terminates in line
5 by forwarding. elem spawns only one new process, in line 11, and then
terminates in line 12 by forwarding. Intuitively, spawning a new process
and then immediately forwarding to this process is wasteful, especially if
process creation is an expensive operation.

It would be nice if the process executing empty could effectively just
continue by executing elem, and similarly, if elem could continue as the same
process once z has been sent along ¢. This can be achieved if we treat fail
calls specially. So instead of writing

4 e+elem<xn
5 s<e

we write

4 s<elem<+—zxzn
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and similarly in the definition of elem.
In general, we compress a cut in the form of a process invocation fol-
lowed by an identity simply as a process invocation:

Yy~ X<—y1...yn
Ty

becomes
T X Y. Yn

This is analogous to the so-called tail-call optimization in functional lan-
guages where instead of f calling a function g and immediately returning
its value, f just continues as g. This is often represented as saving stack
space since it can be implemented as a jump instead of a call. Here, too, re-
cursively defined processes executing a sequence of interactions can simply
continue without spawning a new process and then forwarding the result
immediately, thereby saving process invocations.

From now on, we will often silently use the compressed form. Of course,
its purely logical meaning can be recovered by expanding it into a cut fol-
lowed by an identity.
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3 Analyzing Parallel Complexity

We can analyze various complexity measures of our implementations. For
example, we can count the number of processes that execute. Any call (ex-
cept for a tail call) will spawn a new process, and any forward and close will
terminate a process. Looking at the code below we can see that inserting
an element into a store will spawn exactly one new process, namely when
we eventually insert the last element into the empty store. Deleting an el-
ement will terminate exactly one process: either the empty one, or the one
holding the element we are returning. Therefore in a store with n elements
there will be exactly n + 1 processes.

storey = &{ ins: A\ storeg,
del : @{none : 1,some : A estore}}

- empty :: (s : storen)

1 s« empty =

2 case s (ins = z < recv s ; % (x:A) b s:storey

3 n < empty ; % (x:A) (n:storeyg) s : storey
4 s<—elem <z n

5 | del = s.none ; close s)

(x:A) (t:storey) b elem :: (s : storey)

6 s<+elem—zxt=

7 case s (ins = y < recv s ; % (y:A) (z:A) (t:storeyq) s : storey

8 t.ins ; %  (y:A) (z:A) (t:A\ storey) | s : storey
9 send t x ; % (y:A) (t:storeq) = s : storey

10 s<elem<« yt

11 | del = s.some ; % (x:A) (t:storeyq) b s: A estorey

12 send s T ; % t:storey | s : storey

13 s 1)

Another interesting measure is the reaction time which is analogous to
the span complexity measure for parallel programs. If we try to carry out
two consecutive operations, how many steps must elapse between them,
assuming maximal parallelism? Here it is convenient to count every inter-
action as a step and no other costs.

Looking at the code for elem we see that there are only two interactions
along channel ¢ until the elem process can interact again along s after it
has received ins and y. For empty there is only one spawn but no other
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interactions. Moreover, there is no delay for a deletion, since the process
will respond immedidately along s.

In aggregate, when we store n elements consecutively, the constant re-
action time means that there will be n elements building up the internal
data structure simultaneously. No matter how many insertions and dele-
tions we carry out, the reaction time (measured in total system interactions
assuming maximal parallelism) is always constant.

On the other hand, if we count the total number of interactions of the
system taking place (ignoring any question of parallelism) we see that for n
insertions it will be O(n?), since each new element initiates a chain reaction
that reaches to the end of the chain of elements. This is usually called the
work performed by the algorithm.

4 Queues

As notes, our implementation so far ended up behaving like a stack, and
we conjectured that the type of the interface itself forced this behavior. Can
we modify the type to allow (and perhaps force) the behavior of the store
as a queue, where the first element we store is the first one we receive back?
I encourage you to try to work this out before reading on . ..
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The key idea is to change the type

storegy = &{ ins: A\ storeg,
del : @{none : 1,some : A estorey}}

to

queuey = &{ ins : queue, / A,
del : &{none : 1,some : A e queue,}}

We will not go through this in detail, but reading the following code and
the type after each interaction should give you a sense for what this change
entails.

- empty :: (s : queuey)

1 s« empty =

2 case s (ins = x < recv s ; % 1Ak s:queuey

3 n < empty ; % (x:A) (n:queuey) - s : queuey
4 s<—elem <z n

5 | del = s.none ; close s)

(x:A) (t:queuey) Felem :: (s: queuey)

6 s<+elem—zxt=

7 case s (ins = y < recv s ; % (x:A) (t:queuey) (y:A) s : queuey

8 t.ins ; % (x:A) (t:queuey / A) (y:A) F s : queuey
9 send t y ; % (x:A) (t:queuey) F s : queuey

10 s<elem <« xt

11 | del = s.some ; % (x:A) (t:queuey) s : A equeuey

12 send s T ; % t:queuey b s : queuey

13 s 1)

The critical changes are in line 7 (where y is added to the right end of the
antecedents instead of the left) and line 9 (where consequently y instead of
x must be sent along ?).

The complexity of all the operations remains the same, since the only
difference is whether the current x or the new y is sent along ¢, but the
implementation now behaves like a queue rather than a stack.
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Exercises

Exercise 1 In this exercise we explore an alternative implementation of stacks.
First, consider type of stacks (renamed from storey4 in this lecture)

stackg = &{ ins: A\ stacky,
del : @{none : 1,some : A estacky}}

1. Provide definitions for

- stack_new :: (s : stacky)
l:list 4 b stack :: (s : stacky)

which represents the elements of the stack in a list. If you need aux-
iliary process definitions for lists, please state them clearly, including
their type.

2. Repeat the analysis of Section 3:

(a) How many processes execute for a stack with n elements?

(b) What is the reaction time for an insertion or deletion given a
stack with n elements?

(c) What is the total work for each insertion or deletion given a stack
with n elements?

Exercise 2 In this exercise we explore an alternative implementation of queues.
First, recall the type of queues from Section 4.

queue, = &{ ins: queue, / A,
del : ©{none : 1,some : A e queuey}}

1. Provide definitions for

- queue_new :: (s : queuey)
l:list4 = queue :: (s : queuey)

which represents the elements of the queue in a list. If you need aux-
iliary process definitions for lists, please state them clearly, including
their type.

2. Repeat the analysis of Section 3:
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(a) How many processes execute for a queue with n elements?

(b) What is the reaction time for an insertion or deletion given a
queue with n elements?

(c) What is the total work for each insertion or deletiion given a
queue with n elements?

Exercise 3 In this exercise we will “turn around” Exercise 1. Write a pro-
cess definition
s:stacky F to_list :: (L:list4)

which converts a stack into a list. As far as you can tell, is the order of the
elements that are sent along [ fixed?

Exercise 4 Consider the standard functional programming technique of im-
plementing a queue with two lists. Just briefly, we have an input list in to
which we add elements when they are enqueued and an output list out from
which we take elements when they are dequeued. When the output list be-
comes empty, we reverse the input list, adding each element in turn onto
the output list. Initially, both lists are empty.

Explore if you can write such an implementation against the queue in-
terface from Section 4. The implementation should have one of the two
types

(in:list4) (out:lista) b queue2 :: (s : queuey)
(out:listy) (in:list4) - queue2 :: (s : queuey)
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Frank Pfenning

Lecture 10
Thursday, September 29

We begin the lecture by continuing to program in ordered logic using the
example of list segments, whose imperative versions have recently become
popular in verification.
Then we return to the operational reading of the original, general rules
for \L, /L, eR and oR in response to a question from an earlier lecture.
Finally we will sketch the proof of progress for ordered logic considered
as a programming language.

1 List Segments

A list segment is the beginning of a list without its tail. It becomes a list
once a tail is supplied. Functionally, it can be seen as function from a list to
a list; here it will be a process that when given a list on its right will behave
like a list.

segy = listy / lista

We discussed this in response to a question on how we might get direct
access to the end of a queue, since our implementation of the queue, in-
terface actually had to pass any newly inserted element down a chain of
processes. As we will see it doesn’t exactly serve the same purpose, but
first let’s program.

We begin with the empty segment. If we append a tail ¢ the empty
segment becomes the list ¢. Our definition of seg, is transparent, so that
we will silently replace it by its definition as was our habit earlier in this
course.
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-Fempty 2 (s :segy)

s < empty = % -Fs:listy /lista
t < recv s ; % t:listy F s:listy
s+t

Concatenating two lists is straightforward, and the code more or less
writes itself if we heed the types.

(s1:seg ) (s2:segyq) b concat :: (s :segy)
s < concat < sy s9 =

t < recv s ; % (si:listg /lista) (sa:lista / lista) (t:lista) F s : list4
send so ¢ ; % (si:lista /lista) (s2:lista) F s : lista

send s1 s9 ; % syilistg s :listy

S < S1

Next, we can prepend an element to a segment to obtain another seg-
ment, which means we add it to the front of the given segment.

(x:A) (s':segy) - prepend :: (s : segy)
s < prepend < x s =

t < recv s ; % (x:A) (s":listg /lista) (t:lista) F s : lista
send s’ ¢ ; % (z:A) (s":lista) b s: listy

s" < cons < x & % s":listy s listy

s+ s

For reasons of symmetry with the next case, we have not combined the last
two lines into the simpler tail call s < cons « z s'.

Appending an element to the end of a segment is similar. It will still
come before (the absent) tail. This is right behavior, since a segment with z
appended still accepts a tail to come after . Note that we have to be careful
to state the arguments to postpend in the right order.

(s':seg ) (x:A) - postpend :: (s : segy)
s < postpend < s' x =

t < recv s ; % (s":lista / lista) (x:A) (t:lista) F s : lista
t' + cons <+ x t % (s":lista / lista) (t:lista) b s : lista

send s’ t' ; % §':listg F s listy

s« s

What can we do with a segment? We can create an empty segment and
then add elements to the left and right ends. In that way, it is almost like
a double-ended queue. However, we cannot remove elements. Instead, at
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some point we need to convert the element to a list by appending an empty
list, after which we can no longer (easily) access the tail (see Exercise 1).

s:seg 4 - seg_to_list :: (I : listy)
[ + seg_to_list < s =

n < nil ; % (s:listg /lista) (n:lista) 1 : list4
send s n ; % s:listg F1:listy
[+ s

2 An Operational Reading of o

Recall that we restricted the general form e R to e R*:

MEA BB O+ B
O Q- AeB AQ,-AeB ©

R*

In the presence of cut and identity, we can interderive these rules so the
same sequents remain provable.

_ QO+ B
7Id,4 ———— oRR*
o R cuty

AQQI—A.B QlQQI—A.B

But what is the right operational reading of the fully general rule, and how
does it relate to the more restricted one? Let’s take a look at the operational
interpretation of the proof on the right, which is available to us in ordered
programming since it only uses e R*. From this, we may be able to glean
the right interpretation of e R.

Qo P::(x:B)
MFQy:(y:A) (y:A) Qe (sendzy; P)::(x: AeB)
QG Yy« Qy;sendzy; P):(x: AeB)

o R*

cuty

The program here will create a new channel w, spawn a new process @,
send w along = and continue as P. We invent a new notation for the general
o R to accomplish the same interactions.

NWEQ:(y:A) QFP:(x:B)
Q1 Qo F(sendz (y < Qy) ; P) = (x: Ae B)

R
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In an asynchronous model of communication these two behave exactly the
same. Under a synchronous interpretation, there is a small difference. Here
is the generalized communication rule for e (which always creates a fresh
channel in the conclusion):

proc(x,send z (y < Q) ; P) proc(z,y < recv z ; R)

oV

proc(z, P) proc(w,Qy) proc(z, Ry)
We can see that @), does not start to execute until this synchronous commu-
nication actually takes place. However, when executing our derived form
(on the top line)

proc(z,y < Qy ;send z y ; P)

w

cmp
proc(z,send z w ; P) proc(w, Qq)

anew channel w will always be created and @,, starts immediately, whether

a client is ready to communicate along x or not. If there is a client ready it

can then immediately step to the same configuration as the ¢C* rule.

With appropriate small changes, the same construction can be used for
oR, /L and \ L (see Exercise 4).

Why did we choose the simplified forms of these constructs? One rea-
son is that all the logical rules just send or receive some information and
continue, but do nothing else. The rules for internal (¢) and external (&)
choice send or receive a label, the rules for the unit (1) send or receive a
end-of-communication token, the rules for /, \, e, and o send or receive
a channel. Composition (cut) is solely responsible for spawning new pro-
cesses and forwarding (id) terminates a process (as does 1R, for a different
reason).

With the general rules, the multiplicative connectives (/, \, e, o) also spawn
new processes, which complicates reasoning about their operational behav-
ior. The big advantage, however, is that the rules are directly derived from
the sequent calculus and therefore satisfy full cut elimination, which, as
we have seen, is not the case for the restricted rules. But since we view
them operationally, from the perspective of a programming language, we
are more interested in progress and preservation properties. And these still
hold, because cut reduction and identity expansion still hold.

3 Progress

We now would like to generalize the proof of progress from the subsingle-
ton to the ordered case. This means the scaffolding around the key insight,
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namely that cut reduction holds for each connective, has to be generalized.

We begin by typing configurations. While configurations are linear rather
than ordered, we still need type checking to proceed in some order. So we
may need to “permute” the configuration so that the following rules ap-
ply. The typing derivation for a configuration then fixes some order. At the
top level we use this for a configuration executing a single process offering
along a single channel.

= proc(z, P) :: (z: A)

We need to generalize almost immediately if P spawns a new process. Then
then have
EC:(x:A)

that is, we have multiple running processes but, overall, we can interact
with the configuration only along one channel. If P spans multiple pro-
cesses, say Pi,..., P,, then we need to check all of them. While each of
them offers along a single channel, collectively they offer along a whole
sequence of channels, so we end up with the judgment

EC:Q

allowing both multiple processes in the configuration and multiple chan-
nels that they provide, namely all the ones in Q. This judgment is defined
by the following two rules:

EC:QQ QFP:(x:A)
E() = () = C proc(z, P) :: Q (x:A)

This means that our particular arrangement of the configuration will have
to list processes in dependency order, with a provider always preceding
(looking left to right) its client. This corresponds to a pre-order traversal of
the dependency tree where we traverse the subtrees from right to left.!

The key is now to come up with the correct induction hypothesis to
prove progress. We introduce the in-line notation C — D for the clumsier

C

D

We need one lemma, whose role will only become clear in the proof. It al-
lows us to extract a typing derivation for the offering process for a channel
x:A that’s provided by a configuration.

'In lecture, I had a slightly more general rule which also worked out, but was unneces-
sarily complicated (as suggested by several students).
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Lemma 1 (Configuration Inversion)
If): C:: Ql (xA) QQ then C = (Cl pI’OC(JZ, P) Cg)
with|=Cy :: Q Q' and Q'+ P :: (x : A) for some Cy, P, Ca, and €Y.

Proof: By induction on the structure of the given typing derivation (see
Exercise 5). a

Theorem 2 If |= C :: Q then either
(i) C — D for some D, or

(ii) all processes in C are executing a right rule.

Proof: By induction on the structure of the typing derivation = C :: Q.
Case: The empty configuration. Then (i) holds.
Case: C = (' proc(z, P) and

EC QO QP (2:A)

We first consider some subcases for P.

Subcase: P ends in a cut. Then (i) holds because P can transition.
Subcase: P ends in an identity. Then (i) holds because P can transition.
Subcase: P is a defined name. Then (i) holds because P can transition.

In the remaining cases we can now assume that P is not a cut, identity, or
name. In other words, it must end in a logical rule. We now appeal to the
induction hypothesis and get two further subcases.

Subcase: ' — D’ for some D'. Then also C — D’ proc(z, P) so (i) holds.
Subcase: All processes in C’ execute a right rule.

At this point we further descend in our tree of case distinctions: P executes
either a right rule or a left rule.

Subcase: P executes a right rule. Then all processes in C = C’ proc(z, P)
execute a right rule and (i) holds.

Subcase: P executes a left rule.
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Sadly, we now have to make further distinctions as to which left rule P
executes. We consider only one case; the others are analogous.

Subcase: P executes \L*. Then P = (send y w ; P’),
=Q; (w:B) (y: B\C) Qp,

O (y:C) QP (x: A)
O (w:B) (y:B\C)QyFsendyw; P (z: A)

\L*

and
EC = Q) (w:B) (y: B\CO) Q5

By configuration inversion (Lemma 1) the derivation of the latter con-
tains a typing derivation for the provider of y : B\ C

V'FQ:(y:B\O)

for some 2 and (). We also know in this subcase that () executes
a right rule. By inversion, this must be \R, and we get Q = (z «
recv y ; Q) and

(2:B) Q' Q. (y:0)
Y'"F(z+recvy; QL) (y: B\CO)

\R

Unraveling this, the original configuration has the form
C = C1 proc(y, z « recv y ; Q) Ch proc(z,send y w ; P')

where C] and C) come from the appeal to configuration inversion.
Hence we can finally infer

C1 proc(y,z < recv y ; Q) Ch proc(x,send y w ; P’)
Cy proc(y, @) C3 proc(z, P')

and clause (7) holds.

\C
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Exercises

Exercise 1 Write an ordered program to convert a list back into a segment.
l:listy F list_to_seq :: (s : segy)

Characterize work and span (= reaction time under maximal parallelism)
of this operation when provided with a list of length n?

Exercise 2 We cannot write a direct analogue for the functional map from
a functional language, because the function f that is mapped over a data
structure is used potentially many times, violating linearity and order. In
order to circumvent this problem, we define a mapper to be a process that
can transform inputs of type A to outputs of B arbitrarily often.

mapper .5 = &{next : (B e mapper )/ A,done : 1}
1. Define a process map with type
(m:mapper 4g) (L:lista) = map :: (k : listg)
that applies mapper m to each element of list / to produce list .

2. Define a mapper map_id such that

l:list 4 = identity :: (k : list4)
k < identity | =

m <— map_id ;

k< map < ml

does indeed behave like the identity. State both the type of map_id and
its definition.

Exercise 3 We cannot write a direct process analogue of the function fold
for the same reason as for map in Exercise 2.

1. Devise a type folder 45 that can reduce a list of type A to a result of
type B. We suggest you study mapper 45 from Exercise 2 for hints on
how to proceed.

2. Define a process fold with type
(b:B) (m:folderap) (I:lista) - fold :: (r : B)

that folds m over the list [ with initial value b to produce . Feel free
to change the order of the antecedents if another order turns out to be
more convenient.
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3. Define a folder fold_id and complete the following program such that

Llisty & identity :: (k : lista)
k < identity < | =
[« fold_id ;

does indeed behave like the identity. State both the type of fold_id and

its definition.

Exercise 4 Give a direct proof term assignment for the general /L using the
new form of process
send z (y < Qy) ; P

from Section 2.

Exercise 5 Prove configuration inversion (Lemma 1).
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Lecture Notes on
Linear Logic

15-816: Substructural Logics
Frank Pfenning

Lecture 11
October 4, 2016

In this lecture we introduce the sequent calculus for the multiplicative-
additive fragment of linear logic [?], often abbreviated as MALL. From in-
tuitionistic linear logic it is only missing the exponential, !4, which, as an
antecedent, allows A to be used arbitrarily many times. The exponential
will be introduced next week, in Lecture 13.

I have to admit this is not actually what happened in lecture when in
addition to introducing linear logic I also tried to talk about combining
logics. I slightly revised my—ahem—somewhat cryptic approach and tried
again in Lecture 12.

1 Exchange

The way we obtain linear logic from ordered logic is just to allow exchange
among the antecedents of a sequent. This is importing into the sequent
calculus the difference between ordered and linear inference from the be-
ginning of the course. Allowing exchange can be formalized in two ways:
with an explicit inference rule

QL BAQrFEC
Qr ABQrtEC

exchange

or we can treat the context as a multiset rather than a sequence of proposi-
tions. We write
A= (Ala"'vAn)
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for antecedents that form multisets and for now reserve 2 for ordered an-
tecedents. We will usually use the latter approach to reduce the bureau-
cracy of explicit inference rules. The comma separating antecedents and
the use of the letter A will remind us that “order doesn’t matter”.

2 Collapsing Connectives

When we identify antecedents up to exchange, several previously distinct
connectives become indistinguishable. For example, A\ B = B / A become
the single connective of linear implication, written A — B. Similarly, A e
B = A o B becomes multiplicative conjunction (or simultaneous conjunction),
written A® B. All the other connectives remain the same. This information
can be gleaned from the inference rules. We only show one example, the
emergent rules for linear implication.

A AF B ANFA ABFC
S oL
AFA B A A A BFC

In the latter rule we write A — B on the right end of the antecedents,
but due to exchange we could have written it anywhere. Similarly, writing
A, A" means (reading the rule bottom-up as we are used to) that we take a
multiset of antecedents and split it into two. Thus there are 2" ways to split
a context of n antecedents, while in the ordered case there are only n + 1
ways.

3 Cut Reduction and Identity Expansion

The properties of cut reduction and identity expansion carry over. Identity
expansion is automatic, since we only relax the applicability of rules. Cut
reduction also works exactly as before, because the only difference is a re-
laxed order among antecedents. Similarly, the admissibility of cut in the
cut-free sequent calculus works just as before, with the exact same induc-
tion measure and argument. In fact, we will unify the different proofs into
a single one in a future lecture.

4 Operational Interpretation

The assignment of proof terms and processes remains exactly the same as
for the ordered case. In other words, linear processes (as compared to or-
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dered ones) only relax the requirements on typing of processes proofs while
retaining their operational meaning from ordered logic. Therefore we do
not need to introduce any new rules.

In principle, we would have to reprove progress and preservation, since
the more relaxed form of typing a priori might be too weak to guarantee
them. However, the proof follows the exact same patterns as before and
contains no new insights.

As an example, we reconsider lists in their linear rather than ordered
form and show that they can be reversed.

lista = @{cons: A lista,nil : 1}

Linearity guarantees that elements of a list are preserved, although their
order may not. To define reverse we use an auxiliary process rev which has
an accumulator argument in which we construct the reversed list.

list4 = @{cons: A ® lista,nil : 1}

(k:lista) (a:listq) b rev :: (I:list4)

l<rev<ka=
case k (cons = x < recv k ; % (x:A) (k:lista) (a:lista) = (I:list4)
a < cons<+za; % (kilista) (a’lista) = (I:listy)
I« rev<kad
| nil = waitk ;1 + d % accumulator becomes result

k:list4 = reverse :: (I:list4)
| < reverse < k
n < nil ;
l<—rev+kn % initialize accumulator with nil

Observe that the call to cons could not be typed in the case of ordered lists.

Exercises

Exercise 1 Show one principal and one commutative case among the —o
and ® connectives in the proof of the admissibility of cut for linear logic.

Exercise 2 A linear proposition can be turned into an ordered proposition
by deciding for each muliplicative conjunction (®) if it should become fuse
(e) or twist (o) and for each linear implication (—o) if it should become under
(\) or over (/). For example, we can translate the provable (A®(A — B)) —o
B into the provable (A e (A\ B)) / B.
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1. If possible, construct a provable linear formula containing only ®, —o
and propositional variables such that all of its ordered translations are
provable in ordered logic. If one exists, try to minimize the number
of its connectives.

2. If possible, construct a provable linear formula such that none of its
translations to ordered logic are provable. If one exists, try to mini-
mize the number of its connectives.

Exercise 3 Analyze the parallel complexity of the rev and reverse processes
in ?? in terms of latency and throughput. Given a list k& of length n that pro-
duces its elements with a constant delay c between consecutive elements:

1. (Latency) How many steps (counting only communications, but not
spawns or forwards) until the first element can be retrieved from [?

2. (Throughput) How many steps until the whole reversed lists can be re-
trieved from [, assuming a client that has no delay between successive
interactions along I.

3. If we reverse twice
l < reverse < k ; k’ < reverse < [

the result &’ should be observationally equivalent to the given k. An-
alyze latency and throughput for the pipeline from & to £’.

References
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Lecture Notes on
Combining Logics

15-816: Substructural Logics
Frank Pfenning

Lecture 12
October 6, 2016

In this lecture we will introduce a general approach to combining logics,
using the special case of ordered and linear logic. Other examples of this
construction are monads in the sense used in functional programming to
integrate effects [Mog89] and LNL [Ben94] and the modal logic S4 which
gives rise a type system for quotation [DP01, PD01]. A systematic logical
study was initiated by Reed [Ree09] and subsequently extended and ap-
plied to concurrency [PG15].

1 Connecting Two Layers with Shifts

We start by writing down ordered and linear logic in a way that exhibits the
correspondence between the propositions. We use a subscript O to indicate
an ordered mode and L to indicate linear mode. In a later lecture we will
introduce other modes. p, and p, stand for ordered and linear propositional
variables, respectively.

Ll].’lear AL7BL :::pL |A|_@B|_ ’AL&BL |1’ AL _OBL ‘ AL®B|_
OrderedAo7Bo:::po|Ao@Bo|Ao&Bo|1’Ao\Bo’Bo/Ao‘Ao.Bo‘AooBo

Strictly speaking, there are also two versions of internal and external choice
and the unit 1, but since their rules and behavior are independent of whether
we have ordered or unordered antecedents, so we write them the same
way. At this point there is no overlap, so the two logics are not connected
in any way. To allow ordered proposition to mention linear ones and vice
versa, we add two shift operators. Since we view linear propositions as
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more powerful antecedents (they can move around, after all, while the or-
dered ones are locked into place) we think of L as stronger than O (written
L > O) and we use an uparrow to go from ordered to linear and a downar-
row to go from linear to ordered. Officially, this arrow is annotated with
the two modes. We will omit them in today’s lecture since O and L will be
the only modes.

Lineal‘ AL7BL :::pL |AL@BL |AL&BL |1’ AL _OBL ‘ AL®BL ‘TIC_)AO
OrderedAo,Bo:::po|Ao@Bo’Ao&Bo|1’Ao\Bo’Bo/Ao‘Ao.Bo‘AooBo‘igAL

We read 15 A, as from ordered Ao up to linear or just up Ao, and |gA, as from
linear A, down to ordered or just down A,.

2 Counterexample: Swap

We refer to unary logical connectives that mediate between different modes
of truth as modal operators or modalities. In traditional philosophical logic
such modes could be knowledge, belief, necessity, or possibility, among many
others that have been investigated. Here the mode determines whether we
are considering ordered or linear logic.

We need some principled understanding of the shift modalities before
we can write correct left and right rules to define their meaning. I hesitate to
write down wrong rules, lest they burn themselves into your memory, but
itis worth playing the what if game for a little to understand the restrictions
we will eventually impose. Consider the judgment

AL Qo FCpy,

where A, collects all linear antecedents, € collects all ordered antecedents,
and C,, is the succedent with the mode m either O or L. The first attempt
at the rules, which will be shown to be wrong, would be to just strip the
modality in all four cases. We take care to place each proposition in its
appropriate antecedent zone.

A;QF Ao A QAo Qo FCy
— TR?? TL??
A QFTA AT A5 Qo - Cy
A;QI—AL A,AL;nggl—Cm
——— |R?? LL??
A QF LA A Q (LA) Qo F Coy
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Next comes the counterexample which shows that this combined logic does
not make sense in the way we intended.

id id
'§Bo|_BoI 'Qflo'_AoI
— id oR
-3 Ao F Ap '§Bvo|_Bo°Ao
0% 70 4R +L?7
<3 Ao TAo 1TAo ; Bo - Bo e Ao
cut??

';AoBol_Bo.Ao
';AO.B()'_BO.AO y

L

Why is this troublesome? The conclusion proves that fuse is commutative,
which means that the ordered connectives no longer have the meaning we
expect. Moreover, something must fail in cut elimination: our conclusion
contains only ordered propositions, and in ordered logic it is certainly not
the case that fuse is commutative. There can be no cut-free proof of the
endsequent in the combined logic, so cut elimination must fail.

The issue is that 1A, is a linear proposition, which is therefore “mobile”
in the sense that it can move around arbitrarily among the antecedents. If
we could indeed prove - ; Ay = 1A, this means we could make any ordered
proposition mobile, place it wherever we like (the use of 11?7 in the coun-
terexample) when we make it ordered again. This “trick” was exploited to
illegally move A, from the left of B, to its right.

Our analysis is that the proof of linear proposition 1A, should not be
allowed to depend on the ordered proposition A,, because the linear succe-
dent can be used in ways not justified by the ordered antecedent. This
would rule out the very judgment - ; A, - 1A, so the cut rule cannot be
correct, nor can the application of TR??. On the other hand, 1L?7 looks
defensible.

We can also take a look at what the result of a hypothetical cut reduction
would be. It is a principal case, since the cut formula 1A, is the principal
formula of both inferences. We obtain:

id id
‘;Bol_BOI '?140|_AoI
id oRR
-3 Ao F Ag -3 Bo Ao By @ Ay
cut??

3 Ao Bo - By @ Ay
ol
-3 Age BoF Bye A,
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We see that the conclusion of the cut would have antecedents B, A, when
before the cut reduction it was Ag By. Thus, the cut reduction fails.

3 The Declaration of Independence

The considerations in the previous section lead us to the following principle
of independence.

Independence Principle: The proof of a linear succedent cannot depend
on ordered antecedents.

The general form of this principle in later lectures will be: The proof of
a succedent with mode m can only depend on antecedents with modes equal to
or stronger than m. Here we consider a mode stronger if it supports more
structural properties such as exchange, weakening, or contraction.

This means we really have only the following two judgment forms.

AL;QOl_AO
ALFA

Ordered succedents A, can depend on linear and ordered antecedents,
while linear succedents A, can only depend on linear antecedents. We will
later unify these with others into a single judgment form with some pre-
suppositions to ensure they are meaningful.

Now we can go through our rules and subject them to the independence
principle to arrive at the following collection of right and left rules.

AFTAO A,TAo,Ql QQ'_CO
A A \R A AL Qo F Co
A F LA A (LA) Qo Co

Please make sure you go through these and understand how they arise
from the previous dubious rules simply by heeding the independence prin-
ciple. As an example, with consider | R. We had proposed

A;QFA

—  |R”?
A:QF LA
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In the premise, there cannot be any ordered antecedents, leading to a better

approximation:
AFA

A QF A
But every antecedent in {2 must be used—we cannot simply drop them at

this rule which would be tantamount to weakening. So we must require
there to be no ordered antecedents and we arrive at the correct rule.

A A

IR??

4 Cut and Identity

The rules for cut and identity can now be derived from the same consider-
ations of independence. Identity is particularly straightforward.

do

—_— i id,
,Aol_Ao AL'_AL

For cut, it turns out there are three rules because independence rules out
one of the four combinations of the judgment forms.

A,;Q/}_AO A,QlA()QQ}_CO

cutoo
AA Q1 Q Qo FCo
AFA AAQFC, AFA AAFC
CUtLO CUtLL
AN QR Co AN FCL

5 Other Propositional Rules

The other propositional rules are carried over or straightforwardly adapted
from ordered or linear logic. We show only two examples: the rules for
Ao\ By and A, — B,. The —L rules split into two, for similar reasons why
there are two version of the cut rule for linear propositions.

A,Ql_Ao\BO A’A/,ngl(Ao\Bo)QQFCO
AA F B A'FA AB FC I ANFA AB :;QFC,
—  —oR —o
A+ A —o B, AN A —oB FC. AN, A — B QFCo
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6 Roundtrips

Including shifts in the language of propositions allows us to consider round
trips from ordered to linear logic and back, and from ordered to linear and
back. How does |14, compare to A,? Conversely, how does 1] A, compare
to A,? We just try construct a cut-free derivation, bottom up, for each of
these proposition to see which hold and which do not.

3 Ao Ao do
no rule applicable TAo ;- F Ao L
3 Ao F 1T Ao 3 ITAo F Ao
AFA ile
A - FLA 'R no rule applicable
Ak TLAL AL A

In two sequents we get stuck immediately due to the restrictions imposed
by the independence principle.

So if we know A, we can conclude 1/ A, via a roundtrip to an ordered
proposition but not the other way around. Conversely, if we are trying to
prove A, it is sufficient to prove |1 A,.

The observations

Ao 7 1140

114 F Ao

ALE AL
WAL A

suggest that | 1A, ~ OA, behaves like the modality of necessity, which can
be characterized categorically as a comonad, while 1] A, ~ ©A, behaves
like a form of possiblity, which can be characterized categorically as a strong
monad.

We pursue this conjecture a little further to see if the shifts distribute
over implications. They do. While we distribute the shift, linear implica-
tions will turn into over/under and vice versa. We prefer A \ B here since
the order of its arguments is consistent with linear impleication, but this
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choice is arbitrary. We start

?
SUAGAB) B
i WA~ B)\ [A\ B

We pause here to note that the | R rule is not applicable since the ordered
context is not empty. So we apply the | L rules twice, to empty it out. The
remainder is straightforward.

-d 'd
A+FA Y BFB'
I%A_@akBLiRL
AL,AL_OBL . l_\LBL
-5 (JAY) (LA — B)) = 4B,
T F WA — B\ LA\ IB,

L x2

Similarly, 1 distributes over ordered implication A \ B. We pause after two

steps.
‘?

(Ao \ Bo), TAo F 1Bo
s T(Ao \ Bo) - TAO — 1Bo

R x?2

Now we need to apply TR so we can then apply 1L twice to place the two
antecedents in the ordered zone in the correct order.

ido — idg
Ao Ag Bo F By \L
3 Ao (AO\BO)l_BO
1L x 2

T(Ao \ Bo)yTAo ;= Bo
(Ao \ Bo), TAo 1B,
- T(Ao \ Bo) - TAO — 1Bo

Rx?2

The observations

T Fi(AL — BL) \\LAL\\LBL
i T(Ao \ Bo) - TAO — 1B,

provide further evidence for our conjectures of the modal nature of |1 and
1/ and necessity and strong possibility (see Exercises 1 and 2).
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7 Operational Interpretation of Shifts

When we assign processes as proof terms we mark channels ordered or
linear, written as z or . This doesn’t affect the identity of a channel, only
how it is used.

(mlL:A1L7 . 7$TZL:ATLL) 3 (ylo:Blo . ka:BkO) '_ P o (Zo : Co)
(1A, -y i Ap) B P (20 C)

As we remarked several times, the operational interpretation of ordered
and their corresponding linear connectives is exactly the same. Order only
imposes a restriction on the use of ordered channels. Therefore we could as-
sume that the shifts have no essential operational purpose. Indeed, looking
at the rules it seems that a message of shift corresponds to communicating
a mutual agreement that a channel changes status, from ordered to linear
or vice versa. We have to determine which of the rules carries information
and which does not.

A 14, AT Ao QO

We see that TR can always be applied and thus carries no information,
while an antecedent 14, may have to wait until the succedent is ordered. It
also implicitly carries the information on where in the context to insert Ao.
This means TR will receive and 1L will send.

A F Pz Ap)
At shift < recv 2 5 P i (x 2 TAp)

TR

A Q (26:40) Qo b Q (20 : Co)
A,z 1A 5 Q1 Qo b send 2 shift; Q 2 (20 : Co)

1L

For the down shift modality, the roles are reversed. | R does not always ap-
ply since there may be ordered antecedents. On the other hand, | L always
applies (read bottom-up, of course) and therefore it carries no information
and will receive.

AFP:(z : A)
A ;- Fsend o shift ; P i (xo : JAL)

IR

AyxAL Q1 Qo Qi (200 Co)
A5 (il AL) Qo | shift <—recv 26 5 Q 12 (20 1 Co)

1L
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As with internal/external choice and ordered implication/fuse, the up and
down shifts form dual pairs and therefore use the same program construct.
We can always tell from the situation which of the two is meant.

The operational rules are straightforward.

proc(x,, shift < recv x ; P) proc(zo,send x shift ; Q)

proc(zo, P)  proc(zo, Q)

proc(xo, send z¢ shift ; P) proc(zo, shift < recv z¢ ; Q)

e
proc(z., P) proc(zo, @)

8 Example: A Linear Client Using an Ordered Service

By the independence principle, a process that provides along a linear chan-
nel cannot use an ordered channel. But if we have an ordered process that
uses linear channels internally, we can use an ordered storage server (say,
a stack) to store the linear channel z,:A,. In order to allow this we have to
coerce the linear channel to be ordered, of type | A,, so we define

z AL - down (Yo 0 LAL)
Yo  down < x, =

send ¥, shift ;

Yo < XL

The we assume we have ordered type

stackg = &{ins: A\ stacky
del : @{none : 1,some : A e stack}}

with the usual ordered implementation. Now assume we are in a situation
where we own a channel of type A, and also a stack with elements of type
1AL

(x:AL) ; (sistackya, ) F (20 : Co)

In order to push x, onto the stack we first lower it to be ordered. Upon
retrieval, we do the opposite. In the types we omit the succedent since it
plays no role in this code.

% (xi:AL) ; (s:stackpa, ) F ...
Wo — down + x ; % - (wo:lAL) (s:stackya, ) F ...
s.ins ; send s wy ; % - (s:stackpa ) b ...
... other operations . . .
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s.del ; % -;s:@®{none:1,some: A estackjs } ...
case s (none = wait s ; ...
| some = ug ¢ recv s ; % 5 (uolAyL) (s:stacka ) b ...
shift <— recv uo ; %  (u:AL) ;5 (s:stackypq, ) b ...

9 Identity Expansion

To verify harmony we should check cut reduction and identity expansion.
We begin with the simpler identity expansion.

— ido id,
,AO}_AO ALl_AL

B Y = " IR
TAo;‘l_AOTR A LA L
TAo =14 SJALE LA

10 Cut Reduction

Cut reduction usually has the key insight in the proof of admissibility of
cut and therefore ultimately cut elimination. We only show one case of cut
reduction (for TA,) and elide other cases as well as admissibility of cut (see
also Exercise 3).

Assume the first premise of a cut ends in TR rule.

D/ D/
A FA Ay A
9 (0] ’]\R g 9 0} ’]\R g
A/ F TAO A, TAO N Q F CO A/ F /]\Ao A?TAO F CL
cut o cut,,
AN QF Co A A C,
The 1L rule has the form

A 1A Q1 Qo - Co

so only the first of these two cases will result in a cut reduction. The second
case above will lead to some commuting conversions, if A, is a side formula
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of inferences in £. The only case for reduction then has the form

D’ gl

Al?"_Ao R A59114092|_Co

A/ '_ TAO A?TAO N Ql Q2 l_ Co

cut o
A,A, N Ql QQ F Co
which reduces to
D/ g
A/;'l_AO A,QleQQFCO
Cutgo

A,A/;Ql QQ'_CO

Exercises

Exercise 1 Define OA, = |TA,. Taking the small liberty of omitting the
linear zone when it is empty, we have already seen

1. OAo F Ao
2. Ao/ OA,
Prove or refute each of the following;:
1. OA, FO0OA,
2. O(Ao \ Bo) (OA,) F OB,
Exercise 2 Define CA, = 1| A,. We have already seen
1. A FOAL
2. QAL AL
Proof or refute each of the following
1. OCA FOAL
2. O(AL — B.),OA F OB,

Exercise 3 Show all cases of cut reduction for | A,.
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Exercise 4 Recall
':UL:AL ) F down . (yo : \LAL)

from Section 8. A priori, there are four interesting possibilities for such
coercions. For each, show that it cannot exist or write a process that imple-
ments it.
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Lecture Notes on
Asynchronous Communication

15-816: Substructural Logics
Frank Pfenning

Lecture 13
October 11, 2016

In this lecture we will first update earlier observations regarding asyn-
chronous communication and then develop an alternative logical integra-

tion of synchronous and asynchronous communication. The material is
adapted from [DCPT12] and [PG15].

1 Asynchronous from Synchronous Communication

By asynchronous communication we mean this in the sense of the 7-calculus:
we send messages along channels and continue execution without waiting
for the message to be received. We do expect, however, that the messages
arrive in the order they were sent. When modeling asynchronous commu-
nication we need to ensure these two properties, which is usually achieved
with a message buffer for each channel.

Of course, we want to accomplish all of this by logical means, within
the scope of the interpretation of propositions as types, proofs as programs,
and computation as cut reduction.

As an example, we consider communication of labels to the right, which
is the operational interpretation of internal choice (©). Operationally, the
key observation was:

Rlt; P~ P|(Rl;e)

Instead of synchronously sending label [}, to the right and then continue with
P when it is received, we immediately spawn P and also a (tiny) process
that only carries [}, and terminates when that is received.
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The fact that the second form is well-typed when the first one is means
we can already express asynchronous communication. We just need to de-
cide which of the two programs above to write.

From a logical perspective, the asynchronous form below on the right
reduces to the synchronous form on the left by a permuting reduction fol-
lowed by an identity reduction.

ArF oAy kel

DR
whkP:A, (ke wh P Ay ApE Rl < @{lit Aiier
DRy, cut
wk Rl ; P:a{l: Aitier) whk P | (Rl ) @{li: Aitier

Does this generalize to the setting of ordered and linear logic? Yes, as
we will illustrate using an ordered example, but it also works for the linear
connectives. This time, we start with the logical rules and deduce what the
right asynchronous form must be in analogy with the subsingleton case.
We use e R* as our illustrative example.

QFP:(z:B)
(w:A)QFsendzw; P:(x: AeB)

o R*

We want to “unshackle” P so it can execute independently from sending
of w along x. This is accomplished by a cut. Filling in what we know, we
have the following partial deduction:

QFP:(z:B) (w:A) (x:B)I—.:..:: (x:AeB)
(w:A)QF ... (x: AeB)

cut

We see that there is a name clash, so we rename the x introduced by the cut
to 2’

QFP:(2:B) (w:A) (x’:B)l—f..:: (x: AeB)
(w:A)QF ... (x: AeB)

cut

Luckily, we can directly prove A B - A e B, even using our weakened rule
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o R*. Filling that in, we obtain

id
BFx+ o (az:B)I

QF [2'/z]P (' : B) (w:A) (¢:B)Fsendzw;x <+ 2':: (z: AeB)
(w:A) QF (2 + [2'/z]P ;sendx w ;2 < 2') :: (x: Ae B)

o R*

cut

Operationally, this corresponds to the transition

proc(x,a’ < [¢//x]P ;send x w ; x + 2’) y

cm

proc(a’, [2//x]P) proc(send z w ; x + ') P
where 2’ must be fresh, which represent the derived asynchronous behav-
ior under the correspondence

sendzw; P =~ o« [2//x]P;sendxw;z <+ 2’

Similar correspondences hold for all other sending constructs (see Exer-
cise 2).

2 An Asynchronous Semantics

As the previous section illustrates, we can implement asynchronous com-
munication given a language with a synchronous semantics. There are two
drawbacks of this solution. One is purely a matter of experience: the asyn-
chronous form is tedious to write, since it involves an additional cut and
identity. The other is that in realistic settings, synchronous communication
is too complex as primitive, while asynchronous communication provides
a much more natural model. Synchronous communication is then usually
achieved by a protocol of specific asynchronous exchanges.

If we want communication to be a priori asynchronous, all we have
to do is to employ the insights from the previous section to devise asyn-
chronous computation rules for the usual sending constructs. In other
words, the construct on the left should behave like the construct to the con-
struct to the right.

sendzw; P ~ o<« [2//x]P;sendxw;z <+ 2’

We accomplish this through a new predicate msg containing only certain
specialized forms. The sending rule for e R* becomes

proc(z,send z w ; P)

C_send”
proc(a’, [2//z]P) msg(xz,send z w ; z + 2’) & -sen
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When typing the configuration we type the message just as we would a
process. The only reason to single it out with a separate predicate is to
prevent immediate application of the same rule again, and again, etc. Mes-
sages are received in a way that is consistent with their interpretation as a
(tiny) process, shown below for purpose of illustration.

proc(z,send z w ; x < x') proc(z,y < recv x ; Q)

o
proc(z,x < ') proc(z, Qu)

proc(z, [z /z]Quw)

fwd

We previously wrote the semantics of forwarding as a global substitution of
' for z, but here we know the client for z is the process Q,, offering along
z. By linearity of channels in well-typed configurations, substitution @Q,, is
all that is required.1 In fact, there is an alternative semantics for forwarding
that takes this into account (see Exercise 3).

We summarize the above two steps from the synchronous semantics,
using only processes, as the one-step transition in the asynchronous se-
mantics using messages.

msg(z,send z w ; x < ')  proc(z,y < recv x ; Qy)

proc(z, [2'/z]Quw)

o(_recv

3 Polarizing Propositions

In the previous section we have developed a semantics were all commu-
nication is asynchronous. Is this expressive enough to model synchronous
communication if that is what we want in some places? Speaking purely
operationally, the standard solution is to send the intended message and
then wait for an acknowledgment of receipt before continuing. We could
introduce this kind of operational solution here in an ad hoc way, but it
would be much more satisfactory if it had a good logical justification.

And, yes, there is such ajustification or I probably wouldn’t have brought
it up.

Surprisingly, we only need to generalize slightly the mechanism of modes
and shifts in order to find a logical foundation for synchronous communi-
cation in an asynchronous language.

'Note, however, if we do not perform the two steps together then process z could send
x do some other process and the second step would be wrong.
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The first key idea is to classify propositions based on whether they send
or receive when viewed from the provider perspective. This is the same as
asking which right rules for the connectives are invertible in the sense that
they can always be applied during the search for a proof of 2 - A, where
A is constructed by that connective. This is also the same as saying that
the proof if identity expansion has the right rule as its final inference. We
call those with invertible right rules negative connectives, while those with
non-invertible right rules are positive connectives.

Negative A~,B~ u= p |A"\B  |B~ /AT | A~ & B~
Positive AT, BT = pT|AteBT |AToBT|1| AT ® BT

Propositional variables p can be given either polarity. Note that in the case
of implicational connectives the polarity of the antecedent is positive, since
the role of polarities is reversed for antecedents. At this point, just as in
the case of combining logics, we need a way to go back and forth between
these classes of propositions. For this we reuse the idea behind shifts, ex-
cept of going between ordered and linear we remain in the ordered layer,
changing only the polarity. The directions of the shifts is determined by the
fact that the TR rule is invertible (and therefore 15 A should be negative)
and conversely that the | R rules is not invertible (and therefore |3 A should
be positive).

Negative A~,B~ u= p~ [AT\B~|B~ /A" | A~ & B~ 104"
Positive A+,B+ = p+ ‘ At e BT | At o Bt | 1 | At @ Bt | i«gA_

The fact that negative propositions are “above” the positive propositions
here does not imply an independence principle: the mode of both layers
is the same (O, in this case) and therefore a proof of a positive succedent
can depend on negative antecedents and vice versa. The rules for these
constructs are boring. They will become more interesting when we dis-
cuss focusing where the shifts will play a critical role. In the purely ordered
setting (so all the propositions are ordered) we just have:

QO AT R 971 AT Qo -C
QOF 104+ Q1 (19AT) Qs - C
OF A R Ql A~ QQ FC
OF 124~ 01 (1SA7) Qo F C

The operational semantics is the same as for the shifts from the previous
lecture. t9A™ is negative and therefore receives a shift. Conversely |SA™ is
positive and therefore sends a shift.
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An interesting aspect of the operational semantics is the overall polar-
ization: when a process offers along a channel z : A7 it will send a mes-
sage, and then continue to send messages until we reach z : 1 and we
terminate, or we reach z : 9B ™. In the second case, the process now sends
a last message—a shift—and then starts to receive messages according to
the type B~. Again, the process will continuously receive since the type re-
mains negative, until we reach a form z : 19C" and the cycle begins anew.

4 Example: Polarizing Stacks

As an example, we reconsider stacks.

stacky = &{ ins: A\ stacky,
del : &{ none: 1,
some : A estackq}}

The stack interface starts with an external choice, so it is negative which we
indicate by stack;. When we go through an insertion and recurse, the type
remains negative except we see that A itself occurs under a stack (A \stack 4)
and therefore should be positive. Filling in this partial information, we
have so far:

stack;, = &{ ins: A" \ stack},
del : &{ none : 1,
some : AT estack, }}

At this point we notice some mismatches. In particular, internal choice is a
positive connective, but when we enter the del branch of the external choice
we expect a negative proposition. So we need to insert a shift and switch
to positive polarity. Conversely, when we reach the recursive appeal to the
stack type, we expect a positive polarity while stack is negative so we need
another shift. We omit the superscript and subscripts on the shifts, since
they always stay at level O.
stack,, = &{ ins: AT \ stack},,
del : T &{ none: 1,
some : At e | stack, }}

We obtained this type by adding the minimal number of shifts to polarize
its unpolarized form. Such a minimal translation always exists and is easy
to describe.
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Let’s talk through some sequences of interactions. As long as we insert
elements into the stack, we encounter no shift and the direction of the com-
munication remains the same. We might send, for example, the following
sequence of six messages:

to provider ins x; ins 3 ins z3

Actually, let’s see what this looks like in the explicit notation of messages,
assuming we start sending along channel y;.

msg(y1,y1.ins ; Y1  y2)
msg(y2,send yo 1 ; Y2 < Y3)
sg(y3, ¥3.ins ; Y3 < ya)
(
(
(

3 3

sg(ya,send ys T 5 ya < Y5)
sg(ys, y5.ins ; Y5 < o)
msg(ys,send ys T3 ; Y6 < Y7)

3

We see that the messages form a linked list segment from y; to y; where
the mediating channels y2, y3, Y4, ¥5, ys provide the links. These linked list
segments in fact act as queues implementing message buffers. In [PG15]
we created buffer queues as a separate data structure in the operational
semantics, but I no longer believe their syntactic overhead is warranted.

Since communication is buffered and we have no bound on the number
of insertions, the buffer must also be unbounded. Continuing the example,
if we now decide to delete an element, we have to send a del label and then
a shift to change direction of the communication:

to provider ins z; ins x2 ins 3 del shift
to client

At this point we wait for the response, which means that the stack provider
has to drain the whole buffer, up to and including the final shift and then
respond. The response in this case will be the label some, followed by the
channel z3, followed by a shift.

to provider ins z; ins x3 ins 3 del shift
to client some x3 shift
to provider
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Continuing for a few more interaction cycles:

to provider ins z; ins x3 ins x3 del shift

to client some x3 shift
to provider del shift

to client some xo shift
to provider del shift

to client some x shift
to provider del shift

to client none close

5 Synchronous from Asynchronous Communication

We recall the polarized type of stacks.

stack;, = &{ ins: A™ \ stack),,
del : 1 ®{ none : 1,
some : AT o | stack), }}

As noted, the implementation requires an unbounded buffer because there
are no changes of direction (which would be indicated by shifts) if we con-
tinuously insert elements.

If we want to keep the buffer bounded we can force synchronization
after each element has been inserted. Amazingly, we can express this just
be inserting a double-shift like so:

stack’, = &{ ins: AT\ 1 | stack,,,
del : + ®&{ none: 1,
some : At e | stack, }}

Operationally, the first shift (1) will receive a shift message from the client,
while the second shift (|) will sent a shift to the client and then wait again
for messages. This second shift acts as an acknowledgment that all mes-
sages before have been received. This is because communication can only
change direction when the buffer is empty, that is, the shift at the end of a
message sequence has been received. Here is an example interaction, with
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the additional synchronization:

to provider ins x; shift

to client shift

to provider ins x9 shift
to client shift

to provider ins x3 shift
to client shift

to provider del shift

to client some x3 shift

to provider

We can now calculate the needed buffer size for this particular data struc-
ture and see that it is 3: The longest sequence of messages that can be in
the buffer at any time are ’ins z shift” (to the provider) and 'some z shift’
(to the client). In general, the calculation finds the longest path of the same
polarity through the graph consisting of all the mutually recursive type
definitions. If that is infinite, the buffer must be unbounded.

If we want to force fully synchronous communication, that is, every
sent message waits for an acknowledgment, we just have to insert a double
shift at every point in a type. The first shift sends a shift message, while the
one immediately following waits for the acknowledgment in the form of a
shift that is returns. This is a bit overly agressive, because if there is already
a shift in the type, it is not necesary to make it a triple-shift (see [PG15] for
more detail).

One pleasing property of this approach is that synchronization points
are not left to the implementation, but are manifest in the type. Contrast
this with Section 1 where it is only a matter of the code we write whether
we want to force asynchrony in an otherwise synchronous language. This,
and the fact that it is a more realistic abstraction, leads me to believe that
asynchrony is the better default. The good news is that the proof theory
supports both points of view, so there is no real right or wrong.
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Exercises

Exercise 1 Provide an implementation of asynchronous send for \ L* as for
e R* in Section 1, and verify that synchronous and asynchronous forms are
related by a commuting reduction followed by an identity reduction. If not,
explain.

Exercise 2 Recall the correspondence between synchronous and asynchronous
sends given at the end of Section 1 which was derived from e R*.

sendzw; P =~ o« [2//x]P;sendxw;z <+ 2’
Provide analogous correspondences for 1R, ®R, &L, and \L*.

Exercise 3 Develop an alternative semantics for forwarding = < y which
involves communication only with directly connected processes (either along
x or y) rather than the heavy-handed global replacement we have used so
far. How are your rules related to the identity reductions (which can be
read off from the proof of admissibility of cut)?

Exercise 4 Polarize each of the following types and analyze the maximal
buffer sizes. If unbounded, insert synchronization points and then analyze
the finite buffer size required for the resulting types.

1. listg = @{cons : Aelisty,nil: 1}
. segy = listy / lista

. mapper 5 = &{next : (B e mapper ) / A,done : 1}

2

3

4. t_mapyp = listg \ (mapper 5\ listg)

5. folderap = &{next : (B\ (B efoldersp)) / A,done : 1}
6

. t_foldap = (B efolderyp @ list4) \ B
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At this point we introduce structural logic, that is, a logic in which we as-
sume all structural rules for the antecedents: exchange, weakening, and
contraction. This is a sequent calculus presentation of what is usually called
intuitionistic logic, which was developed long before substructural logics.
Since all the logics we have considered so far are intuitionistic in nature,
however, this is not a distinguishing characteristic.

We begin with a brief excursion to consider quantifiers. Quantified vari-
ables may occur arbitrarily often in their scope, and they may occur in any
order, which means they are the first fully structural entities we see apart
from persistent propositions in the first few lectures.

1 Existential Quantification

From a logical perspective, quantifiers allow us to talk about universal
(such as “all men are mortal”) or existential (such as “some inference systems do
not satisfy cut elimination)” propositions. From a programming perspective,
they allow us to compute over basic data values such as integers or strings.
Because of the latter, we will insist on quantifiers being typed.

We can prove Jz:7.A if we can prove [t/z]A for some term ¢ of type 7.
This means we require a new judgment, ¥ - ¢ : 7, where X is a collection
of assumptions about the type of variables, z;:7, ..., x,:7,. Since there are
basic terms with (so far) no particular logic interpretation, we will hedge
our bets about which rules this judgment needs to satisfy and collect some
requirements from our rules. Typing assumptions for variables now also
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become part of main sequent calculus judgment which, to be most general,
is still ordered.

YkHt:r X;QF[t/x]A Y,a:m;Qp (Ja/z]A) Qr - C
3R JL¢
Y QFder A ¥ Qp (Fzr. A) QpEC

In the left rule we introduce a fresh parameter a, which does not occur in
the whole judgment in the conclusion. We may omit the condition via the
general presupposition that the variables declared in a context X are all
distinct so that ¥, a:7 only makes sense if a is not yet declared in 3.

Because quantified variables are intended to occur multiple times in a
proposition, but also possibly not at all, the hypotheses in ¥ will be subject
to exchange, weakening, and contraction, that is, they can be used arbitrar-
ily often. Just as important is the substitution property, formulated here
has two admissible rules of inference

YFt:7 Y,athks:o Ykt Yar;QFC

STt als g subst S o ac st

We obtain the conclusion by systematically going through the proof of the
second premise and substituting ¢ for a everywhere.

With this background, how does cut reduction play out? Let’s write
down the cut where the right rule meets the left rule.

T D/ 5/
YkHt:r X;QF[t/x]A Y,a7;Qr (Ja/z]A) Qr F C
3
Y:QF3n7r A r ¥ Qp (Fxr. A) QpEC
Q00 FC

a

cutg; 4

We have already taken the liberty of writing ¥ in both premises of the cut:
we can always equalize them by weakening in order to bring them into this
form, if necessary.

We would like to reduce the cut on 3z:7. A to a cut on A. But this does
not work: D’ is a proof of [t/z]A and the antecedent in &’ is [a/z]A. Now
we remember that we were asked to choose a to be fresh, is, it doesn’t occur
in ¥ or 2, or A or Qg or C. So, for example, [t/a]C = C. With substitution
and these considerations we obtain

[t/a]E’
250 ([t/a]la/z]A) QrEC
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Now we only need to see that [t/a][a/x]A = [t/z]A, again because a was
chosen fresh and does not occur in A. In summary we then have:

T D/ g/
YhHt:7r X;QF[t/x]A Y,a:m; Qp (J[a/z]A) Qr - C
IR a
Y;QF3r A ¥ Qp (Fxr. A) QpEC
cutg;. 4
by N QL Q QR FC
D/ [t/a)E’
Y,QF [t/x]A X5 Qp ([t/z]A) Qr E C
cut[t/x]A
QR D Q, QQrEC

If we are counting characters then [t/x] A may be larger than 3x. A, butif we
consider the structure of propositions, then [t/x]A is a subformula of 3z. A.
We could also resort to just counting the total number of logical connectives
and quantifiers, which goes down since ¢ is just a term and may not contain
logical connectives or quantifiers.

2 A Computational Interpretation of Existential Quan-
tification
It should be intuitively clear that an application of 3R carries information,

namely the witness t. The computational interpretation of 3R therefore just
send the witness, while 3L receives it.

Ykt:r X;QFP:(y:[t/z]A)
Y;QFsendyt; P:(y:Jar. A)

iR

Y,am;Qp (y:[a/z]A) Qr b Qq : (2:C)
;0 (y:Jom. A) Qrlba<recva ; Qg (2: C)

3L¢

Operationally, all that happens is the term ¢ is transmitted from one process
to the other.

proc(y,send y t ; P) proc(z,a < recv x ; Qg)

3c
proc(y, P) proc(z,Qy)

The intention is to only execute processes with no free term variables, and
we can see that the computation rule maintains this invariant. This is sim-
ilar to the restriction that in functional languages we only execute closed
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programs. Also important is that there are no linearity or ordering restric-
tions on term variables z:7 or a:7. Since they stand for basic values such as
integers or strings, they can used freely and need not be used.

3 Universal Quantification

The universal quantifier is symmetric to the existential.

Y,a7; QF [a/x]A Yht:r X591 (t/z]A) QrtC
VR®
Y QFVer A ¥, Qn Vour. A) Qr = C

This is reflected in the cut reduction (see Exercise 1). The proof term assign-
ment reuses the same terms as for the existential, but the roles of provider
and client are reversed.

Yam; QF Py (y:[a/z]A)
YiQFa<recvy; Py (y:Vaur. A)

<C
=y
e

SkHt:r X;Qn(y:[t/z]A) QrFQ :: (2:C)
X0 (y:Vour. A) Qrt-sendy t ; P (2 : C)

VL

Computationally:

proc(y,a < recvy ; P,) proc(z,send y t; Q)

vC
proc(y, P;) proc(z,Q)

We can see that order is largely independent to the meaning of the quan-
tifiers, but we have to take care to treat variables structurally, that is, allow
them to be used arbitrarily often, in arbitrary order.

Identity expansion, as well as cut and identity elimination go through
as before. In the proof of admissibility of cut, we only have to remember
that [t/x] A is structurally a subformula of Vz:7. A and Jz:7. A.

4 Two Logical Examples: Quantifier Exchange

We give! two short logical examples which illustrate the quantifiers can be
exchanged in one direction but not the other. We use here an uninterpreted

! Actually, we skipped these during lecture; they are provided here as bonus material.
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type ¢ about which we make no assumptions.

V. Jy. Az, y)  Fy. Ve, Az, y)
Jy:. V. Az, y) F Vo Iy Az, y)

Note that A(x,y) is an arbitrary proposition, possibly depending on z and
y We start with the first example:

V. Jy. A(x,y) b Jy. Ve, Az, y)

At this point neither VL or 3R apply, unless we make as assumption about
the type «. Let’s assume it has at least one element a, which means we
rewrite the judgment as

a:t ; V. Jy. Az, y) By Vo, Az, y)

Now we have to make a decision whether to start on the left or on the right.
Both attempts will eventually fail to produce a proof—we show only one.

a: ; Jy:e. Ala,y) by Ve, Az, y)
az ; Vo Jy. Az, y) By Vo, Az, y)

VL

Next we use 3L, which is actually invertible so we don’t have to look for
other rules.

a:, b ; A(a,b) by Vo Az, y)
az; Jy. Ala,y) F Jyw. V. Az, y)
az ; V. 3y Az, y) F Iy Vo, Az, y)

3rb
VL

Looking ahead, we can see the only promising witness to pick for y on the
rightis a

a:, b ; A(a, b)' F V. Ala,y)
az, by Aa,b) F Iy Vo, Az, y)
a: ; Jy. Ala,y) By Ve, Az, y)
az ; V. Jy. Az, y) By Ve, Az, y)

3R
3rb
VL
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Using the VR rule however must pick a new parameter c. We cannot reuse
B. The resulting sequent therefore has no proof.

no rule applies
a:, b, ey Ala,b) F A(a, )

a:, by Aa,b) F Vau. A(a,y)
az, by Aa,b) F Iy Vo, Az, y)
ax ; 3y Ala,y) F Jyw. V. Az, y)
az ; V. Jy. Az, y) By Vo, Az, y)

IR
3rb
VI

This does not constitute a formal proof that the proposed entailment does
not hold, but with cut elimination (which does continue to hold) and refut-
ing all possible attempt, it would turn into one.

The provable example is more straightforward and we show only the
completed proof.

id

a:t,b:; A(a,b) F A(a,b)

a:t, b ; V. A(xz,b) F A(a, b)
a:t, b s Vo, Az, b) F 3y Aa, y)
ax sy Ve, A(z,y) F 3y Ala, y)
Jy:e. V. Az, y) F V. Iy, Az, y)

3rb
VRY

5 A Computational Example: Parallel Insertion Sort

As a computational example we will use a parallel form of insertion sort.
We add the elements of a list, one by one, into a priority queue and then
remove them in order.

pqueue = &{ ins : Va:int. pqueue,

del : @{none : 1, some : Jz:int. pqueue}}
We see that the quantified variables do not occur in our language of types.
This is because we have not yet introduced type families, which correspond

to logical predicates. When there is no such dependency, we simplify the
notation and write

7T—A = Vrit.A forxznotin A
TANA = FJri7.A forxznotin A
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The type of priority queues then looks slightly simpler.

pqueue = &{ ins : int — pqueue,
del : @{none : 1,some : int A pqueue}}

We have two process definitions: one to create an empty priority queue and
one holding an element n and a channel ¢ referencing the remainder of the
queue.

-3+ empty :: (p: pqueue)
n:int ; g:pqueue F elem :: (p: pqueue)
First, the definition of empty, which very much follows our previous imple-
mentation of stacks, queues, and stores.

-5 - Fempty :: (p : pqueue)
p < empty =
case p (ins =n < recv p;
e < empty ;
p<—elemn <+ e
| del = p.none ; close p)

For the definition of elem we indicate the dependence on a parameter n:int
by writing elem n on the left-hand side of the definition. We assume func-
tions max and min on integers.

n:int ; g:pqueue - elem :: (p : pqueue)

p<elemn <+ q=
case p (ins = k + recv p ;
g.ins ; send g (max n k) ;
p < elem (min n k) < q
| del = p.some ;send p n ;
p<q)

Even though we reuse the syntax for sending and receiving of channels,
sending and receiving of basic data values has a different semantics. In
particular, they are not subject to linearity or order even though this exam-
ple lies squarely within ordered logic. The fact that both n and & are used
twice in the ins branch is perfectly legal. The type checker, of course, will
know through the assigned type whether variables stand for data values
or channels. Current implementations track this more obviously by distin-
guishing channels syntactically from ordinary variables.
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To sort a list in ascending order, we add all the elements from the list
into the priority queue, and then remove them all. The lists are slightly
different from the lists before because they hold integers, not channels.

list = @{cons : int A list, nil : 1}

We have three process definitions: sort tieing everything together enqueue
which transfers the elements from the input list to a priority queue, and
dequeue which transfers the elements from the priority to the output list.

k:list = sort :: (1 : list)
(k:list) (p:pqueue) F enqueue :: (I : list)
p:pqueue | dequeue :: (I : list)

k:list - sort :: (1 : list)
l < sort <k =

p < empty ;

l < enqueue < k p

(k:list) (p:pqueue) - enqueue :: (1 : list)

l < enqueue < k p =
case k (cons = n < recv k ;
p.ins ; send p k ;
l < enqueue <— k p
| nil = wait & ;
l < dequeue < p)

p:pqueue - dequeue :: (I : list)

l + dequeue < p =
p.del ;
case p (none = wait p ;
L.nil ; close [
| some = n < recv p;
l.cons;sendln;
| < dequeue < p)

Let’s do a quick parallel complexity analysis. Our implementation of
priority queues is structurally the same as the previous implementation of
queues, stacks, and stores. Therefore, the reaction time for both insertions
and deletions is constant. To sort a list of length n we perform n insertions
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followed by n deletions, which gives O(n) throughput and latency for sort-
ing. The total amount of work is O(n?) since each insertion will take O(k)
work, where £ is the length of the list so far, while each deletion takes a
constant amount of work.

6 Structural Intuitionistic Logic

We now introduce plaing intuitionistic logic, with the structural rules of ex-
change, weakening, and contraction. First, we build in exchange with the
same technique as for linear logic: The collection of antecedents is consid-
ered as a multiset where the order of the antecedents does not matter. We
write I' = A for such a sequent in structural intuitionistic logic.

For weaking and contraction, there are two standard techniques. One
is to add the following explicit rules:

T'kC IAJAEC
m weaken m contract
These are structural rules and independent of what any particular proposi-
tion A might be.

There are two downsides to this simple and elegant formulation of
structural logic. One is that it introduces a lot of nondeterminism into proof
construction, since at any point we could decide to apply either weakening
and contraction. Contraction in particular is prolific, since it could be im-
mediately applied again, and again, etc. The other downside it that the rule
of contraction significantly complicates the proof of admissibility of cut.

An alternative approach is to build weakening and contraction into
the rules themselves. Weakening is incorporated by allowing unused an-
tecedent in the identity rule (and also the TR and _LL rules later; see Sec-
tion 6). Contraction is incorporated by propagating all antecedents to all
premises of multi-premise rules. We illustrate with id, cut and the rules for
implication A — B.

TFA T,AFC

i cut
T AFA 4 TFC 4
I AF B I'A—BFA T,A— B,BF-C
rrasp & T A— BFC —L

Notice in particular how the antecedent A — B in the —L rule persists
in both premises. This is in fact a good intuition for this formulation of
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the logic: antecedents are persistent, just as we had persistent propositions
when discussing logical inference. From the perspective of provability,
some of these antecedents are redundant. For example, in the second premise
of —L, the persistent antecedent A — B is no longer needed since we al-
ready have the strong assumption B. These kinds of optimizations often
interfere with our operational interpretation of the logic. Therefore, they
should be carefully considered in each situation rather than being built into
the very definition of the logic.

A first, important observation is that weakening is an admissible rule.
Moreover, the proof resulting from weakening has exactly the same structure
as the proof before weakening, because we only adjoin an extra unused
antecedent to every sequent. This means if we perform structural induction
over proofs, we can freely apply weakening and still apply the induction
hypothesis.

Theorem 1 (Admissibility of Weakening and Contraction)
.................... wea ken ELTTT TP P PP PP PPPPPPIT Contract

Moreover, in both cases the proof of the conclusion is structurally identical to the
proof of the premise.

Proof: Formally, by structural induction on the given proofs. For weaken-
ing, we adjoin an extra, unused antecedent A to every sequent in the given
proof to obtain the proof of the conclusion. For contraction, we replace ev-
ery use of either one of the two copies of A in every sequent of the given
proof by a use of the same, single A to obtain the proof of the conclusion. O

There are some new and interesting cases in the proof of admissibility
of cut. We show only two: a new case for the identity, and the principal
case for implication. As before, we write I' i= A for a cut-free proof of A
from I

Theorem 2 (Admissibility of Cut in the Cut-Free Structural Sequent Calculus)

THA T,AFC
THC

cut

Proof: By a nested induction, first on the structure of the cut formula A,
and second on the proofs D and £ of the two premises. The proof breaks
down into the same classes of cases as before: identity, principal, and com-
mutative cases.
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Case:

D ——  idp
IY,B# A arbitrary,and £ =1',B,A¥ B

where I' = (I, B). We need to show I'', B - B which follows by
idp. What is interesting about this case is that D is dropped entirely
because it proves an unused proposition A.

Case:
Dl 82 81
P,AQH_Al F,AQ-}AlH—AQ F,AQ-)Al,AlH—C
— >R —L
D:FH_A2—>A1 and & = F,AQ-)AlH—C

We need to show I'' H= C. We would like to cut & with D; and D; with
&1, but there will be an extra copy of A; — A; left over. Se we first
apply what is called a cross-cut, applying the induction hypothesis
to all of D and & and also &; to eliminate the persistent copies of

AQ — Al.

EL=TH Ay Byih.on Ay — Ay, D, and &
D =T,A1 - Ay — Ay By weakening on D’
E =T A1k C By ih.on Ay — Ay, D/, and &
Dl =TH A By ih. on Ay, &, and Dy
F=THKC By ih.on A, D}, and &]

d

Please make sure you understand why each appeal to the induction
hypothesis in this proof is justified.

There is not much more to say about the rules for the other connec-
tives. What may be interesting is that, logically speaking, the two forms
of conjunction A ® B and A & B “collapse” in that they are now logically
equivalent. However, computationally they can still be different, so from
an intuitionistic perspective we should be careful before eliminating one
or the other. We therefore avoid writing A A B for conjunction, prefering
A & B for the conjunction with the same notation in linear logic, and A x B
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for that corresponding to A ® B in linear logic.

I'-A T'+B A& B,AFC I'NA&B,B+C
— &R &I &Lo
'+A&B LA BFC A& BFC

'A T'HB IAxB,AB-C .

A teb o

I'AxB ILAx B+ C

Disjunction A V B is unsurprising and has the rules completely analogous
to the linear case for A © B, except for the persistence of the disjunction in
the VL case.

THA T+RB Ir'AvB,A-C T,AvB,B+C

—_— V —— VR VL
'FAvB ' THAvVB T AVBFC

Finally, the cases for T and _L, which are the units & and V, respectively.

— T
T R no T L rule

— 1L
no LR rule I'1LEC
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Exercises

Exercise 1 Show the cut reduction for universal quantification.
Exercise 2 Show the identity expansion for existential quantification.
Exercise 3 Show the identity expansion for universal quantification.

Exercise 4 Show two cases in the proof of admissibility of cut for quantifiers in
ordered logic.

1. The principal case for the cut formula 3x:1. A.
2. A commutative case for an 3L rule on a side formula of the cut.

Exercise 5 The parallel insertion sort in Section 5 uses the priority queue
in a restricted manner: first, it only inserts integers and then it only deletes
integers.

Create more precise types for enqueue and dequeue which enforce this
protocol. Under which conditions or rules do empty, elem, enqueue, dequeue
and sort type-check against these more precise types?

Exercise 6 Implement set of integers as binary search trees. Use the inter-
face

list = @{cons : int A list, nil : 1}

bool = ®{true : 1,false : 1}

tree = &{ ins : int — tree,
member : int — bool e tree,
to_list : list}

where to_list should create a sorted list in ascending order. The tree does
not need to be balanced. Also implement one additional binary operation
on trees such as union or intersection.

Exercise 7 We reconsider the principal case for Ay — A; in the proof of ad-
missibility of cut in structural intutionistic logic. Try to apply the induction
hypothesis first to & and (a weakened form of) D; and then to (a weak-
ened form of the result) and &;. Then eliminate the extra copy of Ay — A;
from the result with another appeal to the induction hypothesis with D.
Poinpoint exactly where this argumentation goes wrong.

Exercise 8 Prove the principal case for A; x A in the proof of admissibility
of cut for structural intuitionistic logic.
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Of Course!

15-816: Substructural Logics
Frank Pfenning

Lecture 15
October 20, 2016

In this lecture we combine structural and substructural intuitionistic logics
into a single system, using the previously discussed device of shift modal-
ities to go between layers. This is the idea behind Benton’s LNL [Ben94],
who basis his constructions on the categorical concept of an adjunction.

As we have already seen, the idea is quite general. In this lecture we
will restrict ourselves to the structural and linear fragments, leaving other
considerations such as ordered, affine, or strict logics to a future lecture
in order to reduce it to its essentials. From our approach the exponential
modality !A (read: of course Al) of Girard’s linear logic [Gir87] will arise
naturally as a composition of two shifts.

We will also resume our analysis of the operational interpretation of
shifts, to see specifically what happens in the context of LNL.

1 Combining Linear and Structural Logic

Our starting point quite straightforwardly follows the approach laid out in
Lecture 12. We have two separate layers of propositions, connected by two
shifts. We use U (suggesting unrestricted) for the structural mode and L, as
before, for the linear mode. We have, by definition U > L since U admits
exchange, weakening, and contraction while L admits only exchange.

Structural A, == ...|A, = By |1 AL
Linear A u= A — B | A

The independence principle states:

A structural succedent may not depend on a linear antecedent.
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We can make this explicit by allowing only the following two judgment

forms:

It is possible to separate the antecedents into two zones since both modes
admit exchange. From now on we will use I' only for structural antecdents
and A only for linear ones, so we can omit the subscript.

To begin with, we obtain the following rules of identity and cut. The
phenomenon of obtain three cut rules should be familiar from Lecture 12.
As we pointed out there, they can be unified into a single rule using adjoint
logic [Ree09].

— idy — id,
A, - Ay I'; ALF AL
I'HA, T,AFCy I'HA, T,A;AFC,
cutyy cuty,
L'kCy I:AFC,

;ARA T;AVA G
F;A/7AI_C|_

cut,

As pointed out in the last lecture, the presence of weakening and contrac-
tion allows us to view structural antecedents as persistent, so they are prop-
agated to all premises of each inference rule.

The next question are the rules for the shift modalities. They follow ex-
actly the same pattern as before, with a small twist to incorporate the per-
sistence of structural assumptions in the 1L rule. They are entirely based
on the independence principle, which is built into the formulation of the
judgments themselves.

r;-=A FaTEAL;AvALl_CL
— 4R 1L
T YA, T,1YA ;A C,

'+ Ay R TVA ; AFCL
Ly F YAy U5 A A C

The resulting system enjoys all the important properties such as admissibil-
ity of cut and identity and cut elimination. At the interface between the two
judgment there is one instance of a cross-cut when 1R is matched against
1L. We dispense with the details since there are no particular new ideas to
be conveyed.
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2 Operational Interpretation of Shifts, Revisited

Before we dive into the operational interpretation of the full structural com-
ponent of this combined logic, we look only at the shifts. The TR and |L
rules are invertible, that is, they can always be applied when the proposi-
tion 1A, appears on the right or | A, appears on the left. This means these
two rules will receive while 1L and | R will send. What they send and re-
ceive is an indication to shift to a new mode of communication. Before,
when we shifted, we re-used the same channel. This is no longer possible
now because in the 1L rule the persistent channel remains. First, the proof
term assignment.

I';-FPy(y: A
'y« (L)zy; Py (zy s 1A

L(zy : VAD) A (y s A F Qy = (20 : QL)
I(zy : VAD) s ARy (L)zy 5 Qy = (20 CL)

In the synchronous communication rule we mark a process offering along
a persistent channel itself as persistent. This is because this process may
have multiple clients (inclding in @Q,!), so we cannot evolve it, but we can
spawn a fresh linear copy offering along the new channel w, .

proc(zy, y. < (L)xy ; Py) proc(z, y. < (L)xy ; Qy)

'R

proc(wy, Py) proc(z,, Qu)

It is even more obvious in the synchronous version that the persistent pro-
cess must receive, otherwise it could continuously spawn new messages!

proc(z, y. < (L)zy ; Qy)

msg(wy, y. < (L)zy 5w < y)  proc(z, Quw)

TC"% _send

proc(zy, y. + (L)xy ; Py) msg(we, yo < (L)zy 5 we < y)

1C" _recv
proc(w, Py)
The rules for | A reverse the roles.
't Py (yo: Ay)
u R
' Fyg (U Py (z0 s 1 Ay)
Lo(yo: Av) s AFQy = (20 : C)) "

L5 A (2 A F oy < (U Qy i (20 CL)
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In the operational semantics we create a persistent process.

proc(z, yy < (U)zy ; Py) proc(z, yu + (U)x ; Qy)

1Ok
&(MU7 Pw) prOC(ZL7 Qw)

Here, the first process sends the persistent channel, as we can see from the
asynchronous version of the semantics.

proc(zy, yy + (U)z ; Py) proc(z, yu < (U)x ; Qy)

JC%_send
proc(wy, Py) msg(ze, yu « (U)zL 5 yy < wy)

msg(xy, yu  (U)x 5 yy < wy)  proc(z, yy < (U)x ; Qy)

JC% _recv
proc(zL, Qw)

3 Example: Map

As we have seen in Exercise 10.2 of Lecture 10, it is possible to define con-
current versions of map and fold using recursive types. Another natural
approach is to allow the transformer that is mapped over a list to be persis-
tent. We abbreviate 1’4 as 1A and similarly for |’ A since in this lecture we
only consider structural and linear modes. We leave linear channels undec-
orated and write z,, for unrestricted channels which can be used arbitrarily
often.

list4 = @{cons : AR lista,nil : 1}
fu:T(A — B); k:listg = map :: (I: listg)
l—map —Fk f, =
case k (nil = wait k ; l.nil ; close
| cons = ...)

We already took advantage here of weakening: f, is not used in the nil
branch of map. We will need it twice in the cons branch: once to apply to
the element, and then pass it on to be mapped over the rest of the list.
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list4 = ®&{cons: A ® listy,nil : 1}
fu: (A — B) ; kilisty - map :: (1 : listg)

l<map <k f, =
case k (nil = wait & ; [.nil ; close [
| cons = x < recv k ;
y< (Lfos % yA—B
send y x ; % y:B
[.cons ;send | y ;
l < map <k f,)

Below is a slight different style of expressing this computation proposed in
lecture. It uses library processes for nil and cons. Here, the call to map is
not a tail call. This means, without any further optimizations, it will spawn
a new process and therefore it is likely less efficient. We don’t particularly
care at this point about low-level efficiency or even how many processes
are spawned, but it is still worth noting this difference.

list4 = @{cons: A® lista,nil : 1}
~Fomil (1 lista)
x: A, k:listg = cons :: (1 : lista)
Ju:T(A — B) ; k:listg - map :: (1 : listg)
l<map «+—k f, =
case k (nil = wait k ; | < nil
| cons = = < recv k ;
y<+< (Lfus % yA—DB
send y x ; % y:B
'« map < k fy ;
l + cons + ' y)

As a sample mapping function we write one that turns an element into a
singleton list.
x: A+ singleton :: (I:list4)
l + singleton < x =
n <« nil ;
[ < cons < xn
-+ map_singleton :: (f,, : 1(A —o list4))

fu < map_singleton =
Y (L) fus
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T 4— recv y ;
y < singleton < x

4 Of Course!

In Girard’s linear logic [Gir87] there is no explicit structural layer, but we
have a so-called exponential modality ! A (pronounced “of course A” or some-
times “bang A” to allow an A to be used multiple times. Briefly, Girard
started from the idea that the intuitionistic function space A — B could be
decomposed into a modality and a linear function space (!A) — B. This
idea of a fine-grained analysis of computation while retaining the means to
express all the prior functions also pervades this course.

We arrived at this idea following a different path. Rather than decom-
posing existing languages, we have started from a substructural point of
view and added various liberties. Starting from this direction we notice
that !4 ~ |1/ AL. In the (intuitionistic) version of Girard’s logic, we have
the following inference rules pertaining to the exponential modality.

ALC ) AAARC
—_— ———————————— contrac
AAE c e AAFC
IAFA AARC
! Sy
TNV AAFC

Here we use !A is stand for a collection of antecedents all of whose propo-
sitions have the form !A. While there are many interesting semantic ap-
proaches to understand this and its classical counterpart, the proof theory
and the cut elimination proofs are not nearly as elegant as for the substruc-
tural approach we have followed here. Some notes on prior work can be
found in [Pfe94, CCP03].

Using the expansion of !4, = |1 A, we can validate all of the rules above
by showing that they are admissible. For example:

dy

dy

— i —_—
AF 1A AF 1A
TAFT IR TAFT IR
TA;-F14 TA;-H1A "

TA; - HIA®IA “ SAAIARC
L ®L

GIAFIA®IA SAARIARC
t

AJAFC “
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Because of several standard embeddings of structural intuitionistic logic in
linear logic [TCP12], this means that in a certain sense we do not need the
full structural layer in what we have discussed. It is sufficient to just have

Structural A, == 1 A,
Linear A u= A — B | /A

and the rest is a question of pragmatics: how easy or difficult is it to program
certain algorithms in the resulting language as compared to coding them
when the structural layer is more complete.
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Exercises

Exercise 1 Implement the operation of fold from Exercise 10.3, but with
fold a persistent process analogous to map in Section 3.

Exercise 2 Show that all the rules for intuitionistic linear logic using !A are
derivable or admissible in the combined structural/linear logic using the

definition of ! A as |1} A,. Give a derivation of the rule where possible.

Exercise 3 Prove thatif - A, and A, uses |1 as its only modality, then it
is provable in linear logic under the rules in Section 4.
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Lecture Notes on
Computation in Structural Logic

15-816: Substructural Logics
Frank Pfenning

Lecture 16
October 25, 2016

In this lecture we attempt to extend our computational interpretation of
ordered and linear logic to include structural logic (all of these being intu-
itionistic, of course). This completes what we started in Lecture 15, Section
2 where we provided an operational semantics only for the shift operators.
Our analysis will turn out to be different from the usual, celebrated
Curry-Howard isomorphism between intuitionstic logic and the simply-typed
A-calculus [How69]. There are two reasons for this divergence. For one,
and perhaps most importantly, we are working here with a sequent calcu-
lus instead of natural deduction. This means that the engine of compu-
tation is cut reduction, instead of the usual substitution. Cut reduction is
a local transformation on a proof and proceeds in very small steps. You
may remember the slogan of cut reduction as communication. In natural de-
duction, substitution is the engine of computation which is a much more
global, “big step” operation. These two have been related in the past, most
notably perhaps is Herbelin’s analysis [Her94]. One new ingredient here is
the explicit presence of concurrency, and that integration of ordered, linear,
and structural computations.
Disclaimer: This lecture very much represents my very recent understand-
ing of the state of affairs, based mostly on intuition without any carefully
formulated, much less checked proofs.
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1 Structural Intuitionistic Logic
We are aiming at the following combined system.

Structural A, == py| Ay = By| Ay & By | Ay x By | 1| Ay + By | 1AL
Llnear AL = pL‘AL_OBL|A|_&B|_ ‘AL®BL |1|A|_®B|_ ‘\LEAU

We already treated the linear mode and the shift modalites, although a
slight update will be necessary. So today we focus on the structural layer
only. Because of that, we will omit the subscript U and just write A, B, etc.
We begin with A x B. It seems odd that our structural logic contains
both A x B and A& B. Indeed, it turns out that they are logically equivalent
in the sense that A x B+ A& B and A & B+ A x B. But they behave very
differently operationally, so it may be worthwhile to support both.

'+A T+B INAxB,ABFC
—— — — xR x L
I'-Ax B I'N'AxBFC
I'-A T'+B A& B,ARC I'NA&B,B+C
o5 & &Ly &Ls
I'-A&B LA BFC MA&BFC

Since antecedents persist, the two right rules for A x B and A & B coincide!
This should raise a red flag, but the presence of weakening and contrac-
tion allows us to verify harmony for each of the connectives despite the
differing left rules. This exemplifies a lesson I learned after many years
of working in this field: the presence of structural rules makes observa-
tions “fuzzier”, systems less crisp, and allows one to get away with some
things that are not as elegant as one would like. This is one reason that I
am teaching this course now and start with the weakest logic I could eas-
ily make sense of (subsingleton logic), working my way up to the present
point (combined structural and substructural logics).

The next point will be to derive a one-premise right rule for A x B. As
a reminder: we do this here (and also for A — B in Section 3) so that the
spawning of new processes is limited to the cut rule, which is a significant
simplification of the operational semantics. We can go back and forth be-
tween the one-premise and two-premise rules, using cut in one direction

LECTURE NOTES OCTOBER 25, 2016



Computation in Structural Logic L16.3

and identity in the other.

I''A+-B
— X R*
I''AFAXxB

I'-B "

7F,A|_Bwea en

— XR* —— idy
'-A I'NAFAXB rAr A I''A+B
cuty xR
I'Ax B I''AFAxB

2 Assigning Process Terms to Proofs of Positive Propo-
sitions
Next, we have to design a process assignment. Experience dictates that we

should try the sending rule first. By analogy with the linear logic, where
®R sends, here, x R should send.

DwAFP:(z:B)
X
Fw:Aksendzw; P (z: Ax B)

*

Persistence of antecedents implies that even though we send w along =, we
also retain w. The left rule is more complicated: in the premise, we have to
figure out how to label the new antecedent A and B. Previously, we would
have written z: B, but now we need to retain x: A4 x B since it may continue
to occur in @), so we rename it to z’.

I 2:Ax Byy:A,2:B+Q :: (2: C)
X
I2:AX BE (y,2') < recve; Q:: (2: O)

This means we actually receive two channels: y: A, corresponding to w that
is being sent, and a continuation channel 2’: B. In the end, though, perhaps
it is not too surprising that z:A x B will send both a y:A and an z’: B. Both
of these, together with 2 and also z can occur in ). We have chosen not to
display this dependence explicitly but rely on the judgment in the premise
to express this information.

Now, however, we should be concerned with a mismatch: x R* appears
to send only one channel (namely w) while xL expects two. But during
asynchronous communication we also have to create a new channel z’ to
represent the continuation of the process, so that

send z w; P~a' < [2//x]P; (send z w ; x + )
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Using this as a guidance, we get the following rule which introduces a new
continuation channel ¢ and substitutes this for = in P.

proc(x,send z w ; P)

x C'_send®
proc(c, [c/x]P) msg(z,send x w ; x < ¢)

The message reads: send w along x and continue as c. So we do indeed have
two channels for the recipient, even if one is not explicit in the syntax of the
sender.

msg(z,send z w ; x < ¢) proc(z, (y,2’) < recv z ; Q)
proc(z, [¢/x][w/y]Q)

Ah, we have ignored one important aspect here: these rules are written as
if all communications are linear. But they are not! The original channel
x : A x B along which we offer may have multiple clients. This seems okay
when the message is sent (since now msg(z,...) provides along z), but it
becomes problematic when the message is received. In order to avoid that
other clients of z to be left dangling, we make this message persistent.

xC _recv

proc(x,send z w ; P)

xC'_send®
proc(c, [c/x]P) msg(z,send z w ; x + c)

msg(z,send x w ; x < ¢) proc(z, (y,2) < recv z ; Q)
proc(z, [¢/z][w/y]Q)

The processes themselves proceed with their continuations P and @, after
some channel substitution, after the persistent message has been sent or
received, respectively.

We next consider disjunction as another positive proposition, A + B
(usually written as A vV B) or, as a more convenient type, +{l; : A;}icr.
First, logically:

x C _recv

'+ A r, —|—{li : Ai}iela A, -C (fOI' alli e I)
+ Ry, +L
I'E4+{li s Ai}ier Iy4+{l;: Aibier FC

Again, judging merely from the perspective of provability, the antecedent
+{l; : Ai}ier is redundant, but we adhere to the principle of persistence of
antecedents in structural logic. The process terms look quite similar to the
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rules for linear @, but we have to account for the continuation which we
call 2’ in the rule.

CEP:(x: Ag)
Thaly; P(xv:+{l;: Aitier)

+ Ry

F,I‘:—i—{li : Ai}i617x/:Ai FQ;:: (Z : C) (fOI' alli e I)
Dyz:4+{l; : Aitier b case z (1;(2") = Qi)ier 2 (2: C)

The computation rule follows the previous pattern: since the offer is along a
persistent channel, we create a persistent message and a fresh continuation
channel c.

proc(x, z.ly, ; P)

+C _send”

proc(c, [c/x]P) msg(x,z.ly ;  + c)
Receiving the message will select the correct branch and also substitute the
continuation channel ¢ for 2.

msg(z,z.l), ; x < ¢) proc(z,case x (I;(2') = Qi)ier)

proc(z, [¢/a']Qr)

We do not need to mention the message in the conclusion since it is persis-
tent. Persistence is again critical since there may be many clients of « and
we cannot leave them dangling without a provider. One of these clients
could be @y, itself since it may depend on z. As was noted in lecture, this
dependence on @), in z is not strictly necessary, but it is sometimes conve-
nient.

As the last positive proposition we have 1. The only novelty here is that
we have no continuation.

+C'_recv

T,1+-C

1 -1
R T,1-C

— L
I'+1

The left rule looks like a typo, but it is not. The principal formula of the
inference persists, but no other antecedents are generated. Operationally, it
may make a little more sense.

FelEQ:(z:0)

1R _ 1L
I'Fclosex :: (x:1) Mzlkwaitz;Q:(z:C)
proc(z, close x) msg(z, close z) proc(z,wait z ; Q)
——  1C_send 1C _recv
msg(x, close x) proc(z, Q)
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This means potentially many clients can check that a persistent provider
has terminated by closing its persistent channel. There does not seem to
be much point to allow this in ), but we should be careful and find a
good proof-theoretic justification for omitting x:1 in the premise before we
change our rules.

Now we can think about the meaning of purely positive types, such as

list4 = +{cons : A x listy,nil : 1}

We see a parallel with functional programming here: any datatype decla-
ration with eager constructors and no embedded functions are represented
here as a purely positive recursive type. The labels of the sum represent the
constructors.

Image we have a process P :: (z : list). If it runs to completion, if will
asynchronously send a number of persistent messages. For example, if P
sends messages corresponding to the list [a, b], they would look like:

msg(z, z.cons ; T < 1)
@(wl,send x1a;x] 4 T2)
msg(xe, Te.cONS ; T — T3)
@($3, send x3 b ; x3 < x4)
msg (x4, xq.nil 5 x4 < x5)
@(%,close x5)

We can see that this is an explicit linked list representation of the list, where
channels act like pointers. These messages are persistent, which means
multiple clients can access this data structure, simultaneously in multiple
places. It is important however that is is immutable, where receiving a mes-
sage is synonymous with reading the associated data.

In some sense this is a somewhat wasteful representation. We could for
example, construct longer messages which would be outside of our cur-
rently envisioned grammer of what messages are. For example, to repre-
sent all of these in one big message, we could have

msg(z, z.cons ; send x a ; x.cons ; send x b ; z.nil ; close x)

However, contrary to what I said in lecture, such compact representations
are actually more difficult in structural logic since they preclude direct ac-
cess to the middle of these blocks, or they require new messages to be cre-
ated when one is received. In the linear case, this would be less problematic
than here.

Nevertheless, there is a logical technique called focusing that may justify
big blocks of messages. In fact, focusing will be the subject of the next few
lectures in this course.
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3 Assigning Processes to Proofs for Negative Proposi-
tions

The negative propositions in the structural fragments are A — By, 1) Az,
and Ay & By . The pattern for 1Ay, in the last lecture was different from
what we saw above for positive connectives. Essentially, a persistent pro-
cess of type 1A just waited to receive a shift to a fresh linear channel ¢ and
then spawned a fresh copy of itself which offered along c. When we had
only one proposition in the structural layer, this was sufficient. Here, we
have to ask how we obtain a persistent process in the first place. Not every
process can be persistent, since processes, whether they offer along a per-
sistent channel or not, must be able to make progress in their computation.
As far as I can see, this problem is best solved by having another type of se-
mantic object in addition to proc and msg which is a persistent service srvc.
We may view msg and srvc as duals, where msg sends while srvc receives.
But, first, the one-premise version of the usual rules.

T AF B T A, A— B BFC
rrasp o raiasprc Ok

When assigning process terms, sending is somewhat tricky. We have to
send a w:A along a channel 2:4 — B and also a continuation channel z’: B.

Mw:Ax:A— B2 :BFEQ:: (2:C)
Mow:A,2:A— BFa' < sendzw; Q:: (2:C)

—L*

The syntax here might suggest that we pass w to z and receive an 2/, but
sending is actually asynchronous and we send a continuation channel for
z’ as well. We can then later communicate along that new channel to com-
municate further with the recipient process. The right rule is simpler by

comparison.
Iy A-P: (x:B)

'y<«recvaz; P:(x:A— B)

—R

Computationally, receiving along a persistent channel with potentially many
clients means that we create a persistent service.

proc(x,y < recv x ; P)

—C _srvc
srve(z,y < recv x ; P)
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Now send and recv use a linear message.

proc(z, 2’ < send z w ; Q)

—C _send®
msg(c, ' +send z w ; ¢ + 2') proc(z, [¢/2']Q)

srve(z,y < recv x ; P) msg(c, 2’ < send z w ; ¢ + )
proc(c, [¢/x][w/y] P)

We leave &{l; : A;}icr to Exercise 1.

—(C'_recv

4 Examples: Map and Finite Differences

We use two simple examples to illustrate programming. The first is to map
a process of type A — B over a list. The second computes a list of differ-
ences between elements of a given list.

list4 = +{cons : A x listy,nil : 1}
f:A — B, k:listg - map :: (1 : listg)

l<map <+ f k=
case k (nil(k1) = wait ky ; [.nil ; close [
| cons(k1) = (x, k2) < recv ky
y <« send f x
l[.cons ;send |y
[ map < f k)

For the second example we use the type of integer lists and an existen-
tial quantifiers Jx:int. intlist, abbreviated as int A intlist. Note that it satisfies
the same rules as A x B, except it sends an integer instead of a channel of
type A.

Our example takes a list of integers and computes the list of differences
between successive integers, which will be one element shorter unless the
given list is already empty. We avoid further syntactic sugar, which should
not be too difficult to imagine.

intlist = +{cons : int A intlist, nil : 1}

k:intlist = diffs :: (1 : intlist)

I diffs — k=
case k (nil(k1) = wait &y ; [.nil ; close
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| cons(k1) = (y, ka) < recv ky ;
case ko (nil(ks) = wait k3 ; [.nil ; close [
| cons(ks) = (z, ka) < recv ks ;
l.cons;send ! (z —y) ;
[ + diffs + k2))

A key aspect of this example, which makes it non-linear, is that the re-
cursive call to diffs is passed kg, which is the tail of k, rather than k4, which
is the tail of the tail (and which is is ignored). This structure arises because
we look ahead one element in the list to compute the difference.

5 Upshift, Revisited

In the more general setting of this lecture, we revise the computation rules
for the up modality slightly, taking advantage of the srvc predicate.

proc(z, y. < (L)zy ; Qy)

msg(wy, y. < (L)zy 5w < y) proc(z, Quw)

TC" _send

proc(zy, y. + (L)zy ; Py)

1TC _srvc
srve(ay, g = (L)ay 5 Py)

srve(zy, yo + (L)zy ; Py) msg(wy, y < (L)zy 5w < y)

TC" _recv
proc(w, Py)
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Exercises

Exercise 1 Give the process term assignment and computation rules for
&{l; : A;}icr in structural logic.

Exercise 2 Prove the logical equivalence between A& B and A x B in struc-
tural logic. The write out the processes

p:A& Bt back:: (q: Ax B)
¢:A X Bt forth:: (p: A& B)

where A & B = &{inl : A,inr : B} and the proof term assignment and
computation rules come from Exercise 1.
Can you say succinctly what these two processes do?
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Lecture Notes on
Chaining

15-816: Substructural Logics
Frank Pfenning

Lecture 17
October 27, 2016

In this lecture we return to the basics of logics: how do we organize efficient
proof search? This question was the origin of proof theory and it remains a
central one, even if the questions around proof reduction have obtained a
comparable status.

What are the key papers in history of proof theory? I am not a histo-
rian, but Frege [Fre79] seems to have initiated the formal study of math-
ematical proof, and Hilbert [Hil05] the study of the structure of proofs to
show that certain axiomatic systems are free from contradiction. A major
milestone was Gentzen'’s dissertation [Gen35] in which he introduces nat-
ural deduction, the sequent calculus, and cut elimination (his Hauptsatz)
from which consistency follows easily. The discovery of the Curry-Howard
isomorphism between intuitionistic natural deduction and the typed A-
calculus [How69] was a central discovery by establishing a strong connec-
tion between programming notations and constructive logic. On the side of
proof search, Andreoli [And92] introduced focusing for linear logic [Gir87],
which provides a much deeper understanding of proof search than either
natural deduction or the sequent calculus. Focusing has proven as univer-
sal as cut elimination and eventually reshaped our understanding of proof
search. It has also provided us with significant insights into computation
based on proof reduction.

We will cover focusing in this and the next lecture, although it will come
up throughout the remainder of this course.
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1 Inversion, Chaining, and Focusing

Focusing can be seen as arising from two tightly coupled but complemen-
tary observations about proof search. The first, perhaps most easily un-
derstood, is that certain rules in the sequent calculus are invertible, which
means that the premises can be proved if and only if the conclusion can be
proved. If we see an opportunity to apply such a rule when constructing a
proof in a bottom-up way, we can always safely do so. Actually, Andreoli’s
notion of asynchronous connective [And92] is slightly more refined because
it abstracts away from the particular way in which we write the rules. Be-
cause of an unfortunate clash of terminology with concurrency theory, we
just refer to asynchronous connectives as negative. A connective is negative
if we can always decompose it via its right rule, independently of the rest of
the sequent. For example, A & B is negative, because whenever we are con-
fronted with the goal of proving €2 - A& B we can break this down into the
subgoals 2 - A and 2 - B without thinking or pausing. If there is a proof,
there will be one ending with the &R rule. On the other hand, A e B is not
negative because, for example, a cut-free proof of Ae (Be () (AeB)e(
must end in a L rule. Remarkably, connectives that are not negative turn
out to be positive in the sense that we can always decompose them with a
left rule when they appear as antecedents, independently of the rest of the
sequent. There are other ways to define positive and negative connectives
(see, for example, Zeilberger [Zei09]).

Chaining is a somewhat less obvious concept. Let’s call a sequent sta-
ble if it contains only negative antecedents and positive succedents, which
means that none of its propositions can a priori be decomposed. When we
have reached a stable sequent we have a choice between whether to apply
a right rule to the succedent or a left rule to one of the antecedents. Chain-
ing says we can make this decision and then continue to apply right or left
rules on this particular proposition and its subformulas as long as they re-
main positive (on the right) or negative (on the left). For example, we may
be trying to prove

QF(AeB)® (C® D)

for negative propositions A, B, C, and D. Because @& is positive, we may not
be able to apply a right rule, but if we decide to do so we can decompose
this all the way to prove one of Q - Aor QF BorQF CorQF D. Wedo
not have to pause and consider a left rule for an antecedent after applying
@R once.

Chaining can be considered independently of inversion: during proof
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search we can decide to focus on a particular positive succedent or negative
antecedent even if the sequent is not stable. We can then continue to focus
on its subformulas as we continue in proof search.

Inversion and chaining can be applied independently during proof search.
Proofs which satisfy both strategies are called focused.

2 Capturing Chaining

A pervasive theme in proof theory is to capture strategies of proof search
as deductive calculi. In fact, the sequent calculus was devised by Gentzen
as a way to capture proof search in natural deduction. This approach has
many benefits, most importantly perhaps that theorems about proof search
strategies can be stated and proven without reference to an explicit external
language of strategies. Instead, it often turn out (as it will here) that key
properties become internal properties of a deductive system and therefore
become subject to the battery of techniques from proof theory.

In this lecture we are interested in calculi that are more restrictive than
cut-free, identity-expanded proofs. This means, proofs contain no appli-
cations of cut and the identity rule is only applied to atomic propositions.
Unless otherwise stated, you should assume this for all deductive systems
in today’s lecture.

At a high level of abstraction, natural deduction arises from a single
judgment, that of truth, and a single judgmental concept, that of hypothet-
ical judgment. Sequent calculus arises when we introduce a distinction be-
tween antecedent and succedent, leading to two judgments still connected
by a hypothetical judgment. Chaining arises if we have three judgments:
antecedents, succedents, and propositions in focus. We also need a further
principle, namely unicity: there can be at most one proposition in focus.
We have already seen unicity in singleton logic and (implicitly) in all other
calculi since there can be at most one succedent in a sequent.

Before we write down the judgments, we commit to the polarized form
of the logic we have already seen in Section 3 of Lecture 13 where we used
it to characterize communication behavior. You might recall that processes
of positive type send while processes of negative type receive. Moreover,
any polarization A* of an ordinary proposition 4 is provable if and only if
Ais.

Negative A~,B~ u= p |ATY\ B~ |B~ /At | A~ & B~ |1A"
Positive AT, BT = pT|AteBT |AToBT|1| At @Bt ||A™
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The considerations above mean that only a positive proposition can be in
focus as a succedent, and only a negative proposition can be in focus as an
antecedent. We have three forms of judgment, where we write [A] for a
proposition in focus. When we do not indicate the polarity of a proposition
it can be either positive or negative.

Q- A
Q I [Cf]
Q, [Af] Qr I C

As a shorthand, we write Q for Q or Q, [A7] Qg and C for C or [CT]. We
maintain the following presupposition for all judgments:

There is at most one proposition in focus in any sequent.

The right rules for negative propositions or left rules for positive proposi-
tion can be applied at any time and are not subject to focus. For example:

AT QIF B~ R QLABQRH—é
—_— [
§||—A+\B_ QL(AOB)QRH—é
0 + Qr A QplIFC
SLLIELARS S L
Q1A+ O (A7) Qp - C

To enter a phase of chaining we pick an arbitrary proposition of the correct
polarity and put it into focus. This is a judgmental rule in the sense that it
does not depend on any particular logical connective.

— focus™ — focus™
QA+ 0, A= Qp - C

Once a proposition has been focused on, we can apply right and left rules
to them. We show some sample set of rules.

Q Ik [AT] Qg - [BY] QIF[AT] Qp[B7]QrlFC
R
Qp Qp k- [AT e BH] QL QAT \ B QplFC

In each rule, the subformulas remain in focus. This is one reason why in
AT\ B, Ais positive while B is negative. We must lose focus when we
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encounter a shift since it changes to a polarity which cannot be under focus
in the given position.
QIFA R QLA+QRH—C
QI [1A7] Qr [TAT] QpIFC

A few rules deserve special mention. 1 is positive, and therefore has fol-
lowing two rules.

Qr QrIFC

1R — 1L
- [1] 0, 10IFC

Note that an attempt to prove 2 I [1] simply fails if € is not empty.

Next we consider identity, which we a priori restricted to atomic propo-
sitions. Atoms may be either positive or negative, which means they can be
in focus on the right or on the left respectively. From these considerations,
we obtain:

- -
G S T
A remarkable property is that a proof attempt that is focused on a posi-
tive atom p* will simply fail unless the collection of antecedents consists
of exactly p~. Similarly, a proof focused on p~ will fail unless it is the only
antecedent and the succedent is exactly p~.

We also note that when applying rules like o R and \ L one has to decide
how to split the antecedents between the two premises. We will introduce
a general mechanism called resource management for reducing this form of
nondeterminism in a future lecture.

3 Example: Parsing Revisited

We will see that chaining can be remarkably restrictive when we consider
how to perform proof search. Our example comes from the Lambek calcu-
lus, where proof search corresponds to parsing.

We will try to parse Alice likes Bob here. Recall from Section 5 of Lecture
1 that parsing requires us to prove s, which represents a sentence.

Alice likes Bob  here
n n\(s/n) n s\s F7:s
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We could start at the beginning of the sentence to combine Alice with likes
or at the end of the sentence to reduce to problem of parsing the whole
sentence to parsing Alice likes Bob as a sentence. Let’s see how these two
tirst steps work out without chaining.

(Alice likes) Bob here Alice likes Bob

id

id

nkn (s/n)n(s\s)l—s\L nn\(s/n))n ks SI—S\L
nn\(s/n)n(s\s)ks or n(n\(s/n)n(s\s)ks

With chaining, we can restrict the proof search such that only one of these
will be possible.

To start with, we have to polarize the proposition. We pursue two op-
tions: one is where every atomic proposition is positive, and one where
every atomic proposition is negative. We can also hedge our bets and make
some positive and some negative (see Exercise 2).

First, we label all atoms as positive and insert the minimal number of
shifts to obtain a properly polarized proposition.

nt T\ (15T /nT) T (sT\1sT) Ik sT

At this point we can not, for example, focus on st \ Ts. If we try:

fails: no rule applicable :
nt (0t \ (5T /n)) nt I [s1] [1st] I st

nt (nt\ (15t / n) nt [sT\ 15T st

nt P\ (tsT /nT)) nt (sTATsT) I 5T

focus™

In the first premise, no rule is applicable since the atom s is in focus, but
the antecedent is not just s. The second premise would actually be prov-
able after one more forced step.

We can try each possibility, but they all fail immediately, leaving only
nt\ (TsT / nT). We show the full phase of focusing, until we close each
branch or no proposition is in focus any longer. You should verify, that
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these are the only possibilities.

_ st (st \+5+) - st
o ] e (7 \ 1e) st
e Iy P e pves Y
W\ (st /)] nt (7 \ 1s7) I st

nt (n\ (15T /) nt (sT\sT) I st

focus™

At this point we can once again only focus on one antecedent, namely s \
tsT.

st Ik st
——idt —————
sTIF [sT] [tsT] IF st

st (st \ tst) Ik st

focus™

We can now complete the proof by finally focusing on s* on the right.
.d+
st [st] |
st - st
——idt —————
sTIF [sT] [tsT] IF st

st (st \ tst) Ik st

focus™

focus™

Alternatively to this whole proof, we now make all atomic propositions
negative and insert the minimum number of shifts to the result is well-
polarized.

ne (4 \ (s /dn ) n (bs™ \s7) ks
As you should verify from the rules, the only possibility here is to focus on
1s7 \ s7; all other propositions we either cannot focus on at all (like s~ on
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the right), or will fail quickly without the focusing phase completing.

= (In=\ (s / 4n7)) n™ Ik 5

o — M id
n” (In=\ (s™ /In7))n~ Ik [Is7] [s7] ks \Z
U\ ) e e e

n” (In \(s/In7))n” (ds™\s7)IFs™
At this point, only the focus on {n~ \ (s~ / n™) will succeed. The focusing
phase will build this partial proof:

n~ lFn~

: — - —— id”
nlbns 0 = [Jn~] [s7]1F s L
n~ Ik [{n7] [s7 /In7]n"IFs™

n~ [In \ (s~ /In")|n" IFs™

n” (7 A\ (s7 /dn7)) n” I 5T
The remaining subproofs can be completed in two steps by focusing on n™
in the antecedent.

focus™

———id~
[n~]IFn~
— _id” —— focus™
[n7]IFn™ - nlkn” .
e [s7] Ik s '/L
n~ I [{n7] [s7 /dn"]n" IFs™

n~ [In\ (s~ /In")|n" IFs™
(e \ (s /) n ks

focus™

4 Soundness of Chaining

The next order of business is to convince ourselves (and everyone else who
cares) that the system “works correctly”. This means that (in polarized
ordered logic) we prove exactly the same sequents in the chaining calculus
as in the without the restrictions imposed by chaining. We need to show:
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Soundness: If Q |- C then Q + C.
Completeness: If Q- C then Q IF C.

In general, proof search procedures restrict the allowed inferences in order
to cut down on the search space, so soundness is usually straightforward
while completeness is difficult.

Soundness here is very easy: take a chaining proof and erase all the fo-
cusing annotations, that is, remove the brackets [—]. The positive and neg-
ative focusing rules then disappear, since premise and conclusion become
the same sequent, and all other rules become valid rules in the polarized,
unfocused sequent calculus.

Formally, we would generalize the induction hypothesis over all three
judgment forms and prove the theorem by mutual induction on the given
derivation.

5 Completness of Chaining

How do we approach the completeness proof? Usually, we would just try
the a straightforward structural induction over the sequent proof to see
how it breaks down. This might provide some hints how to complete it.

Theorem 1 (Completeness of Chaining) If Q - A then Q2 |- A.

D
Proof: (Attempt) By induction over the structure of Q2 - A. For a while, this

goes well (depending on how we start).
Case:
DQ i.h. on D2
AT QF A . AT QIF A
LY - °
D=0QF A\ A Then  QI- A7\ Ay
This pattern repeats for right rules on negative propositions and left rules
on positive propositions. Clearly, our system was specifically engineered
to make this possible. It breaks down, for example, in the case of a right

rule on a positive proposition since the induction hypothesis will not give
us anything in focus.
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Case:

Dy Dy
QLAY QpF AS

D= QLQR}—ATOA;_

oR

By applying the induction hypothesis we get something like
ih.onD; 1ih.on D,
Qr - AT Qi A
QL Qr - AT o AT

We might try focusing on Af ° A;r, but this fails:

i.h.on Dy i.h. on Dy
Qp IF AT Qr - AT
77 77
Q- [A]] Qp - [A7]
oR
QL QR I [AT OA;]
focus™

QL QR I ATOA;_

The problem here is that it is not the case that, in general, Q2 I At
implies 2 IF [AT]! As a simple counterexample, consider 1 |- 1: we
have to apply 1L before we can focus on 1 on the right. No amount of
generalization of the induction hypothesis will make a counterexam-
ple go away. However, there is a different way forward: we can close
the gap using cut and identity for the chaining calculus! We may have
some hope that these will be provable.

+ + id* + + id*
Af I [A]] AF I [AF] .
[ ]
ihonp,  ATATFIATeAl] T
O IF A+ AT AT AT oAl OCUS
. [ ]
ih. on Dy L L 1 "2 1 2 cut ¢
Qr IF AS Qp AS IF AT e AS

cut 4+
A
QL Qp - A} o A ’
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All other cases will follow a similar pattern, so if cut and identity are ad-
missible in the chaining calculus, then it will be complete. O

It takes tremendous experience to find this particular elegant proof. An-
dreoli’s original proof and many thereafter (for example, Howe [How98])
were much more complicated and less scalable. The idea to use admissi-
bility of cut and identity in this manner originates with Chaudhuri [Cha06]
for linear logic. Some remaining infelicities with identity expansion were fi-
nally solved by Simmons for ordered logic [Sim12] and intuitionistic struc-
tural logic [Sim14].

6 Admissibility of Identity in the Chaining Calculus

In the next lecture we will sketch the admissibility of cut in the chaining
calculus; here we show admissibility of identity.

As usual, admissibility of identity follows by induction on the structure
of the the proposition. We need three forms.

Theorem 2 (Admissibility of Identity for Chaining) The following are ad-

missible:

d —— id},
A At [an A

id4

—
[A7]IF A- AlFA

Proof: By induction on the structure of A, where id4 can call on the induc-
tion hypothesis for id; or id;, depending on the polarity of A. For example:

i.h. on A;r ih.on A7
A3 F[AT] [AT]F AT
[AT / AT] A+ AT
[A7 / AZ1F AT [ A3

/L
/R
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Exercises

Exercise 1 We might drop the focus™ and focus™ rules if instead the 1R and
1L rule put the positive or negative proposition, respectively, in focus. Try
to discover and perhaps prove if this would yield an equivalent calculus. If
yes, discuss its merits and demerits.

Exercise 2 Investigate how the set of proofs are restricted in the parsing
example from Section 3 if

1. nis negative and s is positive, and

2. nis positive and s is negative.

Exercise 3 In the completeness proof for chaining, show the cases for
1. \L,

1R,

id™,

. TR, and

S R N

+L.

You should assume that identity and cut are admissible in the chaining
calculus.
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Lecture Notes on
Focusing

15-816: Substructural Logics
Frank Pfenning

Lecture 18
November 1, 2016

As discussed in the last lecture, focusing [And92] is one of the major achieve-
ments of proof theory. It decomposes into inversion and chaining, which
we presented last time. In this lecture we first complete the development
of chaining by sketching its proof of cut elimination and then we introduce
full focusing.

1 Summary of Chained Inference

We summarize chaining from last lecture. While we present it here for
ordered logic, it applies as well to other structural and substructural logics;
we will see examples in the next lecture.

Negative A~,B~ == p |AT\B |B~ /A" | A~ & B~ |1A"
Positive AT, BT = pt|AteBT |AToBT|1| At @Bt |lA™

There are three judgments

QI A
Q - [CT]
Qy, [Af] Qr I C
We abbreviate o
Q = Q|QL [Af] Qg
C == C|[CT]

and globally presuppose for any judgment Q I C:
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There is at most one proposition in focus in any sequent.

We provide the rules for a selection of the connectives.

[ -d+ — id
ptFpt] p]Fp
QI [AT] Q[A] QrlFC
— focus™ — focus™
Q- A+ QL A~ Qpl-C
QI At R Qr AT QpIFC
QIFtAT Qp [TAT] Qg IFC
QI A~ QL A” QrIFC
QI H,Af] QL (i,Af) QR I-C
AT QI B~ \R QIF[AT] Qp[BT]QrIFC
QIF AT\ B~ QL Q[AT\ B QplFC
Q- [AT] Qg [BT] QL ABQgIFC
o — — — e
Qp Qp - [AT e BY] QL (AeB)QpIFC
Qr QrIFC
1R —— 1L
Ik [1] Q.10 IFC
QA QIFB Qp [A7]QrIFC Qp [B7]QrIFC
— &R &Ly
QIFA&B QL[Af&Bf]QRH—C QL[Af&Bf]QRH—O
QIF[AT] QI [BT] QL AT Qp-C Qp BT QpI-C
SR ®R2 — —— &L
QI [AT @ BY] QI [AT @ BY] Qp (At @ BH Q- C

2 Admissibility of Cut in Chained Inference

Neither the chaining calculus nor the upcoming full focusing calculus al-
low the rule of cut. It would violate the basic goal of restricting proof
search. However, as we have seen in the last lecture, admissibility of cut
(together with admissibility of identity), is the key to completeness of fo-
cusing. Keeping in mind our central presupposition that no more than one
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proposition can be focus, we obtain the following versions of cut. Note that
in cut’ at most one of the overlined antecedents or succedents can contain
a proposition in focus.

QA QL AQrIFC

s e cut’
QL QQrIEC
QI [AT] Qp AT QplIFC QIFA- Qp [A7] QrlIFC
+ —
o . o cut 4 - cut,
QL QQrIEC QL QQrIEC

Theorem 1 (Admissibility of Cut in Chained Deduction)
The rules cut®, cut*Af and cut, are all admissible.!

Proof: By nested induction, first on the structure of A and second simulta-
neously on the structure of the two given deductions.

The only significant change compared to the usual proof of admissibil-
ity of cut is that we restrict the forms of commuting reductions for cut” to
preserve the invariant in the conclusion. O

3 Full Focusing

We obtain the full focusing system by forcing all possible inversion steps to
be completed before allowing focus. This also means while a proposition is
in focus, inferences can only be applied to the focus formula and no other
rules are applicable.

This can be specified in two ways. One is to just restrict focus™ and
focus™ so that no inversion rule can apply. This means inversion steps can
be applied arbitrarily, which entails some nondeterminism because there
may be multiple invertible propositions in the antecedents or succedent.
However, this is don't-care nondeterminism since the remaining subgoals af-
ter all inversion rules have been applied will always be the same, a property
called confluence.

Alternatively (as advocated, for example, by Simmons [Sim14]) we can
write the rules to force a particular order of application of these rules, say,
left-to-right. This leads to a simpler proof of its completeness via admissi-
bility of cut, since one does not have to prove confluence.

For the purpose of these notes, we use the don’t-care nondeterministic
version since it has less syntactic overhead. The following rules capture the

! As of the time T am writing up these notes, not all of these have been checked carefully.
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same connectives as before. We say Q2 I- C'is stable if § consists only of neg-
ative propositions or positive atoms and C'is either a positive proposition
or negative atom. A focusing sequent is stable exactly if no inversion rule
applies. In the rules below, inversion rules no longer allow other proposi-
tions to be in focus.

— 4t —
o ] 1

(QIF AT) stable QIF [A*]
QIF At

+

focus

(Qr A~ Qrl-C)stable Qp [A7] QrIFC
Qp A~ QrlIEC

focus™

QI AT R Qp AT QplI-C
QIF1TAT QL [tAT] QrIFC

QA= o QL A~ QplFC
QIF[JA7] Q, (1A7) Qp - C

AT QIF B— . QIF[AT] Qp[B]QrIFC

L L
QIF At \ B~ QL QAT \ B Qg C \

QL IF[AT] QgrlIF [BT] " QL ABQgrIFC .
[ ]
Q1 Qp - [AT e BT Qs (Ae B)QplIFC ©

Qr QrlEC
1R — 1L
IF 1] QL1QrIFC
QA QFB Qp [A7] QrIFC ol Qp [B7] QrlFC
T A e o 1
QFA&B QL[Af&Bf]QRH—C QL[Af&Bf]QRH—C

QIF [A7] i QIF [B*] i QL AT QrlFC Qp Bt Qpl-C
® ®
QF[ATo BT QF[AteBT] Qp (At @ BY) QplF C

oL

We do not present here the proof of soundness, completeness or the admis-
sibility of cut and identity for this calculus, which can be found in [Sim12,
Sim14] for closely related calculi.
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4 Application: Focused Parsing

As an example of focusing, we reconsider the example of parsing Alice likes
Bob here from Lecture 17, Section 3.

Alice likes Bob  here
n n\(s/n) n s\s F7:s

We have to decide on a polarity for the atoms n and s. We start by making
both of them positive. This gives us the following theorem proving problem:

nt T\ (st nt) nt o (sT\tsT) Ib st

Since we can focus only on negative antecedents and positive succedents,
we can only focusonnt\ (1s* /nt), sT\tsT, or the succedent s*. Focusing
on the succedent will immediately fail since the antecedents are not equal
to just s*. We can try to focus on s™ \ 15T, but this will fail for a similar
reason:

no rule applicable

nt (nt\ (st /nt) nTIE[sT] [tsT] Ik sT
wt (nt\ (457 /nt)) nt [T\ st IF 5T
So it only remains to focus on the transitive verb likes. Note in the focusing

phase, all the steps are forced once we have decided to focus, leaving only
one subgoal.

- st (st \%9"“) - sT
ot o] A e (5t \ s ) I st
nt I+ [n] d [tst /nt]nt (sT\1sT) Ik st

nt [0\ (157 / )]t (s \ 1) IF st

The remaining subgoal can be proved only by focusing on st \ 157

- stiFst
sTIF[s7] I [tsT] I s

st [st\ tsT] Ik st

\L
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The final subgoal can now be proved by focusing on the succedent s:

- g+
EEE
Note that in all of these steps there was no choice: in every stable sequent,
there was only on possibility to focus. In essence, focusing has reduced
the number of proofs to just one, which is a highly significant restriction
compared the nondeterminism present if we proceed in small steps.

If we mark all atoms as negative, there is a small choice right at the
beginning, because we could focus on either |n™ \ (s7 /|n7) or |s~ \ s™.
Only the latter will succeed, so we show that proof.

= (In\ (s / n7)) ™ Ik 5

e ——— L ——
n” (In=\(s” /In7))n" IF[ls7] [s7]IFs \L
v (b \ (s~ /4 ) nlbs \ s ] Ik s
Only one focus is possible now.
. n- H:— n- -
n~Ikn~ R n” - [in~] [s7]1F s~ L
n~ Ik [{n] [s7 /dn"]n" IFs™

n” [In \ (s /In7)|n" IFs™

The remaining (identical) subgoals following by focusing on the left.

[n~] IFn~ -

5 Summary

Focusing [And92] is a tremendous simplification and restructuring of the
search space provided by the cut-free sequent calculus. Instead of hav-
ing to make individual decisions on inference rules, which are really tiny
steps, focusing allows big steps of inference. It is also widely applicable,
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for example, to ordered logic [Pol01], linear, intuitionistic and classical log-
ics [LM09], with very elegant proofs of completeness based on cut and
identity [Cha06, Sim12, Sim14]. Indeed, as we will see in the next lecture,
deduction is so controlled that it can be seen as the foundation for logic
programming, where computation is modeled as inference.

6 Synthetic Inference Rules

Intuitively, focusing proofs of arbitrary sequents start by breaking down
all invertible connectives to obtain a stable sequent. From a stable sequent,
we then focus on a particular proposition which will be broken down in
a chained phase of inference. Once we have lost focus (in the | R and 1L
rules) when the enter a phase of inversion until we reach another stable
sequent along each branch of the proof that has not yet been completed.
The idea behind synthetic rules of inference [And02] is to replace the general
rules of inference entirely by specialized ones that implement this strategy.

Let’s see how this plays out in the parsing example, starting with the
positive polarization.

nt (0t (1st /0t nt (sT\ 15T I st

The subformulas we might focus on in a potential proof of this sequent are
antecedents tv~ = n™ \ (tst /nt), adv™ = st \ 15T and the succedent s™.
Let’s see what would happen if we focused on each of these propositions
in a general (stable) sequent. First, focusing on tv™.

(Ql = QH ng) ng - [n*] QH [T5‘+ / n*] Qg = C
Q [nt\ (st /nT)] Q- C

Now the first subgoal Q12 IF [n"] can only succeed if Q12 = n*, so we can
fill that in as a consequence of focusing.
(@12 =n7) y :
(= Q) QuelF[nf]  Qu st /0t Qe C
Q [T\ (st /n")] Ik C
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In the second subgoal we continue the focusing phase, this time splitting
up (Qs.

(ng = 7”L+) n (QQ = le QQQ) 921 I [N/Jr] QH [TSJF] QQQ IFC
— - id
(Ql = QH ng) ng I [’ILJF] ! QH [TSJr / 72,+] QQ =C
Q [nt\ (st /nT)] Q- C

In the first remaining subgoal we succeed, but only if Q9 = nt; in the
second remaining subgoal we lose focus.

(le = 7”L+) i Qll S+ QQQ I+ C

(Q12 =n™) (Qa = Qo1 N29) Qo1 Ik [nT] d Q1 [1sT] Qo IFC i
(Q1 = Q11 Q12) Qo I [n7] d Q1 [TsT /nT] Qo FC /L
Q1 [\ (Ts* /n")] O I C
Summarizing all this into one synthetic rule, we obtain fortv= = n™ \ (ts* /n™)
Q1 st Qo IFC
Quunttv  nt Qo l-C v
Similarly, if we focus on adv™ = s \ 1s™ we obtain

912 = S+ QH SJr QQ I+ C
+ id+ +
(Ql - QH Qm) 912 I [S ] QH [TS ] QQ I+ C \L
Ql [SJr \TSJF] QQ IFC

which we can summarize as
Qi st IFC
QH S+ adv™ QQ = C

adv

Finally, we can focus on s in the succedent:
(Q2=s7)
——id"
QIF[sT]

which we summarize as

s
sTIFst
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Writing all three rules down together:
Q1 st QulFC
t
Q11 nttv- nt Qoo IFC

e

QH S+ QQ = C
adv™
Q11 st adv™ O IEC

+
sTIF st

The remarkable property is that any focused proof of
nt T\ (st /nT))nt (sT\TsT) I ST
or, in abbreviated form
nttv nTadv Ik st

can be written with only these three derived rules of inference. This is
because tv~, adv™ and s* are the only propositions we could possibly fo-
cus on, and focused proofs are complete. Let’s explore the qualities of this
search space. Neither rules adv or s are applicable, so must start with tv.

sTadv™ IF st

nTtv ntadv IFsT

tv
At this point, only adv is applicable, which yields
st st

st adv™ I st

nttv  ntTadv™ I+ st

adv

tv

Now, only rule s applies, completing the proof.

— s
st IFst
sTadv™ IF st

nttv  nTadv™ I+ st

adv

tv
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Note that there was no nondeterminism in this proof at all, and it proceeds
in three simple steps. Compare this with the small-step proof in Section 4.

We can also assign negative polarity to all atoms and derive synthetic
rules are we have determined which propositions we might focus on. Note
that our definitions of tv and adv need to change.

v = 0\ (s~ / 4n")
adv™ = Js™ \ s~
and our goal becomes
n-tv. n adv IFsT
We can focus ontv—, adv™ and n™.
Qo1 IFn~ . (1 =Qopp=-C=57)
Qg IFn™ R (Q2 = Qo1 Q22)  Qoy IF [In] D1 [s7] Qe IFC L
(Q = Q11 Q12) Q2 Ik [In7] Oy [s /In" ] QlFC \L
Q [In”\(s7 /In")[ R - C

id™

Reading off the synthetic rule:

Qg lFn= Qo lEn~
Qo tv™ Qop IF s~

tv

Similarly, for adv™:
Qo Ik s~ . Qu=Q=-C=s")
(Ql = QH ng) ng I+ H,Si] QH [57] Qg - C
0 HS* \Si] Qo I-C

id™

which yields the synthetic rule

Qo Ik s~

————— adv
Qo adv™ IF 5™
Finally, focusing on n~

(Ql =y = -,C:TL_)
04 [/ILf] Qo IFC

id™
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Summarizing the synthetic rules

QulEn= Qo lkn~ Q9 Ik s~
tv ————————— aav —
Qo tv™ Qo7 IF s~ Qg adv™ Ik s~ n~IFn”

Reconsidering our goal
n~tv- n” adv Ik s”
two rules are applicable: tv, which fails in two synthetic steps,

no rule applicable

n~ IFs”

——— adv
n-lkFn— n~ adv™ IF s~
tv
n~tv. n adv” IF s~
and adv, which succeeds:
n n
n~IFn” n~ lFn”
tv

n~tv n" IFs™

n~tvT n adv” IFs™

In general, there do not appear to be clear heuristics for deciding which
polarization of the atoms is better for the purpose of theorem proving [MP0S,
MP09]. We will see in a later lecture that bottom-up logic programming (in
the style of Datalog) and top-down logic programming (in the style of Pro-
log) can be obtained from purely positive or purely negative atoms in a
fragment of the logic [CPP08].

LECTURE NOTES NOVEMBER 1, 2016



Focusing L18.12

Exercises

Exercise 1 Show one principal, one identity, one left commutative, and one
right commutative case in the proof of admissibility of cut on chained se-
quents.

Exercise 2 Derive synthetic rules of inference for the remaining two possi-

ble polarizations of the parsing example in Section 6 (where n is positive
and s is negative, and vice versa). Characterize the resulting search space.
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Lecture Notes on
Substructural Operational Semantics

15-816: Substructural Logics
Frank Pfenning

Lecture 19
November 3, 2016

Throughout this course we have already used substructural logic to spec-
ify the operational semantics of our (small) programming languages. For
example, we have used ordered inference to represent computation based
on proof reduction in subsingleton logic and we have used linear inference
to represent computation in ordered logic. Focusing provides us with the
needed connection between ordered and linear inference and propositions in
ordered and linear logic, completing the picture. This use of the inference
in linear logic goes back to CLF [WCPW02, CPWW02] which was in turn
inspired by Forum [Chi95, Mil96]. A systematic, taxonomic approach was
advocated [Pfe04] and then explored [SP08, SP09, PS09, SP11] culminating
in Simmons’s dissertation [Sim12].

Before we give further applications, we need to consider how focusing
applies to structural logic, and the integration of structural and substruc-
tural logics.

1 Example: Increment

Let’s recall the representation of binary numbers as string of b0 and b1 and
a left endmarker $ (previously written as eps). For example, the number
10115 would be represented by the ordered context $ bl b0 b1l bl. Now we
specify incrementing such a number by adding a new ordered proposition
inc with the following three rules.

b0 inc bl inc $ inc
bl inc b0 $ bl
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We can represent them by the following propositions, where b0", b1%, ¥,
and inc™ are all positive atoms. We assume that e more binding strength
than \ and /, so that A e B\ C stands for (Ae B) \ C.

b0 e inc\ 1 bl
bl einc\ 1 (inc e b0)
$einc\ T ($ebl)

However, there is a fly in the ointment: the inference rules are persistent,
while the propositions we may focus on are not. So the above propositions
should be shifted from ordered O to structural U. We might try

1o (b0 einc\ 13 bl)

but this does not work, since the an up shift coerces a positive proposition
to a negative one, but (b0 e inc \ 19 bl) is already negative. So we could
write it as

To 43 (b0 einc \ 15 b1)

which is logically correct but, as we will see in Section 4, it may not have
the expected focusing behavior. So we write

ol (b0 einc\ 19 bl)

to lift a negative ordered proposition to a negative unrestricted proposition.
Before we investigate the properties of g1}, an excursion to look at focusing
for structural logic more generally.

2 Focusing for Structural Logic

We start with the polarized form of structural logic. As before we keep two
forms of conjunction which are logically, but not computationally equiva-
lent.

A= = p |AT - B |A” & B |47

At u= pt|ATx BT |1]| AT+ Bt ||A™

The key insights are the following:

1. For left inversion rules, we do not need to keep a copy of the prin-
cipal proposition of the inference. That’s because its components are
equivalent to the proposition itself. This also means that even struc-
tural antecedents are no longer persistent.
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2. For left chaining rules, the proposition in focus is also not persistent.
This also should be intuitive, since we cannot have the formula and
its subformula both be in focus.

We say antecedents I are stable™ if I' consists only of negative propositions
and positive atoms and succedent C'is stable™ if it is a positive proposition
or a negative atom. We still have three judgment forms

rrA
I'IF [4] with I stable™
[,[A] IF C with T stable™ and C stable™

As in Lecture 18 we present a confluent focusing system with don’t-care
nondeterministic inversion rules. Simmons [Sim14] presents a system more
suited for most implementations and also proofs of admissibility of cut and
identity in which inversion takes place deterministically. We first show the
structural rules.

_— it —
rpt Ik [pt] | T, [p]kp
(T'stable™) T IF[CT]
focus™
TI+FCt

(T stable™, C'stablet) T, A=, [A7]IFC
rA-+cC

focus™

Note that in the negative focusing rule we copy the proposition A~, which
will be the only instance of an explicit contraction-like behavior. In all other
two-premise rules, we will propagate the antecedents to both premises.
The remaining rules can be constructed straightforwardly from the general
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principles we have laid out.

T, A+ - B~ TIF[AT] T,[B7]FC
———————— R
Tl AT — B~ T,[A" — B ]IFC
TIFA- T B L AT]IFC L, [B7]IFC
&R &4 &Lo
Tl-A- & B~ T, [A-&B]IFC T,[A-&B]IFC
Tl A+ . AT IFC
TI-1A+ T, [tA*] I+ C
T'IF[AT] TI[BY] T, A+, BYIFC
xR x L
Tk [AT x BT] T, A+ x Bt I C
Tl
1R FC
T Ik [1] I,1IFC
T IF[AY] T I [B] i I A*IFC T,BYIFC
+ +
T [AT+BY  TWk[At+BT] I, A"+ Bt IFC
LIFA- R LA~ IFC
TIF[LA] T, A= IFC

3 Quantifiers

The quantifiers follow the familiar patterns; we saw their basic structure in
Lecture 14. We can deduce their polarity by seeing which rules are invert-
ible, or which rule is applied first in the identity expansion. Clearly, they
are VR and 3L.

A™ n= | Vo AT

AT n= | 3mT AT

We generalize the judgment to allow term variables 7 to be declared in a
signature ¥ which is propagated to all premises in all rules: type declara-
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tions for term variables are persistent.

Y,a:m; TIF A(a)™ Yt X5 0,[A(0)T]IFC
VR%
YT IFVar A(x)~ 5,0, [Vour. A(x)" ] IFC
Yht:r X;TIF[A#)T] Y,a:r; T, A(a)T IFC
R a
Y Tk [Hair. A(z) ] YU, 3z A(x) T I C

4 Shifting Focus Between Logics

For the moment, we are interested in a logic that combines ordered with

unrestricted propositions, with a very thin layer of unrestricted proposi-
1

tions.
Ay == py | et Ag
Al w= py
Ay == po|... | 10AT
AS u= pd | [ USAT [ S AY

We get the following additional rules

—id} —id
L,pJ I [p)] N
(T stable™, Q stable™, C, stable™) (T stable™, Cy stable™)
focus,, focus,,
(T stable™)
T IF[AL]
—— focus{
I'I-FAF
F;oIFAgg - U0 [A5] Q- C 8
I'lFgtl 4o BN A IO
+ + .
L'k [Ao] U FvAu ) Q1 QZ I+ C'o B\LTL
o
T 51 Ag] T (S AY) Q2 IF Co

!As T am writing this, I am not at all sure that the polarity-preserving, mode-shifting
modalities really work.
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How do we now specify the ordered operational semantics of subsingleton
logic? We consider a couple of rules.

proc(P | @)
proc(P) proc(Q)

cmp

This rule may be used many times, so we get

oTHVP.VQ. proc(P | Q) \ T(proc(P) e proc(Q)))

Focusing on this unrestricted proposition will create the computation rule

0 proc(P) proc(Q) Qa2 IF C
O proc(P | Q) Q IFC

cmp

which corresponds exactly the original ordered inference rule cmp just above.
In the following, we omit the explicit ¢} and the outermost quantifiers, us-
ing the conventions that rules are persistent and that upper case variables
are implicitly universally quantified.

Next, the rule for disjunction.

proc(R.ly ; P) proc(casel (I; = Q;)icr)
proc(P) proc(Qy)

Propositionally:

oM VP:pexp. VI:idx. VQ:Iliel. pexp. VEE].
proc(R.l;, ; P) e proc(casel (I; = Q;)icr) \ T (proc(P) e proc(Qy))

We add the remaining rules, omitting the leading shifts and quantifiers
which can easily be inferred. We also label each rule with a name, which
we will eventually see as a dependent type declaration.

cmp : proc(P [ Q) \ T(proc(P) e proc(Q))

(
fwd : proc(<»)\T1
®C : proc(R.y ; P) e proc(casel (I; = Qi)ier) \ T (proc(P) e proc(Qy))
(
(

\ 1
&C : proc(caseR (I; = P;);cr) ® proc(L.lg ; ; (proc(FP) e proc(Q))

Q)
1C : proc(closeR) e proc(waitL ; @) \ 1 proc(Q
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5 Example: Ordered Processes

When we generalize away from the subsingleton fragment, we needed to
introduce channels because a process might communicate along any of the
channels it uses. Consequently, we used linear inference rather than ordered
inference to describe the operational semantics. The substructural opera-
tional semantics then uses the linear fragment rather than the ordered one.
The principles of chaining, inversion, and focusing are completely analo-
gous, so we will just use it without further formalities.

Processes are now captured with the predicate proc(z, P) which is pro-
cess P offering a service along channel . We begin with the rule of com-
position for spawning a new process, providing along a new channel z.

proc(z,y <= P(y) ; Q(y))
proc(z, P(z)) proc(z,Q(z))

cmp

Omitting quantifiers as in the previous example, we start with something
like

cmp : proc(X,y < P(y) ; Q(y)) — T(proc(z, P(z)) ® proc(X, Q(z))) 77

The problem here is the status of z. It it were a free variable in the rule and
therefore implicitly universally quantified, we could choose any channel
for z, including, say, X, which is obviously incorrect: z must be chosen
fresh. The answer here is to existentially quantify over z.

cmp : proc(X,y = P(y) ; Q(y)) — 1(Jz:ch. proc(z, P(z)) ® proc(X, Q(2)))
To see why this is correct, let us consider focusing on
at — (2.7 (2) ® ¢ (2))
which is a slightly abstracted version of the rule above. First, the chaining

phase.

(Ar=a®) . YAy, 20t (2)®@ct(2) IFG L
(A= (A1LAY)) T;A; I [at] d S Ao, [t (3207 (2) @ ¢t (2)] F G

YA Jat —o1(32.0T(2)®@c(2)] IFG

—o
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In the only remaining subgoal, we need to complete the inversion phase.

Y, 275 Ag, b (2), ¢ (2) IFG

®L
¥, 27 A, bT(2) @t (2) IFG
Jr?
(Ay =at) . ¥ Ao, 2. b (2)@ct(2) IFG o
id
(A=(A1LAY)) T;AF[T] 0 ;A0 [ (32 b1 (2) @ et ()] F G
—oL
YA [t — 1t (Fz.bT(2) @ct(2)]IFG
This gives us the following synthetic rule of inference:
¥, 27 Ao, b1 (2), ¢t (2) IF G
S Ag,at IF G
In our particular example, we get
¥, z:ch 5 A proc(z, P(2)), proc(X,Q(2)) IF G
mp?

Y5 A, proc(X,y + P(y) ; Q(y)) IF G

which is exactly what we were hoping for, since it is the correct sequent
calculus rendering of our original linear inference rule

proc(z,y + P(y) ; Q(y))
proc(z, P(z)) proc(z,Q(z))

z

cmp

From this example, we can now write some of the other rules. For the sake
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of brevity, we specify the synchronous versions.

cmp : proc(X,y = P(y) ; Q(y))
—o 1 (Jz:ch. proc(z, P(z)) & proc(X, Q(z)))

@C : proc(X,X.ly; P)® proc(Z,case X (I; = Qi)ier)
— T (proc(X, P) ® proc(Z, Q)

&C : proc(X,case X (l; = P;)ier) @ proc(Z, X 1y, ; Q)
—o 1 (proc(X, Py) ® proc(Z,Q))

®C : proc(X,send X W ; P) ® proc(Z,y < recv X ; Q(y))
— T (proc(X, P) @ proc(Z, Q(W)))

—C' : proc(X,y < recv X ; P(y)) @ proc(Z,send X W ; Q)
—o 1 (proc(X, P(W)) ® proc(Z, Q))

1C : proc(X,close X) ® proc(Z,wait X ; Q)
—o 1 proc(Q)

fwd : proc(X, X «<Y)—o1X=Y

Only the last rule requires a new form of linear proposition, namely equal-
ity. We use it here only for parameters at type ¢ without any constant con-
structors to avoid a more extended development. Its right rule is just re-
flexivity; its left rules performs substitution.

Y,z Az, 2) F C(z,2)
=R ) =L*
S,z -Fr=x S,z yi s Az, y),x =y Clz,y)

This form of equality is positive: the left rule is invertible. This means that
the focusing versions are

Y,z Az, 2) IF C(z,2)
Soxoy - b [ = 2 S,z yn ;s Az, y),z =y - C(z,y)

Note that we could and perhaps should retain = and y in the signature in
the premise, but they can no longer occur in A(z, z) or G(z, z) so we have
removed them.

Playing through focusing on the forwarding rule

fwd : proc(X, X « YY) o1 X =Y
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we get the following synthetic rule

Y, zich ; Az, 2) IF C(z,2)
Y, x:ch,y:ch ; Az, y), proc(z, z < y) IF C(x,y)

fwd?

which is the correct rendering of our (sketched) rule of linear inference: the
channels x and y are identified. Since variables can be consistently renamed
in a judgment, we could write equivalently 3, z:ch ; A(z,z) I C(z,z) or
Y, y:ch 5 Ay,y) IF C(y,y). Parameters here are not names in the sense of
nominal logic, since we cannot compare them for disequality. In fact, doing
so would be wrong: the identity rule would then be unsound since it unifies
two previously distinct parameters.
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Exercises

Exercise 1 Write out the ordered SSOS rules for the asynchrononous se-
mantics for subsingleton logic, using a msg predicate.

Exercise 2 Write out the linear SSOS rules for the asynchronous semantics
for ordered logic, using a msg predicate.

Exercise 3 Integrate a structural layer into ordered logic using 1A, and
lgAy. Then use the modalities of Section 4 to extend the synchronous se-
mantics of Section 5 to the new shift constructs.
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Lecture Notes on
Call-by-Push-Value

15-816: Substructural Logics
Frank Pfenning

Lecture 21
November 10, 2016

In this lecture we first present natural deduction in its pure form and then
polarize it into negative and positive proposition in order to make it more
directly suitable as the basis for a functional programming language. As we
may surmise from earlier lectures, positive propositions type values, while
negative propositions type computations. The resulting call-by-push-value
system [Lev01] can compositionally embed both call-by-value and call-by-
name.

1 Natural Deduction

Natural deduction was first introduced by Gentzen [Gen35] as a formal-
ization of ordinary mathematical reasoning with connectives. In contrast,
he considered his sequent calculus a technical device for proving consis-
tency via his Hauptsatz. As such one might consider natural deduction
as the most fundamental means to define the logical connectives. We will
not dwell on this, but the key aspect of harmony that we formulated on the
sequent calculus was first expressed in natural deduction [Dum91, ML83].

Instead of right and left rules that define the connectives, we have in-
troduction and elimination rules. Roughly speaking, an introduction rule
corresponds to a right rule: it shows how to prove a proposition. An elimi-
nation rule corresponds to a left rule and shows how to use a proposition.
But rather than decomposing the proposition from the conclusion to the
premise, the elimination rule should be read from the premise to the con-
clusion.
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From a judgmental point of view, natural deduction is based on a single
basic judgment A true and a hypothetical judgment

Aq true. .. A, true = A true

while the sequent calculus uses two judgments, A ante only as antecedents,
and A succ only as a succedent

Ajante... A, ante = A succ

Consequently, in natural deduction there is only a hypothesis rule and no
cut rule, although we have an admissible rule of substitution from the very
nature of hypothetical judgments. Following Levy, we give here the struc-
tural form of all judgments, not the ordered or linear ones, but they of
course exist as well.

A T,AFC

- h b
rara P ree subst
A+ B 'YA—B TFHA
—_— T >E
'-A— B I'+B
'-A TF+B '-A&B '-A&B
— & ——— _ 8/F ———— &F,
'-A&B A I'+B
'-A T'HB I'tAxB T,A,B-C
— I xE
I'-AxB r-c
'1 TFC
-1 IFC
THA TR / 'rA+B T ARC T',BFC 5
+ + +
I'-A+B ' T'rA+B r-cC

Since the operational reading will differ, we have two forms of conjunction
with the same introduction rule but different elimination rules. We see the
characteristic form of eliminations for the negative connectives which turn
a proof of a conclusion into hypotheses of its parts. That leads to some
anomalies, like the 1E rule in which the conclusion is equal to the second
premise. Again, this can have some operational meaning so we include it
here despite it apparent logical redundancy.
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The name substitution expresses that we substitute the proof of A for
uses of A in the proof of C. Martin-Lof [ML83] treats this as the very defi-
nition of what a hypothetical judgment means. When we come to the func-
tional programming language, this will correspond to substitution of terms
which is the engine that drives computation. This is very different from the
sequent calculus, where cut reduction proceeds in much smaller steps.

2 Polarizing Natural Deduction

While polarization of propositions is entailed by their very nature and there
is no choice, it is not immediately obvious how we should polarize the
hypothetical judgments. With a view towards our goal of functional pro-
gramming and the nature of implication as having the form At — B~ we
decide that hypotheses should always be positive, 't = C. The conclusion C
sometimes must be negative (for example, the —I and &[) and sometimes
positive (for example, xI, 11, and &¢1;). But let’s recall the structural polar-
ized propositions. Since the positive propositions will correspond to values
we also call them value types, while negative propositions are computation

types.

Computation Types A~ == AT - B~ | A~ & B~ | tA*
Value Types AT u= AT x BT |1| AT+ BT ||A”

The rules can be polarized straightforwardly, after some basic decisions.
Besides requiring the hypotheses to be entirely positive (that is, ranging
over values), we allow the elimination rules only when the conclusion C'is
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negative since elimination corresponds to some computation, not a value.

THAY T,ATFC- T-At T,AtFCt
subst™ subst™
I'EC~™ r'cCc+t
—— hyp
AT AT
I, A" =B~ At 5B~ TFAT
_— ] —F
I'AT - B~ I'+-B~
I'A- T'+B~ I'HA- & B~ I'A- & B~
&l — & — &
I'+A-&B" TH A~ T+ B~
LAt T+ Bt '~A"xBT T,A",BT+C~
x 1 x B
I+ A+ x B+ T+C-
'r1 T'HC—
— 17 1F
'F1 I'EC~

TH At T+ B*
+I
T'At+ Bt At + Bt

+1

T+At+BY T,At+-C- T,BTFC-
T+ C-

+E

The interesting part now pertains to the shifts. Using our restrictions on
contexts and conclusion, we derive the following rules. The form of the
elimination rule, either direct or with a side formula C, depends on the
polarity of the proposition that is exposed, not the shift we eliminate.

+ TH1At T A" FC-
rear I T 1B
T+ 1A+ T+C-

'EA- 7 [ElA™

T A THA-
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3 Term Assignments

We now assign program terms to the various typing rules. We have com-
putations M of type A~ and values V of type A™. Note that variables are
always of positive type and therefore stand for values. This does not im-
ply a call-by-value strategy, as we will see in the next lecture. First, the
hypothesis rule is straightforward.

hyp
oAt Fax: AT

The substitution principles, when annotated with proof terms, allow us to
apply well-typed substitutions. Note that they are admissible rather than
primitive typing rules. They tell us the result of the substitution is well-
typed whenever we substitute a value of type A™ for a variable z of type
AT, This is the only substitution we perform, since all variables range over
values.

VAT T,oAT-M:C™ VAT T oATHFW:CT
subst™ subst™
Tk [V/g]M : C Tk [V/dW : Ct

We now complete the picture by giving all the introduction rules for
positive propositions, omitting only the shift for now.

'rV:AT THW:B*'
' (V,W): At x Bt

x T

F'FV:AT"x BT TI,ao:AT,y:BY+FN:C~
't matchVas(z,y) = N :C~

xFE

1 '-v:1 I'EN:C™
'E():1 I'FmatchVas()= N:C~
F-V:A" -w:Bt
+1; +1s
FEinl(V): AT+ BT CEinr(W): At + B

Fr~V:A"+B" To:tAT+-M:C~ TI,y:BT"+-N:C~
I' - match Vas (inl(x) = M |inr(y) = N) : C~

+E

For functional programming, just as for session types, it is convenient to
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generalize binary disjunction A + B into a labeled sum +{l : A;};c..

TFV:A, (kel)
'+ k(V) : +{l . Al}leL

+1I

I'eVv.: +{l : AZ}ZEL T oA M, :C™ (Vl € L)
I' - match Vas (I(x) = M;)ier, : C~

+E

At this point we only need the shift to complete the value types. The posi-
tive type is J|A™. Since A~ represents a computation, the value of type | A~
represents a suspended computation. Following tradition, we call this a
thunk. The elimination rule forces a thunk to be evaluated.

I'-M:A T r=v:JA \E
't thunk M : A~ I't-forceV : A~

Let’s take stock. At this point, we have the elimination rules for values as
computations, and also the full set of values. Still missing are the compu-
tations for negative types. As we start on the negative types, we generalize
A~ & B~ to the labeled version &{l : A;}ier.

I z:AT =M : B~ '-M:At B~ TFHV:AT
—1 —E
C'FXe.M: AT — B~ '-MV:B~
I'-M:A7 (Viel) IEM:&{l: A her
— &I - &Ey
FF{lﬁMl}leLl&{liAl }lEL F}—M.lkiAk

The computation type TA™ just embeds a value, which we write as return V.
The elimination for decomposes this and substitutes the value for a bound
variable.

TFV: At ; I'FM:1AT T,2:ATFN:C™
I'FreturnV : tAT I'tletvalz = MinN :C~

In summary, including the type on which each construct operates, ei-
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ther by introduction or elimination:

Computations M := matchVas(z,y) = M AT x BT
| matchVas()=M 1
| matchVas(i(z) = M)ier,  +{l: 4 her
| forceV 1A~
| AeM | MV At = B~
‘ {l = MZ}ZEL ‘ M.k &{l : Al_}lEL
| returnV |letvalz = MinN 1AT

Values V o=z
| (V, W) At x BTt
0O 1
| UV) H: A her
| thunk M LA~

4 Local Reduction

The analogue of a cut reduction is a local reduction. It will call upon substitu-
tion [V/z]M. Alocal reduction arises when an introduction of a proposition
is immediately followed by its elimination.

match (V,W)as(z,y) = M — [V/x,W/ylM
match()as ()= M — M

match k‘(V) as (l({L‘) = Ml)leL — [V/l‘]Mk
force (thunk M) — M

(Ax. M)V — [V/z]M

{l = Ml}leL‘k — M,

letval z = return Vin N — [V/z]N

Local reductions can be also found in the operational semantics, which
imposes a certain strategy on the reductions which give the call-by-push-
value strategy its name.

5 Substructural Operational Semantics

Interestingly, we can specify the substructural operational semantics en-
tirely on ordered logic. It takes the form of a stack machine and uses sub-
stitution, although other techniques are certainly possible.

As is typical for functional languages, we use three predicates:
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¢ eval(M), which means computation M should be evaluated.
¢ retn(7"), which means we return a terminal computation T
e cont(K), which specifies continuation K waiting for a returned value.

Globally, we start with eval(M) for a closed term M and apply ordered
inference to eventually obtain retn(7). Here, T" stands for a terminal com-
putation, that is, a computation that does not take any further steps. We
have

Terminal Computations 7' == Az.M At — B~
| {l=M}her A &B~
| returnV TA

During the computation, the configuration will always have one of the

forms
eval(M) cont(K,,) ... cont(K;)

retn(T") cont(K,,) ... cont(K1)

which means that the continuations form a stack. Rather than pre-specify,
we will write up the operational semantics and see which kind of contin-
uations we need. It helps to make us aware how evaluations, returns, and
continuations are typed. Note that all computations and values are closed,
so no hypotheses are needed in their typing.

EM: AT T AT ATFK:B~
eval(M) : A~ retn(T') : A~ A™ Fcont(K): B~

The only interesting part here are the continuation stack frames. They ex-
pect a terminal computation on the left and return a terminal computation
to the right, to the next stack frame.

The first key inside is that values of positive type do not need to be
further evaluated. One can see that simply by looking at the typing rules.

LECTURE NOTES NOVEMBER 10, 2016



Call-by-Push-Value L21.9

So we have
eval(match (V,W)as (z,y) = M)

eval([V/x, W/y|M)

xC

eval(match ()as() = M)
eval(M)

1C

eval(match k(V') as (I(x) = M))er)
+C
eval([V/x] My)
eval(force (thunk M)
eval(M)

The cases for negative types are more complicated, since they require con-
tinuations. Fortunately, there are only 3. We start with functions.

eval(M V) eval(A\zx. M) retn(Az. M) cont(_V)
—C; ———— =0, —C3
eval(M) cont(_V) retn(Az. M) eval([V/x] M)

We can see the continuation must accept a function from the left and pass
its return value to the right. So we have

VAT
AT — B~ Fcont(_V): B~

Now we can appreciate why this scheme is called call-by-push-value. In the
purely functional fragment (only type AT — B~) the configuration will
have one of the two forms

eval(M) cont(_V,) ... cont(_V7)
retn(T") cont(_V,,) ... cont(_V})

that is, the continuations form a stack of values, and function application
will push a value onto the stack. The reason we can still easily represent
call-by-name, by the way, is because thunk M is a possible value. We will
see that in the next lecture.

Next, products &{l : A;}icr. We see that they correspond to lazy pairs,
because the components are not evaluated until the value of that compo-
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nent is requested.

eval(M.k)
eval(M) cont(_.k)

&Ch

eval({l = Mi}ier)
retn({l = Mi}ier)

retn({l = M;}; € L) cont(_.k)
eval(My,)

&Cs

Again, we can derive the typing of the new form of continuation from the
computation rules.

&{l : Al}lEL F cont(_.k) D Ap

There is a strong analogy between the typing of this continuation and the
typing of a message in SILL.
Finally, values as they are included in computations.

eval(letvalx = M inN)

: 1C1
eval(M) cont(letvalz = _inN)
eval(return V')
— 1
retn(return V')
retn(return V') cont(letvalz = _in N)
1C3
eval([V/x]N)
The requisit typing:
v ATEN:C™

AT F cont(letvalz = _inN) : C~

6 Example: A Map Function
As a simple example we consider a higher-order function map that applies

a function to each element of a given list to construct a new list. The inter-
esting aspect of this exercise it the polarization.
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Lists are entirely positive. Not unexpected, given we already encounter
this property in the concurrent setting. Of course, we could have lazy lists,
in which case the type would be quite different (see Exercise 3).

list AT = +{cons: A" x list AT nil : 1}
The map function has to account for this particular polarization.
map : (AT — 1tB") = list AT — 1list Bt
The we define

map = Af. Al.
match [ as (cons(p) = match p as (z,l') =
letval y = (force f) x in
letval kK = (map f) I in
return cons(y, ")
| nil(p) = matchpas () =
return nil())
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Exercises

Exercise 1 The operational semantics uses substitution of values for vari-
ables. We can instead bind variables to values using a persistent predicate
bind(z, V') in operational semantics.

Rewrite the substructural operational semantics using bind so that only
(fresh) parameters are substituted for variables, not arbitrary values.

Exercise 2 We can refactor the syntax using patterns which are defined as

Patterns p,q ==z (p,q) | () | l(p)

where variables = always have type | A™. Then, there is only a single match-
ing construct
match V as (p; = M;);

Rewrite the typing rules and the operational semantics using patterns.

Exercise 3 Define lazy lists as the negative type
list A= =T +{cons: | &{hd : A7 tl: list A"}, nil : J&{ }}

Rewrite the map function to work on lazy lists.
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Lecture Notes on
Call-by-Value and Call-by-Name

15-816: Substructural Logics
Frank Pfenning

Lecture 22
November 16, 2017

In this lecture we consider two different polarization strategies for struc-
tural intuitionistic natural deduction. If we decide to translate propositions
positively we obtain, under the computational interpretation of proofs as
computations, a call-by-value language. If we translate propositions nega-
tively we obtain call-by-name. These embeddings are compositional, sup-
porting Levy’s claim [Lev01] that call-by-push-value (CBPV) is a unifying
approach to functional programming. With CPBV we can easily choose, at
a fine-grained level, which computations are eager and which are lazy.

1 Call-by-Value as Positive Polarization

Let’s assume we have a source language

Types A,B,C == ADB|AANB|T|V{l:AteL
Expressions FE n= x| \x.E| E1 Ey ADB
| <E1,E2>|7T1E‘7[’2E AANB
O T
|  U(F)|case E (I(z) = Ei)ier AV B

We write (A)* for the positive polarization of A, which is defined induc-
tively as follows:

(AD>B)* = (AT =1(B)")
(AnB)* = (AT x(B)*

(M)* =1

(VL Ahen)t = H:(A) her
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This would seem to be a minimal positive polarization. Based on this, we
can now write translations of expressions. The theorem we are aiming for
is

IfT + E: Athen (T)* + (E)T : 1 (A)T

Note that the translation of an expression should be a computation, so we
have to coerce (A)" to be a negative type in this judgment. This principle
and the translation of types leaves very little leeway. Let’s work through
this carefully for functions. Assume

'FXx.E:ADB

Then
'z E)T: 1 (4> B)*t

which works out to
Tt Az BE)T 1L (AT = 1(B)Y)

We also know
Do (A)TH(E)T . 1(B)*"

From that, we can fill in
(Az. E)* = return thunk (\z. (E)™)

What about application (E; E2)*? We know

O EE)T 2 AT = 1(B)T)
(O F(E)" o (A7
(O F (B E)T + 1(B)T

From this we can see that the types almost force:
(B1 Eo)™ =letval f = (FE1)" inletval x = (Eo)" in (force f)x

Also well-typed would be the result of swapping the two lets, or perform-
ing one more result binding at the end:

(E1 E2)+ = letval f = (E1)+ in
letval z = (F2)" in
letval y = (force f) z in

return y
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In summary, for functions:

z)* = returnz

()

(Az.E)"™ = return thunk (\z.(E)™)

(Ey E3)™ = letval f = (E1)" inletval z = (F2)" in (force f)x

Translations of pairs is simpler, since we can arrange to use positive (eager)
pairs in the target.

((E1, Eo))t = letval z; = (E1)" in letval 2o = (F2)™ in return (z1, x2)
(m E)* = letval z = (E)* in match = as (y,2) = return y
(mo E)T = letval x = (E)" in match x as (y, z) = return 2z

Similarly for T and V{l: A;}icr.

(Nt = return ()
(I(E)* = letval x = (E)™ in return I(x)
(case E (I(x) = E))jer)™ = letval z = (E)" in match x as (I(z) = (E))")ier

At this point we have completed our embedding. We could, for example,
give a call-by-value operational semantics on unpolarized expressions and
then show that this particular translation is operationally adequate. We are
more inclined to think of this translation as the definition of call-by-value
and move on.

2 Call-by-Name as Negative Polarization

We now consider the negative polarization of an unpolarized type. For the
conjunction, we clearly should choose the negative conjunction, correspond-
ing to lazy pairs consistent with call-by-name.

(ADB)~ = 1(A)” = (B)”
(AANB)~ = &{m :(A)",m:(B)"}
(T)~ = &{}

(V{l: Athier) = TH{:4(A) her

Now the judgment I' - E : A will be translated to (I')" + (E)~ : (A)~,
where for the hypotheses with have

(fL'lZAl, cee :En:ATL)_‘_ = 1312\1,(141)_, s ,LEnZ\L (ATL>_
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The extra down shift for the context is forced since call-by-push-value al-
lows only positively typed variables, while for the translation of an expres-
sion to a computation, no additional shift is necessary.

As we design the translation for expressions, let the types be or guide

as usual.
Az . E)~ : L(A)” = (B)~
(2 5 L(A)
(E)” (B)~
Clearly, we have
(Az.E)” = Xx.(E)”
()~ = forcex
In the same style of reasoning;:
(Ex Ep)™ : (B)”
(Ev)~ : L(A)” = (B)”
(E2)” ¢ (A)7
Again, it seems our hand is forced:
(El EQ)_ = (El)_ (thunk (EQ)_)
In summary, for functions:
()~ = forcex
(M. E)” = Mz.(E)”
(E1 Eg)_ = (El)_ (thunk (EQ)_)

This clearly represent call-by-name. We pass a computation, packaged as
a thunk, and force that thunk where the variable is used. In all call-by-need
language such as Haskell, the value of this forced expression is memoized
so that future evaluations of forcez do not evaluate the thunk again but
retrieve its value.

For conjunction, we abbreviate the process. Recall that (A A B)™ =
adm : (A)~ 72t (B))

(E1, E2))” = {m = (E1)",m2 = (E2)"}
(m E) = (E)".m
(71'2 E) = (E)_.7T2

Truth T is the nullary case of conjunction and consequently becomes &{ }.
We the translate
) = {}
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It seems implication and conjunction translates more directly for call-by-
name than for call-by-value. However, disjunction has two shifts and is
therefore more complicated.

UE)~ : t+{l: L(A) hep forlel
B~ ©(A)T

SO
(I(E))~ = returnl(thunk (E)™)

The elimination form is our most complex case

(case E (l((L‘) = El)leL)f : (C)f

(E)” Tl L (A) " her
(Er)~ » (O)”

(z)” b (AT

but if want to respect all these types, the following suggests itself
(case E (I(z) = Ej)icr)” = letvaly = (E) match y as (I(z) = (Ei)7 )ieL

Summarizing whole call-by-name translation (which is to say, the negative
translation)

(x)~ = forcex

(A\z. E)~ = lx.(E)”

(E1 Eg)i = <E1>7 (thunk (EQ)i)

((E1, E2))~ = {m=(E1)",m= (E2)"}

(m E) = (E)".m

(7T2 E) = (E)i.ﬂ'g

()~ = {}

(I(E))~ = return{(thunk (E)7)

(case E (I(x) = Ey)ier,)” = letvaly = (E) match y as (I(z) = (E1) 7 )ieL

3 Destinations
The operational semantics of call-by-push-value is very direct using or-

dered inference. In the next lecture we will introduce the Concurrent Logi-
cal Framework (CLF) which, unfortunately, is linear and does not support
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ordered specifications. One idea, not very elegant, is to create explicit se-
quences of assumptions. But there is a different way, namely to use destina-
tions to tie the propositions together. In general, the ordered context

A A,
is represented by
Ai(do,dy) Az(dy,da) ... Ap(dn—1,dy)

where all of dy,d1,ds,...,d,—1,d, are distinct parameters, and dy and d,
represent the left and right endpoints [SP11]. You can think of them just
as if they were channels in our previous linear specifications, but used in a
disciplined way since the context is actually ordered.

In our particular example, the configuration would look like

eval(M,dy+1,dy) cont(K,,,dp,dn—1) ... cont(Ky,dq,dp)
retn(T, dp+1,dy,) cont(Ky, dy,dp—1) ... cont(K1,d;,doy)

We can rearrange and optimize slightly, noting, for example, that we never
need d, 11 and we use

eval(M,d)

retn(T, d)

cont(d, K,d")
As a sample, we given the rules for functions, first in their ordered form

and then in destination passing style. Note that the rules for applications
must introduce a fresh destination.

Ordered Destination-Passing
eval(M V) eval(M V,d) )
—C —C¢
eval(M) cont(_V) eval(M,d") cont(d',_V,d)
eval(Az. M) eval(Azx. M, d)
— =% — =Y
retn(Az. M) retn(Az. M, d)
retn(Az. M) cont(_V) retn(Az. M,d') cont(d',_V,d)
—>Cg —>C3
eval([V/z| M) eval([V/z|M, d)

As a preview of CLF [WCPWO02, CPWW02, WCPW04, SNS08, SN11], we
show the relevant part of the file cbpv.clf which implements the above idea.
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There are a few things we have not discussed, such as the indexing of values
and computations by their positive or negative types. We first highlight the
three rules on the right.

eval/app : eval (app M V) D

-0 {Exists d’. eval M d’ * cont 4’ (appl V) D}.
eval/lam : eval (lam (\!x. M !x)) D -o {retn (lam (\!x. M !x)) DI}.
eval/appl : retn (lam (\!'x. M !x)) D’ * cont D’ (appl V) D

-o {eval (M !'V) D}.

Because we index values and computations, the code below is not only an
operational specification but also a type checker for call-by-push-value. We
have limited ourselves to the binary forms of & and + since label sets are
not so easily represented.

% Call-by-push-value in CLF
% Pure function fragment with shifts

neg : type.

pos : type.

arrow : pos -> neg -> neg. 4 A ->B
up : pos -> neg. % up A
down : neg -> pos. % down A

% values and computations, indexed by their type
val : pos —> type.
comp : neg -> type.

% negative types

% A -> B

lam : (val A -> comp B) -> comp (arrow A B).
app : comp (arrow A B) -> val A -> comp B.

% up A
return : val A -> comp (up A).
letval : comp (up A) -> (val A -> comp C) -> comp C.

% down A

thunk : comp A -> val (down A).
force : val (down A) -> comp A.
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% runtime artefacts

dest : neg -> type.

frame : neg -> neg -> type.

appl : val A -> frame (arrow A B) B.

letvall: (val A -> comp C) -> frame (up A) C.

% ssos predicates

eval : comp A -> dest A -> type.

retn : comp A -> dest A -> type.

cont : dest A -> frame A B -> dest B -> type.

% A -> B
eval/lam : eval (lam (\!x. M !x)) D -o {retn (lam (\!'x. M !x)) D}.
eval/app : eval (app M V) D

-o {Exists d’. eval M d’ * cont 4’ (appl V) D}.
eval/appl : retn (lam (\!'x. M !x)) D’ * cont D’ (appl V) D

-o {eval (M !V) DZ}.

% up A
eval/return : eval (return V) D -o {retn (return V) D}.
eval/letval : eval (letval M (\!x. N !x)) D
-o {Exists d’. eval M 4’
* cont d’ (letvall (\!x. N !x)) D}.
eval/letvall : retn (return V) D’ * cont D’ (letvall (\!'x. N !x)) D
-o {eval (N !V) D}.

% down A
eval/force : eval (force (thunk M)) D
-0 {eval M D}.

#query * 1 x 1
Pi d0. eval (lam (\'!'x. return x)) dO -o {retn M dO}.

#query * 1 * 1

Pi d0. eval (app (lam (\!x. return x)) (thunk (lam (\'y. return y)))) 4O
-o {retn M dO}.
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Exercises

Exercise 1 Both call-by-value and call-by-name lead to code that is consid-
erably more complex than it needs to be, including, for example, patterns
such as letval 2’ = return z in M. These spurious introduction/elimination
forms are called administrative redices. Begin by showing an example of an
expression whose call-by-value translation contains an administrative re-
dex.
If possible, rewrite the call-by-value translation using two different forms,

one resulting directly in a value the other in a computation.

T+ (B) : (A)*
I E(E)" (A

calling upon the appropriate translation form. Try to write the refined
translation so that no administrative redices arise. If this does not work,
do you see another approach to avoiding administrative redices?

Exercise 2 Carry out Exercise 1 for call-by-name.

Exercise 3 Investigate a linear call-by-push-value combined with Levy’s by
an adjunction with two shifts. Explore the expressive power of the result.
Does linearity describe and interesting and useful properties of functional
computation?

Exercise 4 Using a substitution-free operational semantics as in Exercise
L21.1, specify a call-by-need operational semantics. Can you do this on call-
by-push-value in general, or should it be integrated somehow (or described
directly) on call-by-name?
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Lecture Notes on
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15-816: Substructural Logics
Frank Pfenning

Lecture 23
November 17, 2016

A logical framework is a metalanguage for the representation and analysis
of deductive systems such as logics, type systems, specifications of opera-
tional semantics, etc. The goal is to distill the essence of deductive systems
so that encodings are as direct and natural as possible. In many ways one
can consider them normative in that they embody the judgmental principles
upon which the design of logics and programming languages are (or ought
to be) based on.

An early logical framework was LF [HHP87, HHP93], implemented in
the Twelf system [PS99] which is based on a minimal structural dependent
type system AL It elucidated and crystallized the notions of bound vari-
able, capture-avoiding substitution, hypothetical judgment, and generic
judgment. The high level nature of the encodings allowed automatic and
programmatic theorem proving [Sch00] as well as execution of some spec-
ifications as backward-chaining logic programs [MN86, Pfe91].

It was recognized early on that substructural logics and related pro-
gramming languages could not be represented as directly in LF and related
frameworks such as AProlog [MN86] as one might hope. Essentially, early
frameworks did not support linear hypothetical judgments directly, which
hampered encodings. This was addressed in a line of research on substruc-
tural linear [HM94, Mil94, Chi95, CP96, CP02] and ordered [PP99b, PP99a,
Pol01] logical frameworks, eventually culminating in the Concurrent Logi-
cal Framework (CLF) [WCPW02, CPWW02, WCPW04] and its implemen-
tation in Celf [SNSO08].

CLF is expressive and robust enough to allow logic programming [LPPW05]
but metatheoretic reasoning in the style of Twelf remains elusive (see [Ree09]
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for one approach). In this lecture we focus on the positive fragment of CLF,
applying a bit of hindsight to polarize the original presentation. This frag-
ment is of particular interest since its forward-chaining operational seman-
tics allows us to represent the deductive systems we have analyzed in this
course in a high-level and executable manner.

1 The Positive Fragment of CLF

CLF arises from the polarized adjoint formulation of intuitionistic linear
logic by admitting dependent types. We will largely downplay this aspect
of the CLF, since it is rich enough to be the subject of its own course [Pfe92].
Instead we emphasize the substructural aspects of the framework. Before
launching into its description, we should emphasize that we are interested
almost exlusively in focused, cut-free proofs. It is terms representing these
proofs that end up being in bijective correspondence with the objects we
would like to represent.

By default, layers of the syntax are linear, so we will only annotate types
that are structural as A,.

AL u= pl| ...
A= u= At B |lla:Af. B~ | A~ & B~ | tAT (butnotp™)
At = pt|At®@ BT |1|3n:AL. BT (but not A7)

A few remarks on these types. We do not include negative atoms (p~) or
1A~, which constitutes our restriction to the negative fragment. We omit-
ted disjunction A* @& B because we have not carried out the theory to
understand what true concurrency would mean, something we discuss in
the next lecture. We have left open what kinds of propositions we would
have in the structural layer. Positive atoms p;| are useful because they cor-
respond to the persistent propositions we have used in various representa-
tions.

Note that universal (Ilz:A}.B*) and existential (3z:A;. BT) are con-
structs of mixed mode, combining structural and linear types into a linear
type. This appears to be necessary: while one can give formalistic con-
structions of a linear dependent function space, there is to date no fully
satisfactory account of it. The reason lies in the question of what consti-
tutes a “linear use” of x in a hypothetical linear II, as compared to simply
a “mention” of z in the type. In practice, we have developed a number of
techniques to circumvent the need for linear dependent functions, mostly
by splitting the name = (which is persistent) from a linear capability which
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explictly marks uses x. The complications, by the way, are not specific to
linear logic but appear in the literature of modal logic in various forms even
just for first-order modal logic.

The proof term assignment to this calculus turns out to be quite a bit
different for call-by-push-value or for SILL, both of which were similarly
polarized. Here, we are interested in representing only cut-free, focused
proofs because these are used for representation. For starters, in call-by-
push-value we had two forms of terms: computations (of negative type)
and values (of positive type). Here we will have five different forms of
terms, corresponding to right inversion and left focusing (negative types),
left inversion and right focusing (positive types) and one for neutral se-
quents, before a focusing phase is started. We introduce the terms in stages,
but first all five judgments. We use I" for positive structural contexts, A for
linear antecedents, and Q* for linear antecedents presented in an ordered
fashion so that inversion is deterministic.

'y AFM:A™ right inversion
;A;QFJ left inversion
I';A[R:A7|FE:C*  left focusing
I';AR[V:CT] right focusing
I';AFE:CT stable sequent
L[V Al structural right focus

In left inversion, the judgment J on the right could be either M : A~ or
E:CT.

Right Inversion. For right inversion, the assignment is straightforward,
consistent with our call-by-push-value functional language, even though
we are operating in a sequent calculus here. The judgment for right inver-
sionisI'; A M : A™.
F:A;p:AT+-M: B~ oA AFM: B~
—oR
F';AFM.M: A" — B~ ;A Xe. M :1lz:A. B~

IR

' ArFM:A- T';AFN:B™ I':AFE:A"
&R TR
'y AF(M,N): A~ & B~ I';AF{E}:tA"

In the final rule we transition to the stable judgment, where all declarations
in A are either z : A~ or 2 : p™. For I, we only consider xy : pd, which is
also stable.
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Left Inversion. Leftinversion operates on an ordered context 2 with propo-
sitions p : AT where p is a pattern (not an atomic type). When the context is
empty and all inversion steps have been applied, we return to the judgment
J.

;A zpt;QFJ s F;A;(p:AN)(q: BHQkFJ
atm
LA (x:phH)QFJ ;A5 (p,gq:AT®@BM)QFJ

;A QFJ U,a:Af ;A5 (¢: BY)QFJ
1L JL
;A ([]:)QFJ I A5 ([xg,q): Tz AL.BYH QR J

r;ARJ

———— empty

r;a;-+J

Left Focus. When thinking about left focus, we have to think about the
signature ¥ which contains (in our case) constants ¢ : A, , arbitrarily reusable.
Strictly speaking, there should be a shift here, but we dispense with that
due to the special case of the global signature.

(A= €X) T;A/c:A|FE:CT ;A z: A |FE:CT
foc, foc
I';:AFE:Ct F:Az:A-FE:CT

I;AR[V:AT] T;A[RV:BJFE:CT
Ir;AAJ[R:AT B |FE:CT

—oL

TH[Vu:AS] T;A[RVy: [Vu/z]BT]]FE:Ct
I';AR:a:Aj.BY | FE:C*t

I1L

;A [mR:AJFE:CT I';A[mR:B |FE:CT
&L &
T A [R:A&B|FE:Ct T;A[R:A &B|FE:Ct

F;A;p:ATHE:CT ‘L
I';A[R:TAT|Flet{p} =RinE:C*

The last rule here represents a transition to the left inversion judgment.

Right Focus. Finally, we come to right focus which, in the positive frag-
ment, will always either succeed and finish the proof or fail. Since the pos-
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itive fragment lacks | A~ we cannot lose focus.
I'AR[E:CT]
foct id™
I';AFE:CT L;zptE[z:p']

I AR[V Al T, AR [W: B
T ANFV] dop  OF T;-F[[]:1]

1R

TH[Vu:AS] T AR [W: [Vy/x|Bt]
;AR [[Vy,W]: 3z:A. BY]

Structural Right Focus. Since in our language at the moment we only
consider atomic structural propositions, we only have one rule.

n iy
Loampg 5+ [51/' :pu]

2 Summary of Proof Terms

We obtain the following language of terms, where we indicate in each line
the corresponding proposition and the concrete Celf syntax for the con-
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struct.
Abstract Syntax Concrete Syntax
Term Type Term Type
M == \p.M AT — B~ \p.- M A -0B
| Axy. M Mxy:Ay. B~ [ \!x. M Pi x:A. B
|  (M,N) A~ & B~ <M, N> A& B
| {E} TAT {E} {4}
p u= pt X
| [pal At @ Bt p,ql A * B
| ] 1 1 1
| [zy,p] Jwy:AY. BT | ['x,p] Exists x:A. B
R === ¢ cA”eX c
| = AT e A X
| RV AT —- B~ |RV A -0 B
| mR|mR A&B #1 R #2 R A&B
| RV Hzy:Al. B~ |R 1V Pi x:A. B
V =z pt X
ay At @Bt | [V,W] A xB
| ] 1 1 1
| [V, W] Jry:AF. BT | [V, W] Exists x{:}A. B
E == let{p} =Rin E leftfocus let {p} =R inE { A}
|V right focus |V

3 Example: Coin Exchange

We have already seen a significant transcription of inference rules into Celf
in Lecture 22 on call-by-value and call-by-name.
Let’s see CLF in action on a simpler example: the old coin exchange.!

q : type.
d : type.
n : type.

d2q : d * d * n -o { q }.
g2d : q o { d *d *n }.

!Source at http://www.cs.cmu.edu/~fp/courses/15816-£16/misc/exchange. c1f
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n2d : n*xn -o {d }.
d2n : d o { n * n }.

We can now perform type-checking by using the formc : A = M. which
verifies that term M has type A. Moreover, ¢ stands for M in the remainder
of the file. The first example is just one step, where we convert three nickels
to a dime and a nickel.

examplel : n * n * n -o {d * n} =

\[ni, [n2, n3]]. { % ni:n, n2:n, n3:n |- _ : d *x n
let {d1} = n2d [n1, n3] in % di:n, n2:n |- _ :d=*n
[d1, n2] % di:n, n2:n |- _ :d*xn

}.

We used, rather arbitrarily, the first and the third nickel to convert to a
dime, leaving the last one in our possession. We showed, after each line,
the antecedent and the succedent, omitting the proof terms.

We can also see if our forwarding chaining engine would find this proof.
Actually it does not, because our forward chaining engine applies rules un-
til quiescence. But since we can exchange coins back and forth, this speci-
fication (when viewed as a program) will never terminate. Once we put a
bound on the number of steps to take, it depends on luck. In this case, with
a bound of 11, it happens to succeed.

Query (11, 1, *, 1) (n * (n * n)) -o {d * n}.
Solution: \[X1, [X2, X31]1. {

let {X4} = n2d [X1, X3] in

let {[X5, X6]} = d2n X4 in

let {X7} = n2d [X2, X5] in

let {[X8, X9]} = d2n X7 in

let {X10} = n2d [X8, X9] in

let {[X11, X121} = d2n X10 in

let {X13} = n2d [X6, X11] in

let {[X14, X151} = d2n X13 in

let {X16} = n2d [X12, X14] in

let {[X17, X18]} = d2n X16 in

let {X19} = n2d [X15, X17] in [X19, X18]}
Query ok.

We can clearly see in the proof that it displays, that it changed back-
and-forth between two nickels and a time and stops forward chaining to
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examine the goal after 11 iterations. It so happens that we do have one
dime and one nickel at that point. Here is one more example, this time
using the more reliable type-checking.

example2 : n *n *n *n *n -o{q}l} =
\[n1, [n2, [n3, [n4, n5]]11]. {

let {d1} = n2d [n1, n2] in
let {d2} = n2d [n3, n4] in
let {q0} = d2q [d1, [d2, n5]] in
q0
}.
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Exercises

Exercise 1 Implement your choice of a finite state transducer like binary in-
crement or compressing runs of b’s as a forward-chaining concurrent logic
program. You should use the technique of destinations to represent the
ordered context linearly so that, for example, the character a might be rep-
resented as msg L a R where L and R represent destinations that tie this
character to its left and right neighbors of the predicate representing the
state of a transducer.

Exercise 2 In the style of Exercise 1, implement a pushdown automaton
that recognizes a string of properly matched parentheses.
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In the last lecture we finally formally introduced the Concurrent Logical
Framework (CLF) [WCPWO02, CPWW02] and its implementation in Celf [SN11].
In this lecture we will use CLF to develop a high level implementation of
SILL, the core of a session-typed programming language. As we will see,
with some thought, it turns out the CLF is an almost perfect vehicle for
specifying SILL. This approach exhibits a perfect isomorphism with the
CLF specification of the sequent calculus for linear logic [BBMS16] that has
previously been presented on purely logical grounds [Pfe94, Ree09].

We then proceed to instrument our semantics with costs, to compute the
work and span of concurrent computations which together can be seen as
measuring the “parallel complexity” of the computation. In our setting, we
count the total number of communication steps that have to be performed,
but other cost measures can be derived in a similar manner.

1 Representing Channels and Process Expressions

At the outset, we assume the following types (to be revised later):
ch : type.
exp : type.

where ch represents channels and exp represents process expressions. Chan-
nels should remain abstract, as in our previous encoding, which means
the type ch is inhabited only by parameters that are introduced during the
computation. Expressions represent concurrent programs.
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At the level of our linear inference semantics, we write proc(c, P) for the
state of a process computing P and providing a service along c. This will
be represented here as proc P C for an expression P and channel C, so we
have

proc : exp -> ch -> type.

Note that we “curry” our propositions, so there are no explicit parenthe-
ses around the arguments of a predicate. The other point to note is the
proc P Cis a type, rather than a proposition. This is because we are work-
ing in a type theory, so our process configuration will look like

pl : proc P1 C1, p2 : proc P2 C2, ..., pn : proc Pn Cn

where each p represents a means to reference the process when describing
the computation. For now, it is perfectly sensible to just think of it as a
proposition.

Next, we consider a simple program

w:AkFsendcw;closec: (c: A®1)

where A is arbitrary and therefore a propositional variable. The first idea
of representation would be

Fsend cw ; close ¢'=send C W (close C)

which would give us the straightforward types

send : ch -> exp -> exp.
close : ch -> exp.

While these types are workable, they are not fully satisfactory as we will
see, and do not fully exploit the expressive power of the framework.
On the receiving side, we might have a matching process

cA®1Fy<recvc;waitc; Py (d: D)

The receive construct binds the variable y with scope wait ¢ ; P,. We rep-
resent is by a corresponding binder with corresponding scope in the log-
ical framework. Recall that in CLF, the binders are represented with a A-
abstraction and written as \x. M. Using this idea we obtain

Ty < recv c;wait c; P, =recv C (\y. wait C (P y))

An interesting part of this representation is that we indicate the possible
dependence of P, on y by writing P y, which means that P will have type
ch —-> exp. Overall, this gives us

LECTURE NOTES NOVEMBER 29, 2016



Concurrent Cost Semantics L24.3

recv : ch -> (ch -> exp) -> exp.
wait : ch -> exp -> exp.

Again, this is servicable, but uninspired. Why? Note that our process
language is linearly typed and in fact we have seen it as being in a Curry-
Howard correspondence with the linear sequent calculus! But our repre-
sentation above is not linearly typed. In both the sender and the receiver
example expressions

send C W (close C) % sender
recv C (\y. wait C (P y)) % receiver

the channel C is apparently not linear. This means that we can write bogus
expressions, namely programs that use their channels not linearly and they
will type-check in the framework, which is unfortunate.

We will sharpen our representation so that only process expression that
are properly linear will be well-typed in the framework. We use differ-
ent techniques for the provider and the client of a channel, although other
choices are certainly possible. On the provider side, we note that an exe-
cuting process

proc (send C W (close C)) C

has a lot of redundancy, because the channel C along which we communi-
cate is mentioned multiple times. What we do instead is for the provider
expressions to leave the provider channel (here C) implicit, so the above be-
comes

proc (send_ W (close_)) C

where the underscore suffix in the name of the send_ and close_ are there
to remind us that they implicitly refer to the channel that is provided. With
that, we can then use linear typing:

send_ : ch -o exp -0 exp.
close_ : exp.

To be formal, the representation function now takes a parameter ¢ (the
channel along which the process provides) so we can recognize the appro-
priate syntactic form.

"'sendcw P = send_ W "P

Mclose ¢ ¢ = close_
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Unfortunately, on the client side this particular device fails. This is be-
cause a client can use many different processes, and the name of a channel
is critical to identify which channel we want to communicate with. So how
do we deal with the apparent non-linearity of C in an expression such as

recv C (\y. wait C (P y))

which uses C twice? A clue to the answer was provided many lectures ago
when we gave the asynchronous semantics. Recall that, for example

proc(c, send ¢ w; P)

/

®C*°

proc(c’, P) msg(c,send c w ; ¢ + ()

where ¢ is a freshly chosen continuation channel. So we’ll use this idea
here, even though for now our semantics is synchronous: sending will cre-
ate a fresh continuation channel for further communication. We bake this
into our representation, rather than using it only as a feature of our seman-
tics. So we define

Ty<recve; QM = recv € (\y. \c."Q,"y ©)

Of course, wait ¢ does not receive a continuation channel, since the associ-
ated process has terminated. So we get

"waitc; Q¢ = wait ¢ Q™
These constructs can now be linearly typed

recv : ch -o (ch -o ch -0 exp) -o exp.
wait : ch -o exp -o exp.

Let’s think about forwarding and spawning. Within a process, forward-

ing is
proc(c, ¢ + d)
which means that forwarding has ¢ as an implicit argument. Similarly,
spawning
proc(d,r < Py ; Qq)

creates a new channel ¢, which is provided by P, (and therefore implicit in
P, and used by @, where it is explicit. This means we have

Te+d° = fwd_ D
"2 P Q¢ = spawn_ P, (\x. "Q, " x)

from which we can read off the following linear types
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fwd : ch -o exp.
spawn : exp -o (ch -o exp) -o exp.

In summary, for the constructs implementing forward, spawn, A ® B,
and 1, we have the following representation function where we assume
that channels c in the programming notation are translated to variables C
with the same name in the logical framework:

Te+d° = fwd_D

"o+ Py Q¢ = spawn_ P (\x. Q x) where "P, " =P,"Q, " =Q
Tsend cw P = send_ WP where"P ¢ =P

Ty < recv c; Qy"'d = recv C (\y. \c. Q y ¢ where '—Qy"'d =Q

Tclose ¢ = close_

Cwait ¢ ; Q¢ = wait C Q where TQ7 = Q

This gives rise to the following linear types for the process constructors:

ch : type.
exp : type.

fwd_ : ch -o exp.
spawn_ : exp -o (ch -o exp) -o exp.

send_ : ch -o exp -o exp.
recv : ch -o (ch -o ch -o exp) -o exp.

close_ : exp.
wait : ch -o exp -o exp.
2 Intrinsic Typing

At this point we achieved a partial victory: only process expressions which
treat channels linearly will be well-typed in the framework, providing a
modicum of correctness checking. However, many meaningless process
expressions can still be represented. For example,

T4 closex;y<recve;waitz;d<+y

does not make much sense since close x is matched up with a recv z instead
of a wait. And yet, its translation
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examplel : exp =
spawn_ (close_) (\x. recv x (\y. \x. wait x (fwd_ y))).

type-checks perfectly.

Of course, the problem is that the translation enforces linearity but does
not enforce types. If we want to achieve this additional amount of precision,
we need to index both channels and expressions with their session types.
Fortunately, this can be done quite easily. We don’t even need to change
the representation function, just make their CLF types more precise. To
start with we define (on our small fragment so far):

tp : type.
tensor : tp -> tp -> tp.
one : tp.

ch : tp -> type.
exp : tp —-> type.

Processes proc P C define a process of type A that offers a channel of type
A, so we have
proc : exp A -> proc A -> type.

This declaration is schematic over A and Celf type reconstruction will de-
termine A wherever it sees proc P C from P and C.

For the language constructs, we just need to read the type indices off
the typing rules. We show a few examples, starting with identity.

id
d:AI—c<—d::(c:A)I

Recall that "¢ «+ d ¢ = fwd_ D which means that
fwd : ch A -0 exp A.

Here, the first A comes from the type of the channel d, while the expression
comes from the type of the (implicit) channel c.
Similarly

AbFEP, i (z:A) Ax:AE Qg (c:O)
AANFz+— P Qpi:(c:C)

cut
Since
Fx <« P, ; Q: “=spawn_"P, "™ (\x. "Q, " x)

we obtain
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spawn_ : exp A -o (ch A -0 exp C) -o exp C.
As a last detailed example, let’s look at receiving by the client.
Ay A, x:BE Qy i (c: CO)
Az A®BFy<+recvz; Qy:(c:C)

QL
with
"y<recva; Q" =recv X (\y. \x."Q, "y x)
recv : ch (tensor A B) -o (ch A -o ch B -0 exp C) -o exp C.

Summarizing all the types so far, we have

tp : type.
tensor : tp -> tp -> tp.
one : tp.

ch : tp -> type.
exp : tp —> type.

fwd_ : ch A -0 exp A.
spawn_ : exp A -o (ch A -0 exp C) -o exp C.

send_ : ch A -o exp B -0 exp (tensor A B).
recv : ch (tensor A B) -o (ch A -0 ch B -0 exp C) -o exp C.

close_ : exp one.
wait : ch one -o exp C -o exp C.

proc : exp A -> ch A —-> type.
Now our previous example

examplel : exp =
spawn_ (close_) (\x. recv x (\y. \x. wait x (fwd_ y))).

will no longer type-check, but fail with the (slightly edited, replacing two
variables with underscores) message

Type-checking failed in declaration of examplel on line 17:
Unification failed: Constants tensor and one differ

Object 1 has type:

ch one

but expected:

ch (temsor _ _)
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3 Choice

Choice, whether external or internal is not significant, reveals a new chal-
lenge. We decide to only implement binary choice just to keep the encoding
as straightforward as possible. We use internal choice as our example. We
have the following constructs

cm ; P
C.TT2 P
case c (m = Q1 | m2 = @Q2)

Since A® B is also positive, the sending constructs use the provider channel
and therefore have an implicit argument. We use select1_ and select2_
as our concrete names for the two sending constructs.

Teamy y P° = selectl_"P°
e 3 P = select2_"P¢
Fcasec (m = Q1| T2 = @Q2)™ = case C (\c. "Q1%c) (\c. "Q%c) 7?2

The problem here is the last line. Let’s examine the typing rule.

AcAFQ:(d:D) AeBFQy:(d: D)
A,c:A@Bl—casec(W1:>Q1 ’7T2=>Q2) b (dD)

®L

Since @ is an additive connective, all channels are propagated into both
branches of the case construct. In the first attempted encoding above, how-
ever, the context will be split between Q1% and "Q27. So we need to
exploit that the framework also has an additive connective, namely exter-
nal choice A~ & B~, with the proof term being a pair (M, N).

Teamy y P° = selectl_"P°

ey P° = select2_"P¢

Ccasec (m = Q1 | m2 = Q2)™ = case C <(\c. "Q1™c),(\c. TQx™ ¢)>
which yields the types

selectl_ : exp A -o exp (plus A B).
select2_ : exp B -o exp (plus A B).
case : ch (plus A B) -0 (ch A -0 exp C) & (ch B -0 exp C) -o exp C.
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4 Operational Semantics: Forward and Spawn

Ideally, at the highest level of abstraction, we would like
c/fwd : proc (fwd_ D) C -o { C =D }.

that is, C and D are globally identified. Unfortunately, we omitted equality
as a type constructor in CLE, so we need a different idea. The the simplest
seems to be to actually synchronize with the provider of D and relabel it to
become the provider of C. Since our calculus is linear, there will be exactly
one provider of D, so this does not create any ambiguity or race conditions.

c/fud : proc P D * proc (fwd_ D) C -o { proc P C }.

The forwarding process itself of course terminates in this step. We can see
how the decision to leave the providing channel implicit helps here: if P
referred to the channel D multiple times as the concrete process syntax does,
then we would actually have to substitute C for D throughout P, which is a
somewhat complex operation. In the rule above, all implicit references are
now to C, where they previously referenced D.

For process spawn we need to create a fresh channel and start a new
process. As usual, we use existential quantification in the framework to
create a fresh parameter.

c/spawn : proc (spawn_ P (\x. Q x)) C
-o { Exists a. proc P a * proc (Q a) C }.

We see that P provides along the new channel a, while (Q a) is a client of
a.

5 Operational Semantics: Communication

The synchronous semantics is now a straightforward transcription of our
inference rule, taking care of creating and using continuation channels. As
we did for the description of the operational semantics we use the notation
c’ for the continuation channel of c.

c/tensor : proc (send_ W P) C * proc (recv C (\x. \c’. Q@ x c’)) D
-0 { Exists c¢’. proc P ¢’ * proc (Q W c’) D }.

In the right-hand side of this rule, we write Q W c’ to substitute W for x
and the continuation channel ¢’ for the bound variable c¢’. This takes ad-
vantage of S-reduction at the framework level to implement the name-for-
name substitution at the process level.
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For 1, there will be no continuation channel so we just synchronize the
close_ with the matching wait.

c/one : proc (close_) C * proc (wait C Q) D
-o { proc Q D }.

There are two rules for A & B, depending on whether the first or the
second branch is selected.

c/plusl : proc (selecti_ P) C * proc (case C <(\c’. Q1 ¢’),(\c’.

-o { Exists c’. proc P ¢’ * proc (Q1 c’) D }.

c/plus2 : proc (select2_ P) C * proc (case C <(\c’. Q1 ¢’),(\c’.

-o { Exists c’. proc P ¢’ * proc (Q2 c’) D }.

Note that even though no types are mentioned, these rules are type-
checked, so both linearity and session-typing must at least be consistent.
Of course, we can still make mistakes that will pass this test. For example,
if we replace Q2 by Q1 in the c¢/plus2 rule, CLF type reconstruction will still
succeed by giving both branches the same type. We would need formal
metatheory to catch such an error, but there is currently no tool to support
such an activity.

We can try our semantics on some simple example: spawning a process
of type 1 which just closes, in parallel with one that just waits for that to
finish.

#query * 1 * 1

Q2 c’)>) D

Q2 c’)>) D

Pi c0. proc (spawn_ (close_) (\cl. wait c1 (close_))) cO -o {proc P cO}.

The Celf directive #query * 1 * 1 means that we run without bound, ex-
pecting 1 solution, looking for arbitrarily many, and running the query only
once. We write Pi c0O. to create a fresh initial channel c0. On the right
hand side of this negative type, we have proc P c0 which will test if the
tinal configuration (that is, the one where we have quiescence) consists of a
single process offering along c0. It will show this process, which we expect
to be close_. We get:

Solution: \!cO0. \X1. {
let {['a, [X2, X3]1} = c/spawn X1 in
let {X4} = c/one [X2, X3] in X4}

#P = close_

Query ok.
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The resulting proof term is a representation of the computation of the pro-
cess expression above, that is, a sequent of configurations. Let’s write in
the state of the configuration at each line as a comment with the types. We
mark persistent variables with an exclamation mark !.

Solution: \!cO. \X1. { % 'cO:ch one, Xl:proc (spawn_ ..

let {['a, [X2, X3]]1} = c/spawn X1 in % !cO:ch one, 'a:ch one,

% X2:proc (close_) a, X3:proc (wait a ..
let {X4} = c/one [X2, X3] % 'cO:ch one, 'a:ch one, X4:proc (close_) cO

in X4}
#P = close_
Query ok.

We see that while expressions are typed linearly, channels are not linear
in configurations. This is not directly possibly, since channels appear in in-
dex positions of processes that provide or use them. However, the process
that provides each channel is treated as a linear resource.

Let’s write one more example, which represents a kind of negation,
where we think of bool = 1 & 1. The for ¢ : bool we think of c.7; ; close ¢
as true and c.m ; close c as false. The following program spawns a process
which behaves like false, which is then negated by its client.

C1 < (61.7T2 3 close Cl) 3
case ¢1 (m = co.my ; close ¢
| Ty = cg.71 ; close Co)

In the CLF encoding:

Pi c0. proc (spawn_ (select2_ close_)
(\cl. case c1 <(\c2. wait c2 (select2_ close.)) ,

(\c3. wait c3 (selectl_ close_))>)) cO

As expected, this will execute in 3 steps: one spawn, one select, and one
close, and end up as a process wishing to send m; and then closing the
channel ¢y.

Solution: \!'cO0. \X1. {
let {['a, [X2, X3]1} = c/spawn X1 in
let {['c’, [X4, X511} = c/plus2 [X2, X3] in
let {X6} = c/one [X4, X5] in X6}

#P = selectl_ close_

Query ok.
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The signature and queries from this section can be found with the course
materials'. The completion with the remaining connectives A — B and
A & B is also available online?.

6 An Asynchronous Semantics

The representation and typing of all channels and process expressions re-
mains the same when we want to give an asynchronous semantics, but we
have two propositions proc(c, P) and msg(c, P) to define the operational
semantics. Only certain kinds of messages are permitted, but we will not
formalize this within the judgments.

First, spawn does not change, but a forwarding process interacts now
with a message rather than a process. Because our language fragment has
only positive connectives so far (A® B, 1, A® B) all messages come from the
provider of D, so the rule can essentially stay the same. If we add negative
propositions, forwarding may also need to interact with messages coming
along C (see Exercise 2).

proc : exp A -> ch A -> type.
msg : exp A -> ch A -> type.

c/fwd : msg P D * proc (fwd_ D) C
-o {msg P C }.
c/spawn : proc (spawn_ P (\x. Q x)) C
-o { Exists a. proc P a * proc (Q a) C }.

The simple send now decomposes into two. As a reminder, we show
the formulation using linear inference.

proc(c,send c w ; P)

®C¢
proc(c’, P) msg(c,send cw ; ¢+ ) *

msg(c,send cw ; ¢ < ') proc(d,y < recv ¢ ; Qy)
proc(d, [¢'/c]Quw)

In CLF syntax, these become

®Cr

"http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-sync.
clf

http://www.cs.cmu.edu/~fp/courses/15816-£16/misc/session/
session-complete-sync.clf
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s/tensor : proc (send_ W P) C
-o { Exists c’. proc P ¢’ * msg (send_ W (fwd_ c’)) C }.
r/tensor : msg (send_ W (fwd_ C’)) C * proc (recv C (\x. \¢’. Q x c’)) D
-o { proc (Q WC’) D }.

We see that the decision to parameterize by a continuation channel works
out well. Note that send creates the continuation channel, which is then
received together with the channel w.

The remainder of the rules are divided analogously into send and re-
ceive rules.

s/one : proc (close_) C
-o { msg (close_) C }.

r/one : msg (close_) C * proc (wait C Q) D
-0 { proc Q D }.

s/plusl : proc (selectl_ P) C
-o { Exists c’. proc P ¢’ * msg (selectl_ (fwd_ c’)) C }.

r/plusl : msg (selectl_ (fwd_ C’)) C * proc (case C <(\c’. Q1 ¢’),(\c’. Q2 c’)>) D
-o { proc (Q1 C’) D }.

s/plus2 : proc (select2_ P) C
-o { Exists c’. proc P ¢’ * msg (select2_ (fwd_ c’)) C }.

r/plus2 : msg (select2_ (fwd_ C’)) C * proc (case C <(\c’. Q1 ¢’),(\c’. Q2 ¢’)>) D
-o { proc (Q2 C’) D }.

Now, for example, the second query (slightly modified to send true in-
stead of false) ends in a configuration with no remaining process but two
messages, transmitting 7, followed by a close. We capture this when we
examine the final configuration by expecting it to consist of two messages,
one with a new destination (we couldn’t predict what it is called, so we
quantify over it) and a second one with the original destination.

#query * 1 *x 1
Pi c0. proc (spawn_ (selectl_ close_ )
(\c1. case c1 <(\c2. wait c2 (select2_ close_)) ,
(\c3. wait c3 (selectl_ close_))>)) cO
-o { Exists c1. msg P c1 * msg (Q cl1) cO }.

Indeed, we obtain the expected answer and a proof term representing
the computation.

Solution: \'!'cO. \X1. {
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let {['a, [X2, X3]1} = c/spawn X1 in
let {[!'c’, [X4, X5]1} = s/plusl X2 in

let {X6} = s/one X4 in
let {X7} = r/plusil [X5, X3] in
let {X8} = r/one [X6, X7] in

let {['c’_1, [X9, X10]1} = s/plus2 X8 in
let {X11} = s/one X9 in [!c’_1, [X11, X10]1}

#P = close_
#Q = \X1. select2_ (fwd_ X1)
Query ok.

Due to the increased parallelism afforded by asynchronous communica-
tion, some steps here could be carried out in parallel. For example, the
sending of close and the receiving of 7; are independent and could happen
in either order. We can see that because there is no dependencies between
these two lines: X6 does not occur in r/plusl [X5, X3] (nor does X7 occur
in s/one X4).

let {X6}
let {X7}

s/one X4 in
r/plusl [X5, X3] in

By true concurrency, the computation where these two lines are swapped
are indistinguishable from the given one.

The signature and queries from this section can be found with the course
materials®. The completion with the remaining connectives A — B and
A & B is also available®.

7 A Cost Semantics Tracking Total Work

We now want to instrument our semantics to compute the total work per-
formed by a concurrent computation. We define this here as the total num-
ber of communication steps that take place, and for simplicity we restrict
ourselves to the synchronous semantics (see Exercise 4).

For every process, we keep track of the total work that it has performed.
We count here the number of send operations. Since every message that is
sent is also received, counting the number of receives just doubles this cost.

*http://www.cs.cmu.edu/~fp/courses/15816-f16/misc/session/session-async.
clf

*http://www.cs.cmu.edu/~fp/courses/15816-£16/misc/session/
session-complete-async.clf
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Our basic predicate for linear inference is now proc(c, w, P), where w tracks
the amount of work performed by this process so far. We begin with the
rules for tensor, which is straightfoward.

proc(c, w,send c e ; P) proc(d, w’,y < recv ¢ ; Qy)

®C
proc(c,w + 1, P) proc(d,w’, Q.)

Spawning makes sure the new process starts at work 0.

pFOC(d, w, T Py Qm)
proc(c, 0, P.) proc(d,w,Q.)

spawn®

Forwarding is interesting, because the work performed by the forwarding
process must be accounted for. So we have to add it into the process that it
notifies of the forwarding.

proc(d,w, P) proc(c,w’,c + d)

fwd
proc(c, w + w', P)

If we decided to count forwarding as communication, we would send the
cost of the resulting process to w + w’ + 1. Similar reasoning applies to
process of type 1.

proc(c, w, close ¢)  proc(d,w’,wait ¢ ; Q)

1C
proc(c,w + w' +1,Q)

The remaining rules and their transcription into Celf follows the pattern of
what we have done before.

For a work semantics for asynchronously communicating processes, see
Exercise 4.

8 A Cost Semantics for Span

The span of a concurrent computation can be defined in different ways. We
can say that the span consists of the number of communication steps where
everything that can happen in parallel, does. Another way to define it is by
looking at the dependency graph induced by the truly concurrent seman-
tics and define it as the longest path from the root (where the computation
starts) to the leaf (where the computation ends).
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We specify this through a predicate proc(c, t, P), where t is the earliest
time that this process could be at the given stage of the computation. Again,
we only count explicit communication steps as costing time, but more com-
plex measures are certainly possible.

We begin again with sending a channel along a channel. The earliest
the two processes can synchronize is at time max(¢,t'), and then we have to
add 1 to be able to continue.

proc(c,t,send c e ; P) proc(d,t',y < recv ¢ ; Qy)

®C
proc(c, max(t,t') + 1, P) proc(d, max(t,t') + 1, Q)

Spawning makes sure the new process starts with the the clock of the parent
process, because that is the earliest time it could have been spawned. If we
like, we could also count the spawn itself; here we do not.

proc(d,t,z < Py ; Q)
proc(c, t, P.) proc(d,t,Q.)

spawn®

Forwarding can take place at the earliest that either process could have
gotten to this point.

proc(d, t, P) proc(c,t',c < d)

fwd
proc(c, max(t,t'), P)

If we decided to count forwarding as communication, we would set the
cost of the resulting process to w + w' + 1. Similar reasoning applies to
process of type 1.

proc(c, t,close ¢) proc(d,t’,wait ¢ ; Q)

proc(c, max(t,t') + 1, Q)

1C

One reason we are counting communication steps that advance the type,
but not spawns or forwards is that this allows us to use the type as a guide
for the number of communications that must happen, even if we do not
necessarily know their timing.

Again, transcription into CLF does not pose any particular challenges,
except perhaps implementing the arithmetic.
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Exercises

Exercise 1 Our encoding takes advantage of the asymmetric nature of intu-
itionistic sequents so we can leave the offering channel implicit. Revise this
implementation so that the offering process is abstracted over the offering
channel, which would give the type

proc : (ch A -o proc A) -> ch A -> type.

Of course, the encoding of process expressions has to change accordingly
write. Encode this approach in Celf, rewrite the examples in the new syn-
tax, and compare.

Exercise 2 In the case of the asynchronous semantics, the simple rule
c/fwd : msg P D * proc (fwd_ D) C -o {msg P C}.

is no longer sufficient to implement forwarding. Exhibit a concrete, well-
typed process that will get stuck with only this rule and extend the imple-
mentation of forwarding that it works for all the connectives.

Exercise 3 Write a cost semantics that counts the total number of processes
that will be created during an execution.

Exercise 4 Give a cost semantics counting total work for asynchronous com-
munication. As before, only count sending of messages (not receipt) and
exclude forward and spawn.

Exercise 5 Give a cost semantics for span for asynchronous communication.
As before, only count the sending of message (not receipt) and exclude
forward and spawn.

Exercise 6 Extend the representation of SILL with recursively defined types
and recursively defined processes so that you can encode programs such as
the queue or stack. Discuss some of the options and obstacles, and imple-
ment your extension, with example, in Celf.

LECTURE NOTES NOVEMBER 29, 2016



Concurrent Cost Semantics L24.18

References

[BBMS16]

[CPWWO02]

[Pfe94]

[Ree09]

[SN11]

[WCPW02]

Peter Brottveit Bock, Alessandro Bruni, Agata Murawska, and
Carsten Schiirmann. Representing session types. Unpublished
manuscript, presented at the seminar in honor of Dale Miller’s
60th birthday, December 2016.

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin
Watkins. A concurrent logical framework II: Examples and
applications. Technical Report CMU-CS-02-102, Department
of Computer Science, Carnegie Mellon University, 2002. Re-
vised May 2003.

Frank Pfenning. Structural cut elimination in linear logic.
Technical Report CMU-CS-94-222, Department of Computer
Science, Carnegie Mellon University, December 1994.

Jason C. Reed. A Hybrid Logical Framework. PhD thesis,
Carnegie Mellon University, September 2009. Available as
Technical Report CMU-CS-09-155.

Anders Schack-Nielsen. Implementing Substructural Logical
Frameworks. PhD thesis, IT University of Copenhagen, January
2011.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgments and
properties. Technical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University, 2002. Revised
May 2003.

LECTURE NOTES NOVEMBER 29, 2016



Lecture Notes on
Resource Semantics

15-816: Substructural Logics
Frank Pfenning

Lecture 25
December 1, 2016

In this lecture we explore a new presentation of substructural logics, one
where resources are explicitly tracked in the judgments. It is a new form of
semantics, given by intuitionistic means, while generally semantic investi-
gations take a classical point of view even if the studied subject is intuition-
istic.

In the present lecture we change the judgments, but we try to disturb
the nature of proofs as little as possible. In the following lecture, we will
take a less restrictive view, which leads to new ways to reason linearly.

One of the important reasons to investigate a resource semantics is that
it allows us to express new properties and relations, beyond what is pos-
sible in linear logic itself. Further materials and properties on resource se-
mantics are given by Reed [Ree09].

1 Resource-Aware Judgments

In order to give a Kripke-like resource semantics for ordered logic we la-
bel all the resources with unique labels representing that resource. In the
succedent we record all the resources that may be used, which may be a
subset of the resources listed in the antecedent. So a sequent has the form

Ailaa], ..., Aplan] F Clp

where p is formed from oy, ..., a, with a binary resource combinator *-’.
In addition we have the empty resource label ¢, which is the unit of *-’.
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Resource combination is associative, so we have the laws

=

- € p
q q
-r p.

~ ™

(g-7)

We will apply these equations silently, just as we, for example, silently re-
order hypotheses.
By labeling resources we recover the property of weakening.

(p-q

Weakening: If ' F Cp| then T, Ala] F C[p]. Here a must be new
in order to maintain the invariant on seqents that all antecedents
are labeled with distinct resource parameters.

Contraction in general cannot be quite formulated, since we cannot con-
tract A[a], A[3] to A[a - B] because, at least for the moment, hypotheses can
only be labeled with resource parameters and not combinations of them.
Nevertheless, we treat antecedents persistently by propagating them to all
premises of the rules.

The identity is quite straightforward:

T Afal - Al]

Cut is a bit more complicated, because resource labels in succedents are
more general than in antecedents. But we have already seen this in substi-
tution principles with proof terms, so we imitate this solution, substituting
resources p for resource parameter «:

' Alp] T,AlalFCJl-a- 7]
ECll-p-r]

cut

We now revisit each of the connectives so far in turn, deriving the ap-
propriate rules. The goal is to achieve an exact isomorphism between the
linear logic inference rules based on hypothetical judgments and the in-
ference rules based on resources. Hidden behind the isomorphism is the
equational reasoning in the resource algebra.

Fuse. The resources available to achieve the goals are split between the
two premises. Previously, this was achieved by splitting the context itself.
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Note that we use I here to stand for a context in which all assumptions are
labeled with unique resource parameters.

' A[p] T+ Bl
I'-AeBp-(]

R

In order to apply a left rule to a given assumption A[a], the resource oo must
actually be available, which is recorded in the succedent. Upon application
of the rule the resource is no longer available, but new resources may now
be available (depending on the connective).

I',(Ae B)la], A[B], B[y] = C[l- (B -7) - 7]
I'(AeB)[a|FC[l-a-7]

o5

In this rule, a is consumed and new resources 3 and « are introduced. By
associativity, we could omit the parentheses in the resources of the premise.

Under and Over. The intuitions above give us enough information to
write out these rules directly, modeling the linear sequent calculus.

I', Ala] F Bla - p] o I', Ala] - Blp - af
I'-(A\ B)[p| L'=(B/A)p

/R

In the elimination rule we see again how a split between the antecedents
is represented as a split between the resources.

I, (A\ B)[a] - Alp] T, (A\ B)a], B[] = Cl- B - 7]

\L
IL(A\B)[a]FC[l-p-a-r]

By strengthening, we can see that the antecedent (A \ B)[«a] can not be used
in either premise. At this point we can easily see how B / A should work,
just reversion « - p in the succedent of the conclusion.

I, (B/ Ao - Alp] T',(B/ A)a], BIg] - C[l- 5 -7]

Nz
I(B/A)aFCl-a-p-r]

Unit. Here, we just have to enforce the emptiness of the resources.
L. 1ol FC[L-7]
1R
I'F 1[€] 1o FCll-a- 7]

1L
In the 1L rule we replace a by € and then use its unit property to obtain /- r.
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2 Exponentials

Our representation technique for the sequent calculus using explicit re-
sources is already rich enough to handle persistence. We just allow an-
tecedents Ay[¢] together with resource-bound Ao [a]. In | R, we effectively
“check” the emptiness of resource-bound assumptions. All propositions
annotated here with resources are ordered.

' Ayle] R T, (loAu)[a], Ayle] = C1 - 7]
I (l5Au)le] T, (lod)[a] FC[l-a - 7]

I'F Ale] R T, (1eA)[e], Ala] F C[l - ac - 7] sz
T (T54)e L, (1o A)[e] = C[L - 7]

The rules for the remaining connectives are easy to fill in, including the
expected rules for structural proposition A,.
One can also write A4, instead of the more verbose A|e].

3 Correspondence

It is now easy to establish that the resource calculus is in bijective corre-
spondence with the ordered sequent calculus. Moroever, it satisfies the
expected properties of cut and identity. Key is the crucial strengthening
property.

For the remainder of this lecture we assume that a resource context has
hypotheses of the form Ay[¢] and Ao[a], where all resource parameters «
are distinct, and the succedent has the form C[p|, where p is a product of
distinct resource parameters. We write a ¢ p if a does not occur in p. The
equational theory for resources remains associativity for *-” with unit e.

Theorem 1 (Strengthening for Resource Semantics) If I', A[a] - C[p] and
a & p then T' & Clp| with the same proof.

Proof: By induction on the structure of the given proof. 0
Theorem 2 (Identity) In the system where identity is restricted to atomic propo-
sitions, general identity is admissible. That is, Ala] = Ala] for any proposition

A.

Proof: By induction on the structure of A. O
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Theorem 3 (Cut) In the system without the cut and cut! rules, they are admis-
sible. That is, for p = q = € or ¢ = o, we have

C'FAlp] T,A[qFC[l-q-r]
TECl-p-r

cut

Proof: By nested induction, first on the cut formula A, then on the structure
of the proofs in the two premises (one must become smaller while the other
remains the same). a

In order to formulate a correspondence theorem, we need to express re-
lationships between assumptions. We write (A1, ..., Ay)[e] = Aile], ..., Ay[€]
and (41,...,A,)[d] = Ai[aa],..., Ap[ay]. Furthermore, we need to con-
struct a pair of contexts I'y; (0o from given a resource context. For ease of
definition, we do not require a separation of zones but generate a mixed
context with linear and structural antecedents that can then be separated.

e = ()
/ /
rr )‘pq - F‘mr ‘q

old)la = Ao
Aola))le = ()
Agle)le = Ay

Because of the equational theory, this definition has some nondetermin-
ism. Under the general assumptions of this section, I'|,, will be defined and
unique.

Theorem 4 (Correspondence)
(it) IfT + Clp] then T|, - C.

Moreover, the correspondence between linear and resource proofs is a bijection.

Proof: By straightforward inductions, exploiting strengthening. O

4 Linear Resource Semantics

So far have presented the resource semantics for an ordered logic. How
do we get one for linear logic? Actually, this is quite easy: we just add the
equation

bp-g=q-p
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and we get linear logic! Under and over now collapse, because - p = p - a.
In other ways, the rules remain exactly the same.
What about structural logic? We get this by identifying all terms

b=c¢

which have already done implicitly by writing structural antecedents as
Ale].

An interesting intermediate point is affine logic. For this, it seems best
to postulate a resource inequality, defined here (in the presence of symme-
try, that is, linear logic) as

p<gq iff drp-r=gq

and then changing the rule to allow subset at some critical junctures, such

as
a<p y
T, Ala] F Alp] |
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Originally, linear logic was conceived by Girard [Gir87] as a classical sys-
tem, with one-sided sequents, an involutive negation, and an appropriate
law of excluded middle. For a number of the applications, such as func-
tional computation, logic programming, and implicit computational com-
plexity the intuitionistic version is more suitable. In the case of concur-
rent computation, both classical and intuitionistic systems may be used, al-
though the additional expressiveness afforded by the intuitionistic system
seems to have some advantages even in that setting.

In this lecture we present classical linear logic and then show that we
can easily interpret it intuitionistically. Briefly, classical linear logic can be
modeled intuitionistically as deriving a contradiction from linear assump-
tions. This is shown via a so-called double-negation translation. Its paramet-
ric nature allows a number of additional variants of classical linear logic to
be explained intuitionistically, in particular the so-called mix rules.

These lecture notes do not present the operational semantics of classi-
cal linear logic as a basis for concurrency which we presented in lecture.
The one we presented can be found in Section 5 of [CPT16] in a somewhat
different notation, another semantics is given by Wadler [Wad12].

1 Classical Linear Sequents

A sequent in classical linear logic just has the form

Ay, A,
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where Ay, ..., A, are propositions. The comma separator can be read as a
form of disjunction, which does not exist in intuitionistic linear logic.

An important aspect of the system is a negation operator, written as A+,
which is defined for all propositions except that atomic ones. As we define
the rules for the classical connectives, we will also have to define negation.
We already note that

(Ahy =4

is one of the basic laws.
The identity emphasizes the fact that reasoning in classical linear logic
is akin to deriving a contradiction.

HA AL &

Cut is somehow the dual—we do not cut a proposition, but a proposition
and its negation.
F3,A FY AL

Y,y

cut

2 Multiplicative Connectives

The connectives now are no longer defined by left and right rules, but by
right rules, negation, and right rules for the negated proposition. We can
see that this must be the case by looking at the cut rule.
The multiplicative conjunction A® B is quite similar to the intuitionistic
version.
FX,A FY.B

Y, A® B

The negation (A ® B): = AL 2 Bt introduces a new connective ' which
does not exist in intuitionistic linear logic.

%, A, B
— %
%, A% B

It is a multiplicative form of disjunction, and clearly satisfies the law of
excluded middle A ’® A+. We can check the cut reduction and identity
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expansion, just as we did in the intuitionistic case. First, the cut reduction:
FY, A FY.B FY AL Bt
® s
FY, Y. A® B - Al BE
cut
F3, X2

_>R
F¥,A BY AL B
Y. B -x,%, Bt
FE, Y,

cut

cut

Second, the identity expansion:

H A AL da + B,Bt s

g F A® B, A+, Bt
1dAgB s
FA®B,Al 9 Bt —R FA®B,At 9 Bt

We will not continue to do so, but leave it as an exercise to check cut reduc-
tion and identity expansion.

The multiplicative units do not present surprises. Note that unlike A ®
B, 1 can actually be given meaning intuitionistically.

5>
— 1 N 1
1 1t =1 Fy, L

Not surprisingly, L is the identity for %.

3 Additive Connectives

The additives do not differ much in their intuitionistic and classical ver-

sions.
F3, A X, B
— ® —— Do
FX,A® B FX,A® B

In a classical calculus, @ and & are duals

(A® B)t = At & B+
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and the rule for & are as expected, copying the context ¥ to both premises.
FY,A FY.B
-3, A& B

The units present no particular surprises or difficulties.

FX,T TL=0 no rule for 0

4 Exponential Modalities

Girard’s formulation of the modalities was in terms of explicit rules for
weakening, contraction, and dereliction. However, it is also possible to
present classical linear logic using two judgments, truth and possibility.
This is what Andreoli [And92] calls the dyadic formulation of linear logic.
We show here the original rules for reference; other two-sided formulations
can be found in [CCP03]. Note that Girard’s formulation does not lend it-
self to a structural proof of cut elimination, which Andreoli did not present
but can be found in [CCP03] and goes back to an another unpublished tech-
nical report [Pfe94].
In order to explain the rules for !A we have to define its dual,

(1At =24+

Persistent resources become formulas ? A, because we are working just on
the right of the sequent. The ! rule requires there to be no linear resources,
but permits persistent ones. These are now marked with 7, so we obtain

F?Y, A
—
F2x, 147
Conversely, a persistent formula is true, which becomes
FX,A
3,74

?

Why do not retain a copy of 7A in the premise, because we have explicit
rules for weakening and contraction of persistent propositions.

F % FX, 74,7A

SRy Weaken W Contract
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5 Double-Negation Interpretation

We now follow [CCP03], interpreting classical linear logic in intuitionistic
linear logic. The technique of a double-negation translation is quite common
in logics [Fri78] and is related to conversion to continuation-passing style
in programming languages.

Roughly, we think of classical - ¥ as intuitionistic ~[X] F L, that is,
deriving a contradiction from the negation of the translation of X. It is not
immediately clear what should play the role of negation on the intuitionis-
tic side, however. Instead of using L and —A (which we have yet to define
intuitionistically), we use a new atomic proposition p and translate - 3 to
[X], — p I p. We will later exploit the fact that the translation is parametric
in p by considering some choices for what p might be. We write

NpA:A—Op

to emphasize the interpretation of the translation as a form of negation. We
usually omit the p, since it is never changed throughout a translation.
The theorem we are striving for is

S ~p[E] Fp

Instead of just presenting the translation, we consider various cases to see
what it should be. For example, what happens with atoms? Could we just
translate atoms to themselves?

— id
+ P, Pt
If we set
[P} = rpP
[P] = ~P
This means we would have to prove

which is
P —p,(P—p) —pkp
and easy to show.

Let'stry A ® B.
FX.A FY.B

-Y,Y, A® B
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If we generate a tensor, but double-negate the subformulas,
[A® B] = (~~[A]) @ (~~[B])
then the sequent we have to show after translation would be
~[ELA~ET ~ (v~ [AD @ (~~[B]) Fp

After applying —L and closing the subgoals with the identity, we are look-
ing at

, : —id

~EL~ETE (~v~[AD © (~~[B]) prp

~[E] ~ 2 ~ (v~ [AD © (~~[B]) Fp
Now we can apply the ®R rule and then —R to bring ~[A] back to the
left-hand side.

~EL~[Al e ~[¥]~[BlFp
~[E] F ~~[A] ~[¥]F ~~[B] .
~[X] ~[ETF (~~[A]) @ (~~[B]) php
~EL A~ ~ (v~ [A] @ (~~[B]) Fp
At this point we can apply the “induction hypothesis” of the translation,
asserting that the open premises follow since - ¥, A and - 3, B.
For A’ B, matters are a bit more complicated.
%, A, B
—_— %
FX,A®B
Since there is no % connective on the intuitionistic side, we have to translate
uses of the ’® rule into application of the ®L rule. This makes sense, since

'® was justified as the formal dual of ®. This means we have to distribute
the negations a bit differently.

[A® B] = ~(~[Al © ~[B])

Then we get (in somewhat abbreviated form)

id

~[%], ~[A], ~[B] o
~[%], ~[A] © ~[B]
~[E], ~~(~[A] @ ~[B])

—oL,—R
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where the open subproof follows again inductively, from the translation of
the premise of the classical  rule.

We can continue to reason along these lines. For connectives where
there is an intuitionistic counterpart, we just double-negate the subformu-
las. For those where there is not, we negate once, use the intuitionistic dual,
and then negate once again. This leads us to the following table.

[P] - P
(P1 = ~p

[A©B] = ~~[A] © ~~[B]
[A®B] = ~(~[A]®~[B])
1] -1

1] = ~1

[AeB] = ~~[A]&~~[B]
[A&B] = ~~[A] &~~[B]

o =0
M =7

4] = 4]
PA] = ~infA]

There are more economical translations where some double negations are
omitted, but the one shown above seems most systematic.

6 Correctness of the Translation

From our little derivation, it is easy to see the following:

Theorem 1 (From CLL to ILL) Ift- X then ~[X], F p.

Proof: By induction on the structure of the given derivation. A few lemmas
are needed for the exponentials (see [CCP03]), to bridge the gap between
the monadic and dyadic presentations of the logic. O

The converse requires an entirely different technique. First we observe
that intuitionistic linear logic makes some finer distinctions (especially in
the treatment of linear implication). If these distinctions are ignored, we
can prove the result classically. In this translation, we think of A — B =
AL 9 B, on the classical side.
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Lemma2 IfT'; A — Athent (IT), A+ A

Proof: By induction on the given derivation, using some lemmas regarding
classical provability. O

The second lemma we need is that, classically, the translation is essen-
tially the identity, if we use L.

Lemma 3 For any proposition A, [A] | L4,

Proof: A simple induction on the structure of A, mostly exploiting that

CLL
~1~ 1A= A O

Theorem 4 (From ILL to CLL) If ~[X], & p then - .
Proof: If X = A,,..., A,, we have
ol ALy rpl Al F o
Since classical logic proves more (Lemma 2), we get
= ([l - (ol An],) e

This proof is parametric in p, so we can substitute p = L throughout the
proof and obtain

F(~1 [[Al]]L)L’ R (NLHATLHL)J_7 1
L L L : CLL
Now we recall that (~; A)~ = (A9 1) =(A®1).Sincce A1l = Awe
can use cut multiple times and arrive at

FlA] - [AR] L

Then we recall that 1+ = 1 so we can cut this with I- 1 to get

FlA - [AR] L

Finally recall that [A] | LA Using cut A number of times we get
FAL..L A,
which is what we needed to show. 0
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7 Mix and Other Variations

In his original paper [Gir87], Girard also discussed a variant of linear logic
with the rules of mix. They are

. FY RY
— mixg ——— mixy
- S

It turns out that the logic with these roles (and good proof-theoretic proper-

ties), can also be characterized with axioms postulating that L Lhy. Why
is that? If L and 1 are equivalent, this means we have - 1,1 and - L, L
sincelt = Land L+ =1.

Then we can derive mixg as

— 1
F1 HL, L
— cut — 1
L F1
cut
[
and mixs as
Y
1
Ly YL F1,1
i cut
3, L FXY1
cut
-3,y

Now we can proceed as in the previous section, and exploit the parametric-
ity of the translation by using

p=1
In the crucial step, we use

MIX
(A=At 1)t =401 = A1

In this way we come to the conclusion that using the mix rules in the
classical setting is just like trying consume all linear resources (proving 1),
rather than trying to derive a contradiction (proving _L). Since the process
calculus admits such as interpretation, it seems reasonable that in encod-
ings of concurrent computation the mix rule is difficult to deny. In the
intuitionistic case, we can derive a counterpart as follows.
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A process that does not offer any external services, has the form
' ArP:z:1
Two such processes can be combined as follows:
F;A'FQ:w:1
F;AFP:z:1 TH3A 21F20).Qw:1
' AANE@wz)(Pl20Q) nw:1

1L

cut

This, however, does not quite have the desired effect, because () cannot re-
duce until P has completed its computation. It is, in effect, a sequential
composition. This is why, in most recent incarnations of the proof term as-
signment, we have separated the input prefix from its scope. In the earliest
paper [CP10], the 1L rule was entirely silent, but that created some small
discord between the proof theory and the process reductions, as attested
by the relative complexity of the bisimulation theorems in that paper. With
the newer process assignment we obtain:

F;AFQ:uw:1
1L
FAFP:z:1 T;A 21200 Q:w:1
cut
L AAE@w2)(Plz200]Q)w:1

This now permits P and @ to proceed in parallel.

We can replace p by other constants and obtain other interpretations. At
this point, one of them is still open, in the sense that we have not found a
good independent proof-theoretically satisfying characterization (see [CCP03]).
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Exercises

Exercise 1 (Classical Harmony) Give the missing cut reductions and iden-
tity expansions for classical linear logic.

Exercise 2 (Dyadic Classical Linear Logic) Give the rules for a one-sided,
two-zone sequent calculus based on the same ideas as separating persis-
tent resources from linear ones. Show that derivable sequents are the same
as the ones for the one-sided, one-zone sequent calculus presented in this
lecture.

Exercise 3 (Mix) Prove that in the presence of the mix rules, - 1,1 and
F L, L are derivable.
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